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Abstract 

Background More than 200 asthma‑associated genetic variants have been identified in genome‑wide association 
studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS 
signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained 
from normal healthy subjects.

Methods We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma 
patients. To identify asthma‑related genes, we carried out colocalization, Summary‑based Mendelian Randomization 
(SMR) analysis, and Transcriptome‑Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. 
In addition, we compared the results of disease eQTL data and asthma‑related genes with two normal blood eQTL 
data from Genotype‑Tissue Expression (GTEx) project and a Japanese study.

Results We identified 340,274 cis‑eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease 
eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx 
eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data 
with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma‑related genes specific 
to the Korean asthmatic eQTL data.

Conclusions We provided Korean asthmatic cis‑eQTL data and identified asthma‑related genes by integrating them 
with GWAS data. In addition, we suggested these asthma‑related genes as therapeutic targets for asthma. We envis‑
age that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel thera‑
peutic targets.
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Background
Asthma is one of the most common chronic respiratory 
diseases worldwide, which affected 262 million people 
in 2019 [1] and is a complex disease with multiple endo-
types and different underlying pathological mechanisms 
[2]. Both genetic and environmental factors contribute 
to asthma development, and the heritability of asthma is 
35–95% [3]. Large population-based genome-wide asso-
ciation studies (GWASs) have identified more than 200 
lead single-nucleotide polymorphisms (SNPs) associated 
with asthma or asthma subtypes [4–10]. However, most 
asthma GWAS SNPs are located in non-coding regions; 
therefore, it is unclear which genes are causative, lead-
ing to a lack of understanding of the biological pathways 
involved in asthma.

Expression quantitative trait loci (eQTL) are genetic 
variants that affect the expression of genes and are dis-
covered via association analyses between genetic variants 
and gene expression levels [11]. eQTL data have been 
used to identify causal genes from the associated SNPs 
of GWASs by linking the genetic variant to changes in 
the gene expression, which consequently helps to under-
stand the underlying biological pathways [12–14]. To 
better serve this, several statistical methods have been 
developed to integrate GWAS results with eQTL data. 
COLOC is a statistical framework that estimates the 
probability of sharing the same causal genetic variants 
in GWASs and eQTL [15]. Summary-based Mendelian 
Randomization (SMR) is another method used to iden-
tify the causative genes from GWAS results by assessing 
the association between the variations in gene expres-
sions and a trait; SMR is free from the confounding of 
non-genetic factors [16]. In addition, the transcriptome-
wide association study (TWAS) is a statistical approach 
for identifying candidate causal genes using the results 
of GWASs and eQTL data [17]. In the TWAS analysis, 
gene expression levels are imputed by eQTLs for a gene, 
and the association between the imputed gene expression 
levels and a trait is tested to estimate the statistical sig-
nificance of each gene-disease association. Recent studies 
have further integrated GWAS results with eQTL, pro-
tein quantitative trait loci (pQTL), and epigenetic data to 
identify target genes [18, 19].

The eQTL data resources for various human tissues 
have increased [20, 21]; however, most eQTL resources 
are constructed from healthy human subjects. The regu-
lation of gene expression has been shown to be context-
specific; therefore, gene expression may differ depending 
on disease states, as well as tissue and cell types [22, 23]. 
Large eQTL studies across various human tissues have 
been conducted by the Genotype-Tissue Expression 
(GTEx) consortium [20], and tissue- or cell-type eQTL 
databases have been analyzed to identify the causative 

genes from GWAS results [23, 24]. A few disease-specific 
eQTL databases have been constructed, however, the 
usefulness of these has not been evaluated well [25–27]. 
Certain eQTL effects may be influenced by disease status, 
therefore this eQTL would not be identified by the eQTL 
data constructed from healthy subjects.

In the present study, we performed an eQTL analysis 
using RNA-seq data of peripheral blood mononuclear 
cells (PBMCs) from 433 Korean patients with asthma, 
as well as their genotype data. We compared the results 
of the asthmatic eQTL analysis with two healthy blood 
eQTL data and found not only substantial overlaps but 
also unique eQTLs in the asthma patients. Furthermore, 
we integrated the asthma eQTLs with two asthma GWAS 
summaries and identified asthma susceptibility genes 
related to Korean asthmatic eQTL data. These asthma 
eQTL data can be used to further identify asthma suscep-
tibility genes from asthma GWASs, resulting in enhanced 
knowledge regarding the regulatory pathways and biolog-
ical processes of asthma.

