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Abstract 

Background Alzheimer’s disease (AD) is an incurable, debilitating neurodegenerative disorder. Current biomark-
ers for AD diagnosis require expensive neuroimaging or invasive cerebrospinal fluid sampling, thus precluding early 
detection. Blood-based biomarker discovery in Alzheimer’s can facilitate less-invasive, routine diagnostic tests to aid 
early intervention. Therefore, we propose “c-Diadem” (constrained dual-input Alzheimer’s disease model), a novel 
deep learning classifier which incorporates KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway constraints 
on the input genotyping data to predict disease, i.e., mild cognitive impairment (MCI)/AD or cognitively normal 
(CN). SHAP (SHapley Additive exPlanations) was used to explain the model and identify novel, potential blood-based 
genetic markers of MCI/AD.

Methods We developed a novel constrained deep learning neural network which utilizes SNPs (single nucleo-
tide polymorphisms) and microarray data from ADNI (Alzheimer’s Disease Neuroimaging Initiative) to predict 
the disease status of participants, i.e., CN or with disease (MCI/AD), and identify potential blood-based biomarkers 
for diagnosis and intervention. The dataset contains samples from 626 participants, of which 212 are CN (aver-
age age 74.6 ± 5.4 years) and 414 patients have MCI/AD (average age 72.7 ± 7.6 years). KEGG pathway information 
was used to generate constraints applied to the input tensors, thus enhancing the interpretability of the model. SHAP 
scores were used to identify genes which could potentially serve as biomarkers for diagnosis and targets for drug 
development.

Data used in preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
such, the investigators within the ADNI contributed to the design and 
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Results Our model’s performance, with accuracy of 69% and AUC of 70% in the test dataset, is superior to previous 
models. The SHAP scores show that SNPs in PRKCZ, PLCB1 and ITPR2 as well as expression of HLA-DQB1, EIF1AY, HLA-
DQA1, and ZFP57 have more impact on model predictions.

Conclusions In addition to predicting MCI/AD, our model has been interrogated for potential genetic biomarkers 
using SHAP. From our analysis, we have identified blood-based genetic markers related to  Ca2+ ion release in affected 
regions of the brain, as well as depression. The findings from our study provides insights into disease mechanisms, 
and can facilitate innovation in less-invasive, cost-effective diagnostics. To the best of our knowledge, our model 
is the first to use pathway constraints in a multimodal neural network to identify potential genetic markers for AD.

Keywords Alzheimer’s disease, Biomarkers, Neural network, Deep learning, Binary classification, Genomics, Genetics, 
Gene expression

Background
Alzheimer’s disease (AD) is the most common form 
of dementia, characterized by a gradual loss of cogni-
tion and memory. AD is expected to affect around 78 
million older adults by 2030 [1]. Diagnosis of probable 
or possible AD is based on symptom presentation and 
neuropsychological testing according to NINCDS-
ADRDA (National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s 
Disease and Related Diseases Association) criteria [2]. 
Although neuroimaging and biofluid-based biomarkers 
exist for diagnosis in living patients, they are invasive, 
not widely accessible and not amenable for definitive 
diagnosis [3]. On the other hand, blood tests are less 
invasive, facilitate screening and early diagnosis, and 
confer significant cost benefits [3]. Therefore, blood-
based biomarker discovery has become a key area of 
clinical research in AD [4].

Disease-related genes are commonly identified using 
genome-wide association studies (GWAS) [5], in 
which several million single nucleotide polymorphisms 
(SNPs) are tested for association with a specific trait or 
disease. While APOE ε4 has been established as a sig-
nificant risk factor for AD susceptibility, AD is consid-
ered a complex trait in which a combination of genetic 
and environmental factors influences disease pathology 
[5]. Several genes, including CR1, PICALM, ABCA7, 
HLA-DRB5/HLA-DRB1, and SLC24A4/RIN3 have 
been identified as AD susceptibility loci by GWAS, and 
are associated with inflammation, immune response, 
lipid metabolism and intracellular trafficking [5]. Nev-
ertheless, AD-associated variants (except APOE ε4) 
have small effect sizes and are not sufficient to explain 
a large component of genetic heritability, which is esti-
mated to contribute up to 80% of the observed disease 
phenotype [6].