Methods
Study subjects
A total of 436 Korean patients with asthma were obtained 
from the Allergy Asthma Center of the Asan Medical 
Center, Seoul, Republic of Korea between January 2005 
and December 2018. The inclusion criteria were as fol-
lows: 1) symptoms such as dyspnea, wheezing or cough 
for more than three months; and 2) airway hyperrespon-
siveness, as indicated by a 20% reduction in forced expir-
atory volume in 1 s (FEV1) with a methacholine dose 
of 16 mg/mL [provocation concentration (PC) causing 
a 20% fall in FEV1;  PC20] through a provocation test or 
airway reversibility, as indicated by an increase in FEV1 
of > 12% (and at least 200 mL) following the inhalation of 
a short-acting β-agonist. Patients with severe lung dam-
age, bronchiectasis or a history of lung resection were 
excluded.

Blood samples from each subject were collected for the 
genotyping and transcriptomic analysis. PBMCs were 
isolated from whole blood samples (2 tubes of 10 ml 
each) collected in heparin tubes (Becton, Dickinson and 
Company, USA) and purified according to the manufac-
turer’s recommendations for Lymphosep (Biowest, USA). 
The PBMCs were then stored in a -80°C deep freezer.

The study was approved by the Institutional Review 
Board of Asan Medical Center (2019–1676), adhered to 
the guidelines of the declaration of Helsinki. All the sub-
jects or their legal guardians were informed about the 
study and they provided written informed consent. No 
potentially identifiable human data is presented in this 
study.
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Genotyping and imputation
Korean asthma patients were genotyped using the 
Korea Biobank Array, which was designed by the Korea 
National Institute of Health (KNIH), and based on the 
UK Biobank Axiom Array [28]. Low-quality SNPs were 
removed based on the following exclusion criteria: (1) 
poor clustering in the SNPolisher analysis, (2) genotype 
call rates < 95%, and (3) Hardy–Weinberg equilibrium 
P-value (HWE P) < 1 ×  10–6. The genotype call rates and 
HWE P-values were calculated using PLINK v.1.9.0 [29]. 
And we excluded samples based on the following exclu-
sion criteria: (1) low genotype call rates (< 95%), (2) 
deviating ± 3 standard deviation (SD) from the mean het-
erozygosity rate, (3) gender discrepancy, and (4) cryptic 
relatedness. All sample quality control (QC) process were 
performed using PLINK v.1.9.0, and three individuals 
were filtered. After QC was conducted, SNP imputation 
was performed using the Michigan imputation server 
[30]. Phasing and genotype imputations were performed 
using Eagle2 [31] and Minimac4 [32], respectively, and 
the ‘non-European’ or ‘mixed’ populations of the Hap-
lotype Reference Consortium (HRC) were used as the 
reference panel [33]. We filtered out the low imputation 
quality SNPs, from the imputed SNPs, as follows: (1) low 
imputation quality score (Rsq < 0.3), (2) duplicated SNP, 
(3) HWE P < 1 ×  10–6, (4) genotype call rates < 95%, and 
(5) minor allele frequency (MAF) < 1%. Finally, 6,676,632 
SNPs for 433 samples were used further analysis.

Transcriptome data processing
Total RNA sequencing was performed using the Swift 
RNA Library Kit and IDT Exome v2.0, according to the 
manufacturer’s instructions. Total RNA purity was deter-
mined by assaying 1 µL of the total RNA extract on a 
NanoDrop8000 spectrophotometer, and the integrity 
was checked using an Agilent Technologies 2100 Bioana-
lyzer, with an RNA integrity number value and the per-
centage of RNA fragments > 200 nt fragment distribution 
value. RNA sequencing was performed using an Illumina 
NovaSeq 6000 system, according to the protocols pro-
vided for 2 × 100 bp read sequencing. Quality trimming 
and adapter clipping of the reads were conducted using 
the Trimmomatic software [34]. Read alignment and 
quantification were performed using HISAT2 [35], SAM 
tools [36] and HTseq [37] with the Ensembl transcrip-
tome reference (hg19/GRCh37).

Normalization and quality control of the gene expressions
The gene expressions were quantified in transcripts per 
million (TPM) using GENCODE v19 [38]. A gene was 
allowed for downstream analyses if its expression in at 
least 20% of the samples was greater than 0.1 TPM and 

the read counts were greater than six. The expression 
values were normalized between the samples using the 
trimmed mean of M-values in edgeR [39], and each gene 
was normalized across the samples using inverse normal 
transformation.

cis‑eQTL analysis
To investigate the effects of genetic variation on gene 
expression in 433 Korean patients with asthma, we per-
formed cis-eQTL analysis mapping using FastQTL [40]. 
After filtering out genes with low expression levels, we 
tested the association between normalized gene expres-
sion levels and genotypes of SNPs, adjusting for sex and 
60 PEER factors according to the GTEx methods (https:// 
gtexp ortal. org/ home/ metho ds) [41] as covariates. Only 
SNPs within a 1 Mb window from the transcription 
start site (TSS) of every gene were tested for cis-eQTL 
analysis.

FastQTL provides a permutation test to correct for 
multiple testing, therefore we performed an adaptive 
permutation scheme with the number of permutation 
iterations between 1,000 and 10,000, using the “–per-
mute 1000 10,000” option. The beta distribution-adjusted 
empirical P-values were used to calculate false discovery 
rates (FDRs) using Storey’s method [42], and any gene 
with an FDR ≤ 5% was defined as an eGene whose expres-
sion was regulated by at least one SNP. To identify all the 
significant gene-SNP pairs associated with the expres-
sion of a particular gene, the nominal P-value thresholds 
of each eGene were defined as Pg, threshold = Fg,min

−1(Pt), 
where Pt is the empirical P-value of the gene closest to 
the FDR of 5% and F−1 is the inverse cumulative distri-
bution. All the SNPs with nominal P-values below the 
threshold for their target genes were defined as eSNPs 
that regulate the expression of certain genes.

Comparison with the blood eQTL data of normal subjects
We compared our eQTL results against existing blood 
eQTL data from GTEx [43] and a Japanese study [44] to 
determine whether our eQTL signals overlapped with 
those of normal subjects or were asthma patient-specific. 
GTEx contains DNA and RNA-seq data from 838 indi-
viduals over 49 tissues and provides 8,663 eGenes and 
1,052,542 cis-eQTLs for whole blood samples in GTEx 
v7. The Japanese study conducted an eQTL analysis on 
five immune cells and the whole blood from 105 healthy 
Japanese volunteers and provided 3,386 eGenes and 
335,813 cis-eQTLs for whole blood. We identified the 
overlapping eGenes and compared the direction of the 
allelic effects of the overlapped cis-eQTLs between the 
eQTL data resources.

https://gtexportal.org/home/methods
https://gtexportal.org/home/methods


Page 4 of 12Kim et al. BMC Medical Genomics          (2023) 16:259 

Colocalization, SMR and TWAS analysis
To consider ethnic differences, we collected two asthma-
GWAS summaries that originated from European (UK 
Biobank) [4] and Japanese ancestry [45] We then identi-
fied GWAS-lead SNPs in the genomic risk loci from each 
GWAS summary using the FUMA program, which pro-
vides functional annotation, visualization, and interpre-
tation of GWAS results [46]. The GWAS-lead SNPs were 
clumped with following criteria: P < 5 ×  10–8, distance 
between linkage disequilibrium (LD) blocks > 250 kb, and 
 r2 < 0.1 from the 1,000 Genome Project phase 3 European 
panel [46]. Colocalization analyses between one of the 
three blood eQTL datasets (Korean asthma eQTL, GTEx, 
and Japanese) and the corresponding GWAS-lead SNPs 
were conducted using COLOC from the R package [15]. 
We selected target genes for the colocalization analy-
ses with the following criteria: the TSS and the eQTL 
lead SNP of the gene were located within 0.5 Mb of the 
GWAS lead SNP in the GWAS risk locus. All the SNPs 
located between the GWAS lead SNP and the eQTL lead 
SNP or located in the 0.5 Mb extension on either side, 
were used for the analysis. We applied a posterior prob-
ability of colocalization (PP4) > 0.5 as the threshold for 
the colocalization significance. Significant GWAS-eQTL 
colocalization events were visualized using LocusCom-
pareR in R [47].

We performed an SMR analysis with asthma-GWAS 
summary statistics and blood eQTLs using the SMR soft-
ware [16]. The LD was estimated using a 1000 genome 
reference panel (European and East Asian) [48], and the 
major histocompatibility complex (MHC) region (chro-
mosome 6:28.5 Mb ~ 33.5 Mb in hg19) was excluded from 
the analysis. We applied the Bonferroni correction and 
heterogeneity-independent instrument (HEIDI) thresh-
old to exclude false positives and confounding effects.