Machine learning (ML) methods have greater power 
to capture interactions between single variants and 
genes, which may explain heritability to a greater 
extent. For instance, Segura et  al. [7] showed that 

tree-based methods prioritized SNPs located in genes 
PVRL2, TOMM40, APOE, and APOC1. Genomic pro-
files showed interactions between specific SNPs in 
both UK BioBank and the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) datasets. The telescopic 
ML-based GWAS strategy proposed by Squillario et al. 
[8] integrated results at SNP, gene, and pathway levels 
of information. The authors identified TOMM40 and 
GRM7 as strongly associated with APOE ε4 status at 
the SNP, gene and pathway levels, thus providing sup-
port for cumulative polygenetic susceptibility to AD. 
Given that AD pathology is associated with systemic 
changes reflected in other parts of the body [9–11], we 
hypothesize that ML models are better suited to iden-
tify blood-based markers for AD.

Furthermore, recently published artificial intelligence 
(AI) models have focussed on interpretability, such as 
the deep learning framework proposed by Qui et  al. 
[12], which provides a disease probability map as an 
intermediate output after training a fully convolutional 
network on magnetic resonance imaging (MRI) data. 
The disease probability map is fed into a multilayer 
perceptron (MLP) for binary classification along with 
clinical information such as age, gender and mini-men-
tal state examination (MMSE) scores. Deep learning 
models in cancer have incorporated biological infor-
mation in the form of pathway constraints from KEGG 
(Kyoto Encyclopedia of Genes and Genomes) [13] and 
Reactome [14] to increase prediction performance 
and enhance interpretability. Moreover, several stud-
ies [15–18] have employed SHapley Additive exPlana-
tions (SHAP) [19], to understand model prediction and 
derive insights into disease markers and pathology.

Therefore, in our study, we present c-Diadem, a con-
strained dual-input AI model for Alzheimer’s disease 
which incorporates KEGG pathway constraints to accu-
rately predict disease status. We used genomic and 
expression data from the Alzheimer’s Disease Neuro-
imaging Inititative (ADNI) [20] for training, validation, 
and testing. We further explain and interpret the model 
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using SHAP to identify novel, potential genetic markers 
of AD.

Methods
We have summarized our data preprocessing, model 
development and interpretation steps in a flow dia-
gram in Fig.  1. The datasets and methods have been 
described in detail in the following sections.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 

Fig. 1 Flow diagram showing an overview of data preprocessing, model development and interpretation
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tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and early AD. For up-to-date information, see 
www. adni- info. org. In addition to MRI and PET neuro-
imaging of patients at regular intervals, ADNI has col-
lected and analyzed whole blood samples for genotyping 
and gene expression analysis. Table  1 provides a sum-
mary of the genotyping data provided by ADNI. Blood 
gene expression profiling was conducted using Affym-
etrix Human Genome U219 Array for 744 samples in 
the ADNI2 and ADNI-GO (ADNI-Grand Opportunity) 
phases [20].

Data preprocessing
Genotyping data for ADNI1, ADNI2/ADNIGO and 
ADNI3 are available for 1877 participants in total. Out of 
1877 participants, 626 participants from the ADNIGO/
ADNI2 phase have also provided whole blood samples 
for the gene expression assay. Thus, these 626 patients 
were selected for our study and their genotyping data was 
used as the genomic data source for our model. All SNPs 
have been identified using the hg18 build and therefore, 
the input data does not contain any missing informa-
tion. SNP data for the selected patients were downloaded 
in PLINK binary format, consisting of.bed,.bim and.fam 
files. The.bed file is the primary representation of geno-
type calls of biallelic variants. The.bim file accompanies 
the.bed file and provides extended variant information, 
i.e., SNP IDs, base-pair coordinates, and the minor and 
major alleles. The.fam file provides sample information, 
including parent IDs and phenotype. After minor allele 
frequency (MAF) filtering, we utilized the.bim file to 
identify the minor allele and encoded SNPs using addi-
tive representation (i.e., 0 = homozygous dominant, 
1 = heterozygous, 2 = homozygous recessive). The dbSNP 
ID was used as the unique identifier for SNPs. Then, cod-
ing SNPs (which occur in coding sequences, or CDS) 
were mapped to their corresponding gene loci. Input 
values represent the aggregate additive value of all SNPs 
mapped to the coding sequences of individual genes. 
The gene expression data merged with the SNP data 
matrix represents model inputs. For the development of 

a constrained model, KEGG pathway data was used to 
populate the constraints matrix.

We applied a train/test/validation split of 56–30-14%. 
The dataset consists of 212 CN, 317 MCI and 97 AD 
samples. Thus, the datasets were balanced using target 
stratification and the Synthetic Minority Oversampling 
Technique (SMOTE). SMOTE boosted model perfor-
mance compared to other oversampling techniques such 
as ADASYN (adaptive synthetic), SVMSMOTE (support 
vector machines SMOTE) and borderline SMOTE (over-
sampling limited to borderline cases). Moreover, SMOTE 
has been used previously in predicting Alzheimer’s dis-
ease using MRI images [21]. Therefore, SMOTE was the 
preferred strategy for addressing data imbalance in our 
study. Finally, sample labels were converted to 2 × 1 sca-
lars using one-hot encoding.

AI model design
We used Python v3.8 with the Functional API of keras 
v2.4.3 to design and build the constrained and uncon-
strained neural networks. The constrained model topol-
ogy is shown in Fig.  1a. The input data for our model 
includes genotyping data for 5188 mapped genes and 
gene expression data for 19,403 genes. The SNP data and 
gene expression data were provided as separate inputs. 
The edges between the genotyping input layer and the 
pathway layers were constrained using prior biological 
information from KEGG pathway datasets [22]. KEGG 
data from the Molecular Signatures database (MSigDB) 
[23] was used to create constraints encoded as a binary 
weights matrix which sets all non-existent connections 
among the genes and pathways to zero. Therefore, the 
edges from the input genes to the unrelated pathways 
were set to 0 and remained constant during training. 
The genes were mapped to 186 KEGG pathways, which 
form the second layer of the constrained model. Then, 
the pathway features were transformed using a 1D con-
volutional layer (kernel size 12) before being concate-
nated with the gene expression input. The concatenated 
data was passed through a batch normalization layer and 
three hidden layers. The output layer contains two nodes 
representing the binary outcomes of CN and MCI/AD. 
Softmax activation was used to convert the output into 
the respective CN and MCI/AD probabilities, with the 

Table 1 ADNI genotyping data summary

Phase Platform Variants Participants Genome 
Assembly

DbSNP Build

ADNI1 Illumina Human 610-Quad BeadChip 620901 SNP and CNV markers 757 hg18 129

ADNIGO/ADNI2 Illumina Human OmniExpress BeadChip 730525 SNPs and CNV markers 793 hg18 129

ADNI3 Illumina Omni 2.5 M (WGS Platform) 759993 SNPs and CNV markers 327 hg38 155

http://www.adni-info.org
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higher probability used for classification of disease status. 
The hyperparameters are summarised in Table 2.

Performance evaluation
The predictive performance of the model was evaluated 
on the validation and test sets using area under the curve 
(AUC), accuracy, precision, recall and F1 score. The best-
performing weights were chosen using a callback on 
validation loss. The AUC, accuracy, precision, and recall 
were calculated for each epoch, for both validation and 
training. The formulae for the performance metrics are 
provided below.

Here, true positives (TP) refer to the number of cor-
rectly predicted MCI/AD cases. True negatives (TN) 
refer to the number of correctly predicted CN cases. 
False positives (FP) refer to the CN cases incorrectly pre-
dicted as MCI/AD. False negatives (FN) refer to MCI/AD 
cases incorrectly predicted as CN.