In addition, we performed a TWAS analysis using the 
FUSION program [49]. Two inputs were required for 
FUSION program as follows: (1) GWAS summary statis-
tics and (2) gene expression weights for each gene with 
significant heritability. We conducted the TWAS using 
two asthma-GWAS summaries from European and 
Japanese population, and two eQTL datasets, Korean 
asthmatic and GTEx eQTL data. The pre-computed 
gene expression weights for GTEx were provided in the 
FUSION program. For TWAS using Korean asthmatic 
data, we computed gene expression weight using indi-
vidual genotype data and eQTL dataset, and succeeded 
in calculating gene expression weights for 1,160 genes 
that passed the gene expression heritability threshold 
(Ph2 < 0.01). However, due to the unavailability of individ-
ual genotype data for Japanese eQTL, we did not perform 
TWAS for Japanese eQTL. We applied the Bonferroni 
correction to the results of TWAS (P < 4.31 ×  10–5) and 

performed replication analysis using the GTEx dataset 
for significant TWAS genes.

Druggable target genes
Using the drug-gene interaction database (DGIdb) [50], 
15 asthma-related genes were mapped to licensed drugs 
to identify the druggable target genes. Information on 
drug indications for the target gene was obtained from 
CheMBL [51] and Drug Bank [52]. To identify the asso-
ciations between the drugs and asthma, the identified 
drugs were queried on the Open Targets Platform [53]. 
We analyzed protein–protein interaction (PPI) between 
target genes using the STRING database [54].

Results
Cis‑eQTL analysis of Korean asthma patients
A total of 433 Korean asthma patients were used for the 
eQTL analysis, and their basic characteristics are shown 
in Table  1. The mean age of these asthma patients, at 
diagnosis, was 45.3 ± 16.2 years, and 40.4% were male. 
Among them, 42.9% were current or ever smokers and 
45.7% had atopy. The mean FEV1 and FEV1/forced 
vital capacity (FVC) were 75.2 ± 18.0% and 72.7 ± 13.4%, 
respectively. The mean blood eosinophil count and total 
IgE levels were 431.3 ± 448.6 (cells/µL) and 426.0 ± 686.7 
IU/mL, respectively. Of the patients, 74.1% had blood 
eosinophils greater than or equal to 150 cells/µL, and 
66.8% had total IgE greater than or equal to 100 IU/mL. 
Two hundred and twenty-five patients (53.8%) used a 
medium or high dose of inhaled corticosteroids (ICS).

We performed the cis-eQTL analysis with RNA-seq 
of PBMCs from the asthma patients using FastQTL 
[40]. Following QC for genotype and gene expressions, 
6,676,632 SNPs and 24,066 genes were chosen for the 
analysis. After applying FDR < 0.05 as an eQTL P-value 
threshold, 267,691 SNPs (eSNPs) had at least one target 
gene (eGene), and 2,875 genes (eGenes) had at least one 
expression-associated SNP (eSNP); consequently 340,274 
eGene-eSNP pairs (cis-eQTLs) were discovered (Addi-
tional File 1: Table  S1). Of the 267,691 eSNPs, 223,578 
(83.5%) had one target gene, 29,794 (11.1%) had two tar-
get genes, 8,346 (3.1%) had three target genes, and 5,974 
(2.2%) had more than four target genes (Fig. 1A). Among 
the 340,274 eGene-eSNP pairs, the distance from the TSS 
of the target gene to the eSNP was within 500 kb in 95.4% 
(324,541 pairs), within 250 kb in 85.3% (290,253 pairs), 
within 100 kb in 60.0% (204,174 pairs), and within 50 kb 
in 39.0% (132,669 pairs) (Fig. 1B). The 2,875 eGenes were 
composed of 2,562 protein-coding genes (89.1%), 257 
pseudogenes (8.9%), 50 non-coding RNAs (1.7%), and 5 
other types of genes (0.2%) (Fig. 1C).