Accuracy = TP+TN
TP+FN+TN+FP

Precision =
TN

TN+FP

Recall = TP
TP+FN

F1score = 2 ·
Precision·Sensitivity
Precision+Sensitivity

Model interpretation with SHAP
Model interpretation is essential to gain user trust and 
overcome the ‘black box’ reputation of deep learning 
models. Lundberg and Lee [19] proposed SHAP values as 
a unified measure of feature importance, computed using 
game theory. SHAP scores were computed using the 
Python shap package (v0.39.0) to identify genes which 
could potentially be considered biomarkers for diagno-
sis with prodromal and advanced Alzheimer’s. The top 
twenty selected genes were then analyzed using STRING 
(Search Tool for the Retrieval of Interacting Genes/Pro-
teins) [24] to identify enriched pathways and their role in 
Alzheimer’s disease.

Statistical analysis
Differences in clinical features between CN and MCI/AD 
subjects were analyzed using statistical tests for signifi-
cance. We performed the analysis of variance (ANOVA) 
test on the age of onset and years of education. We used 
the Chi-square test for differences in the proportion of 
male and female participants and the presence of the 
APOE ε4 allele. Student’s t-tests were utilized for the 
neuropsychological test scores, namely the MMSE (Mini-
Mental State Examination) and CDRSB (Clinical Demen-
tia Rating – Sum of Boxes) scores.

Table 2 Model hyperparameters

Hyperparameters Value

Overall model Number of layers 14

Loss function Binary cross-entropy

Learning rate 0.005

Optimizer Adam

Training epochs 80

Callbacks Validation loss

Batch size 32

Genotyping input layers Architecture [Layer name (output shape)] Input layer (5188)
Pathways layer (186)
Reshape layer (186, 1)
1D Convolutional layer (186, 12)
Flatten layer (2232)
Dense layer (150)

Gene expression input layers Architecture [Layer name (output shape)] Input layer (19403)
Dense layer (150)

Concatenation layer Output nodes 300

Batch normalization layer Momentum 0.99

Epsilon 0.001

Hidden layers Number of layers 3

Architecture [Layer name (output shape)] Dense layer 1 (180)
Dense layer 2 (30)
Dense layer 3 (15)

Output layer Output nodes 2

Activation Softmax
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Results
We developed a constrained deep learning binary clas-
sifier which was trained and tested on genotyping and 
gene expression data from 626 ADNI participants, with 
a train-test-validation split of 56–30-14%. The data was 
imbalanced with 212 CN participants and 414 patients 
with MCI/AD. Therefore, we applied target stratification 
and SMOTE to balance the training dataset. The inputs 
for our model include 5188 genes mapped from SNPs 
and gene expression data for 19,403 genes.

Clinical cohort characteristics
The clinical characteristics of the CN and MCI/AD are 
summarized in Table 3. The CN and MCI/AD groups dif-
fer significantly in terms of mean age (p = 0.001) and pro-
portion of female participants (p = 0.015). Both CN and 
MCI/AD groups have similar years of education. We also 
observe a higher proportion of MCI/AD patients with 
the APOE ε4 allele compared to CN subjects (p < 0.001). 
As expected, MCI/AD patients show significantly worse 
performance in neuropsychological tests such as CDRSB 
(p < 0.001) and MMSE (p < 0.001).

Model development
The constrained deep learning model is a parsimonious 
feed-forward neural network with 14 layers, which uses 
SNPs and microarray data from ADNI. The topology of 
the model is depicted in Fig. 2a. The model was used to 
predict whether a given patient was cognitively normal 
(CN) or was in the AD spectrum (either the prodromal 
stage of MCI or advanced AD). The SNP inputs were 
constrained using KEGG pathway information before 
concatenation with gene expression data and passed 
through dense, hidden layers.

The model was trained with the early stopping call-
backs on validation loss monitoring to prevent over-
fitting. The maximum number of epochs was set at 
80 with a default batch size of 32. We also developed 

an unconstrained network with 9 layers, including an 
embedding layer of size (186, 3), depicted in Fig.  2a, 
for comparison.

Model performance
We evaluated the ability of the constrained model to clas-
sify the patients as MCI/AD or CN. Our model, c-Dia-
dem, achieved an accuracy of 69% and an AUC of 70% 
on the test dataset. The inclusion of KEGG pathway con-
straints increased model accuracy and AUC, as shown in 
Fig. 2b. The performance metrics of our model have been 
compared with other classifiers in Table  4. Our model 
shows a high F1 score of 0.69 compared to the SNP-only 
deep model (F1 score = 0.53). The F1 score includes both 
the sensitivity and specificity of the model. With SNPs 
data, our model shows an accuracy of 0.64 and an AUC 
of 0.67 (F1 score = 0.64). The accuracy and AUC of the 
model improve with the inclusion of gene expression 
data. Therefore, combining SNPs and gene expression 
inputs helps our model significantly outperform previous 
models (accuracy = 0.69, AUC = 0.70, F1 score = 0.69). 
An AUC cut-off of 0.70 or more indicates a moderate-to-
high predictive ability for models of dementia risk [25].

Feature importance using SHAP
To determine the relative importance of genetic features 
(genotyping and gene expression data), we computed 
SHAP values in the constrained model for the respective 
inputs. Figure 3 provides SHAP values for the top twenty 
features which have the highest impact on model classi-
fication. Our results show that SNPs in PRKCZ, PLCB1 
and ITPR2 are considered important for prediction of 
disease status (both MCI and AD). On the other hand, 
the expression of HLA-DQB1, EIF1AY, HLA-DQA1, 
and ZFP57 has more predictive value compared to the 
expression of other genes. The genes selected by SHAP 
may be considered as potential biomarkers.

We analyzed the interaction network formed by 
SHAP-identified genes using the STRING database. 
From a total of 40 genes, 34 genes were used to con-
struct the interaction network. Some genes did not 
have a representative protein and so were not included 
in the network (LOC100653194, EIF1AY, HLA-DRB4, 
ENSG00000206239, MGC39372, LOC100505946). The 
resulting network had significantly more edges than 
expected (protein–protein interactions (PPI) enrich-
ment p-value = 0.00247) which indicates biological rela-
tionships among the genes. The network was further 
clustered into subnetworks using k-means clustering. 
The subnetwork with the most significant enrichment 
(p = 5.56 ×  10–6) was associated with pathways involved 
in the release of  Ca2+ ions into the cytosol (p = 0.0016), 
as well as pathways commonly associated with long-term 

Table 3 Clinical cohort characteristics

CN MCI/AD P-value

Number of patients 212 414

APOE ε4 allele present 58 231  < 0.001

Gender (female %) 105 (49.5%) 163 (39.2%) 0.015

Age 74.6 ± 5.4 72.7 ± 7.6 0.001

Years of education 16.2 ± 2.7 15.9 ± 2.7 0.258

Clinical Dementia Rating – Sum 
of Boxes

0.07 ± 0.3 2.5 ± 2.5  < 0.001

Mini-Mental State Examination 
score

29.1 ± 1.2 26.4 ± 4.0  < 0.001
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Fig. 2 Model topology and performance. a Model topology for unconstrained and constrained model. Pathway constraints are used 
for the constrained model on the SNP input data. b)Receiver-operating characteristic (ROC) curves show increased performance (area 
under the curve (AUC) = 0.70) for constrained model. TPR and FPR stand for True Positive Rate and False Positive Rate respectively

Table 4 c-Diadem performance metrics compared with current models

Abbreviations: DNN Deep neural network, DEG Differentially expressed genes, NA Not available, RPART  Recursive Partitioning and Regression Trees

Model Classification Type Inputs Evaluation dataset Accuracy AUC F1 score Reference

c-Diadem Binary (CN, MCI/AD) SNPs and gene expression data ADNI test dataset (30%) 0.6898 0.7027 0.6898 This work

Unconstrained model 0.5935 0.6549 0.5935 This work

c-Diadem SNPs only 0.6417 0.6702 0.6417 This work

DNN with DEG Binary (CN, AD) Blood gene expression Internal fivefold CV NA 0.6568 NA [26]

SNP (deep model) Binary (CN, MCI/AD) SNPs ADNI test set (10%) 0.66 NA 0.53 [27]

RPART Binary (CN, AD) SNPs ADNI validation dataset 0.754 0.614 0.392 [28]
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depression (false discovery rate (FDR) = 3.77 ×  10–5) and 
salivary secretion (FDR = 4.55 ×  10–6). The results of the 
pathway enrichment analysis have been as summarized 
in Table 5. The interaction network with clusters (colored 
red, green and blue) is represented in Fig. 4.