We compared our blood eQTL results from asthmatic 
patients with healthy subjects. For this comparison, we 
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used two blood eQTL datasets from a GTEx v7 study [43] 
and a Japanese study [44]. The total numbers of eGenes 
from the GTEx and Japanese datasets were 8,663 and 
3,386, respectively. Among the 2,875 eGenes from the 
Korean asthmatic eQTL, 64.1% (1,844 of 2,875 eGenes) 
overlapped with the GTEx eGenes and 39.0% (1,122 of 
2,875 eGenes) overlapped with the Japanese eGenes. For 
reference, 69.6% of the eGenes from the Japanese data 
(2,355/3,386) overlapped with the GTEx eQTL data. 
We also compared the direction of eSNP allelic effects 
on the target gene expressions between the asthmatic 
and normal eQTL data. There were 1,052,542 eGene-
eSNP pairs in the GTEx and 335,813 eGene-eSNP pairs 
in the Japanese population. Among the 340,274 eGene-
eSNP pairs from the Korean asthmatic eQTL data, 

98,302 eGene-eSNP pairs were shared with GTEx and 
71,533 eGene-eSNP pairs were shared with the Japanese 
pairs. Among the shared eGene-eSNP pairs, approxi-
mately 93.1% (91,508/98,302 pairs) for GTEx and 97.5% 
(69,758/71,533 pairs) for Japanese showed the same 
direction of allelic effects on gene expression as the 
Korean asthmatic eQTL (Fig. 2). As a reference, 142,923 
eGene-eSNP pairs were shared between the GTEx and 
Japanese eQTL data, and 99.2% (141,842 pairs) showed 
allelic effects in the same direction (Fig. 2). As shown in 
Additional File 2: Table  S2, we also found eQTL results 
showing allelic effects in the opposite direction, between 
the asthmatic and normal eQTL data as follows: 6.9% 
(6,794 pairs from 155 eGenes) of 98,302 pairs for GTEx, 
and 2.5% (1,775 pairs from 20 eGenes) of 71,533 pairs 
for the Japanese eQTL. Among the 155 eGenes from 
the GTEx data and 20 eGenes from the Japanese data, 
showing the opposite direction of the eQTL effect, 15 
genes, including CEACAM21, NDE1, LGALS8, and 
AC124944.3, overlapped between them (Additional File 
2: Table S2).

Identification of the asthma‑susceptibility genes 
from the Korean asthmatic blood eQTL data using COLOC, 
SMR and TWAS analysis
We performed a colocalization analysis to identify the 
target genes corresponding to the genetic variants from 
the asthma GWAS using the asthmatic eQTL data. We 
applied the COLOC method [15] to the three blood cis-
eQTL datasets (Korean asthma, GTEx, and Japanese) 
and two asthma-GWAS summary statistics using Euro-
pean participants [4] and East Asian ancestries [45]. The 
European asthma-GWAS analyzed 64,538 asthma cases 
and 239,321 controls from the UK Biobank and identified 
148 lead SNPs [4], whereas the Japanese asthma-GWAS 
analyzed 8,216 cases and 201,592 controls from a Japa-
nese cohort and identified 11 lead SNPs [45] (Additional 
File 2: Table S3 and S4). We conducted the colocalization 
analysis by applying the criteria described in the Methods 
section and defined the GWAS colocalized genes with a 
PP4 greater than 0.5.

We identified 39 genes in the Korean asthmatic eQTL 
data with evidence of colocalization between the eQTL 
and European asthma-GWAS signals (36 genes) or Japa-
nese asthma-GWAS signals (4 genes) (Additional File 2: 
Table  S5). Among 39 genes, SUOX gene were identified 
both in European and Japanese asthma-GWASs. In addi-
tion, 59 and 39 genes were identified as having significant 
colocalization, from the normal eQTLs of GTEx and the 
Japanese study, respectively, using both the European and 
Japanese asthma-GWAS summaries (Additional File 2: 

Table 1 Characteristics of 433 Korean asthma patients

All data are presented as the mean ± standard deviation (SD) or the number of 
participants (%)
a participants available with this data were analyzed

FEV1 pred predicted forced expiratory volume in 1 s, FVC Forced vital capacity, 
ICS Inhaled corticosteroids

Characteristics Korean asthma patients
mean ± SD / N (%)

Age, years 49.5 ± 15.6

Sex (%)

 Male 175 (40.4)

Age at diagnosis,  yearsa 45.3 ± 16.2

Age group at  diagnosisa

 0 ~ 19 23

 ≥ 20 338

Smoking status (%)

 Current 53 (12.2)

 Ever 133 (30.7)

 Never 247 (57.0)

Atopy (%) 198 (45.7)

FEV1 pred.a (%) 75.4 ± 18.0

 < 80 223 (53.7)

 ≥ 80 192 (46.3)

FEV1/FVCa (%) 72.8 ± 13.4

 < 70 166 (40.0)