Discussion
Clinical diagnosis through blood sampling would be 
preferable to cerebrospinal fluid (CSF) sampling, as it 
is less invasive for patients and amenable for longitudi-
nal monitoring. However, there are several challenges 
to testing for conventional biomarkers in blood sam-
ples. One major issue in blood sampling as a diagnostic 
tool is the high background of plasma proteins such as 
albumin and immunoglobulin against which extremely 
low levels of amyloid-β and tau proteins would need 
to be quantitated. The low levels of these proteins may 
be further subject to metabolization and clearing by 
physiological processes [29]. Moreover, α-synuclein is 
highly expressed by red blood cells, precluding its use 
as a blood-based biomarker [30]. Thus, we have imple-
mented a constrained AI model to probe genomic and 
gene expression data from ADNI for alternative blood-
based biomarkers.

Recent studies indicate that the development of Alz-
heimer’s disease is associated with systemic changes 
in the neuronal environment reflected in other parts 
of the body. Studies in peripheral blood mononuclear 

cells (PBMCs) from amnestic MCI and AD patients 
show differential expression of senescence markers, 
such as cell cycle blockade (p16 and p53), DNA dam-
age response (γH2AX) and proinflammatory IL-6/-8 
mRNA levels [9]. Garfias et  al. [10] have reported sig-
nificantly higher levels of activated lymphocytes in 
AD patients. Moreover, a gene expression analysis of 
PBMC samples in the AddNeuroMed cohort [31] iden-
tified DEGs significantly enriched in pathways related 
to T cell and neutrophil activation in immune response, 
lymphocyte differentiation, protein serine/threonine 
kinase activity, GTPase and DNA transcription factor 
binding [11, 32].

Our findings indicate that the number of SNPs 
located in ITPR1, PLCB1, DMD, ITPR2 and RYR3 genes 
are indicative of the dysregulation of processes related 
to  Ca2+ sequestration and release. Increased calcium 
loads in the cytosol can lead to the formation of mito-
chondrial pore complexes and consequently, apoptosis. 
Increased  Ca2+ influx and mitochondrial sequestration 
is observed in CA1 (cornu ammonis 1) neurons in the 
hippocampus, which are said to be selectively vulner-
able to neurodegeneration in Alzheimer’s disease [33]. 
The  Ca2+ influx is facilitated by NR2B overexpression 
and lower levels of calcium-binding proteins (CBPs) 
among other factors [34]. Using our model, we found 
markers of a key event  (Ca2+ homeostasis dysregula-
tion) in data extracted from patient blood samples. We 

Fig. 3 SHAP results based on ADNI (a) genotyping and (b) gene expression data, computed using the constrained model
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also observe that pathways related to long-term depres-
sion are enriched in our study. Depression is a known 
risk factor for cognitive decline [35] and up to 50% of 
AD patients are known to suffer depression [36]. More-
over, from the selected genes, HLA-DQA1 has been 
reported previously as a risk factor in late-onset Alzhei-
mer’s disease using GWAS [37] and differential expres-
sion analysis [38].

It is important to note that our model is limited by 
the pathway constraints derived from our dataset of 
choice, KEGG. The genotyping input data of our model 
has been populated by coding SNPs. Coding SNPs were 
utilized as they are easily mapped to genes and their 
respective pathways. Nonetheless, we believe our mod-
el’s performance can be enhanced by the inclusion of 
non-coding SNPs as well as other types of -omics data. 

We also recognize that the potential genetic biomarkers 
identified by our study require experimental validation. 
We hope to explore biomarkers at different stages of 
Alzheimer’s by refining and training the model to dis-
tinguishing between MCI and AD patients in a future 
study. Refining the model and addressing limitations to 
enhance performance will help emphasis the validity of 
our findings.

Conclusion
The development of alternative biomarkers in Alz-
heimer’s are foundational for developing less-invasive 
diagnostics as well as breakthroughs in drug develop-
ment. Therefore, we have developed a constrained, 
explainable deep learning model incorporating bio-
logical information to accurately predict the disease 

Table 5 Pathway enrichment for gene markers by SHAP

ID Description Observed 
gene 
count

Background 
gene count

Strength FDR Matched genes

Gene Ontology (GO) Biological Process
 GO:0051282 Regulation of sequestering of calcium ion 5 134 1.63 0.0012 ITPR1,PLCB1,DMD,ITPR2,RYR3

 GO:0051209 Release of sequestered calcium ion 
into cytosol

4 61 1.88 0.0016 ITPR1,PLCB1,ITPR2,RYR3

 GO:0044057 Regulation of system process 6 592 1.07 0.0135 ITPR1,EPB41,DMD,PRKG1,ITPR2,RYR3

 GO:0019722 Calcium-mediated signaling 4 165 1.45 0.0167 ITPR1,DMD,ITPR2,RYR3

GO:0019932 Second-messenger-mediated signaling 5 354 1.21 0.0167 ITPR1,DMD,PRKG1,ITPR2,RYR3

 GO:1,903,779 Regulation of cardiac conduction 3 68 1.71 0.0359 ITPR1,ITPR2,RYR3

GO Molecular Functions
 GO:0015278 Calcium-release channel activity 3 17 2.31 0.002 ITPR1,ITPR2,RYR3

 GO:0099094 Ligand-gated cation channel activity 4 101 1.66 0.0023 ITPR1,GRIK3,ITPR2,RYR3

 GO:0005220 Inositol 1,4,5-trisphosphate-sensitive 
calcium-release channel activity

2 3 2.88 0.0033 ITPR1,ITPR2

 GO:0035091 Phosphatidylinositol binding 4 252 1.26 0.024 ITPR1,PLCB1,EPB41,ITPR2

 GO:0070679 Inositol 1,4,5 trisphosphate binding 2 13 2.25 0.0266 ITPR1,ITPR2

KEGG Pathways
 hsa04970 Salivary secretion 5 89 1.81 4.55E-06 ITPR1,PLCB1,PRKG1,ITPR2,RYR3

 hsa04730 Long-term depression 4 59 1.89 3.77E-05 ITPR1,PLCB1,PRKG1,ITPR2

 hsa04540 Gap junction 4 87 1.72 0.00011 ITPR1,PLCB1,PRKG1,ITPR2

 hsa04713 Circadian entrainment 4 92 1.7 0.00011 ITPR1,PLCB1,PRKG1,RYR3

 hsa04724 Glutamatergic synapse 4 111 1.62 0.00017 ITPR1,PLCB1,GRIK3,ITPR2

 hsa04611 Platelet activation 4 122 1.58 0.0002 ITPR1,PLCB1,PRKG1,ITPR2

 hsa04270 Vascular smooth muscle contraction 4 133 1.54 0.00023 ITPR1,PLCB1,PRKG1,ITPR2

 hsa04371 Apelin signaling pathway 4 131 1.55 0.00023 ITPR1,PLCB1,ITPR2,RYR3

 hsa04720 Long-term potentiation 3 64 1.73 0.00062 ITPR1,PLCB1,ITPR2

 hsa04924 Renin secretion 3 66 1.72 0.00062 ITPR1,PLCB1,ITPR2

 hsa04927 Cortisol synthesis and secretion 3 65 1.73 0.00062 ITPR1,PLCB1,ITPR2

 hsa04929 GnRH secretion 3 63 1.74 0.00062 ITPR1,PLCB1,ITPR2

 hsa04918 Thyroid hormone synthesis 3 74 1.67 0.00073 ITPR1,PLCB1,ITPR2

 hsa04971 Gastric acid secretion 3 73 1.67 0.00073 ITPR1,PLCB1,ITPR2



Page 10 of 12Jemimah et al. BMC Medical Genomics          (2023) 16:244 

status of patients. Further, we used SHAP to identify 
potential biomarkers, which are associated with path-
ways known to be dysregulated in Alzheimer’s. There-
fore, our method can be used to drive research in drug 
development and diagnostics for Alzheimer’s disease 
and other dementias.
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