 ≥ 70 249 (60.0)

Blood eosinophil  counta (cells/µL) 431.3 ± 448.6

 < 150 110 (25.9)

 ≥ 150 314 (74.1)

Dose of  ICSa

 Medium or high dose 225 (53.8)

 Low dose 193 (46.2)

Total  IgEa (IU/mL) 426.0 ± 686.7

 < 100 128 (33.2)

 ≥ 100 257 (66.8)
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Table  S5). Of the 39 colocalized genes identified in the 
Korean asthmatic eQTL data, 20 genes were also significant 
in the colocalization results of the GTEx or Japanese eQTL 
datasets, 15 genes were not available in the GTEx or Japa-
nese eQTL datasets, and the remaining 9 genes were found 

to be significant only in the Korean asthmatic eQTL data-
set (Table  2, Fig.  3, and Additional File 3: Fig. S1-S9). For 
example, an association signal around rs2070901 located on 
chromosome 1 showed a clear colocalization pattern with 
the FCRG3A gene only in the Korean asthmatic eQTL data 

Fig. 1 Characteristics of Korean asthmatic blood cis‑eQTL. A Distribution of the target genes for each eSNP. B Cumulative distribution 
of the distance from the transcription start site (TSS) of the target gene to the eSNP. The x‑axis is the distance from the TSS to the position 
of the eSNP, and the y‑axis is the cumulative probability of the eSNP. C Distribution of the eGene biotypes. The biotypes were classified into four 
groups: protein‑coding genes, pseudogenes, non‑coding RNA, and other gene biotypes

Fig. 2 Scatter plots for comparisons of the direction of the allelic effects across the eQTL data. Scatter plots for comparisons of the direction 
of the allelic effects among the whole blood cis‑eQTL data from the Korean asthma, GTEx, and Japanese populations. Each point in the scatter plot 
represents the allelic effect of an SNP on a gene expression. The scatter plots included 98,302 eQTLs between Korean asthma and GTEx, 71,533 
eQTLs between Korean asthma and Japanese asthma, and 142,923 eQTLs between GTEx and Japanese asthma
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(Fig. 3). In the normal eQTL data of GTEx and the Japanese 
study, strong eQTL lead variants were identified in the LD 
block, different from that of the asthmatic eQTL data, with 
modest GWAS P-values. As a reference, the colocalization 
results for GTEx and the Japanese study showed 17 over-
lapping genes (Additional File 2: Table S6). Among these 17 
overlapping genes, 10 were also colocalized in the Korean 
asthmatic eQTL data. Among the remaining seven genes, 
four were not available, and three did not show significant 
colocalization in the Korean asthmatic eQTL data.

To identify asthma-associated genes using the asth-
matic eQTL data, we additionally performed an SMR 
analysis using the asthmatic eQTL data and two asthma-
GWAS summaries from Europe and Japan. SMR is gener-
ally used to discover genes satisfying the hypothesis that 
genetic variants affecting the risk of disease may act via 
changes in the expression levels of certain genes [16]. We 
applied the Bonferroni correction and HEIDI method for 
the SMR analysis, to reduce the likelihood of false-posi-
tive results.

After applying the Bonferroni correction 
(Psmr < 2.08 ×  10–6) and HEIDI threshold (PHEIDI > 0.01), a 
total of four SMR genes were identified: three SMR genes 
(AHI, MED24, and DDX5) with the European asthma-
GWAS summary and one SMR gene (RPS26) with the Japa-
nese asthma-GWAS summary (Additional File 2: Table S7). 
We also performed an SMR analysis using the GTEx and 
Japanese eQTL datasets by applying the Bonferroni correc-
tion (Psmr < 2.57 ×  10–6 for GTEx and < 2.27 ×  10–6 for Japa-
nese) and HEIDI threshold (PHEIDI > 0.01), and found 18 and 
one SMR genes, respectively (Additional File 2: Table S7).

Among the four SMR genes in the asthmatic eQTL 
data, two genes, DDX5 and MED24, were not identified 
in the SMR analysis of the two normal eQTL data, and 
have not been reported to be significantly associated with 
asthma in the SMR analysis. In addition, DDX5 were 

significant in both the colocalization and SMR analyses 
(Additional File 2: Table S5 and S7).

As another approach to identifying asthma-associated 
genes using the asthmatic eQTL data, we performed a 
TWAS analysis using the FUSION program [49]. TWAS 
is a gene-based association approach that investigates 
associations between genetically regulated gene expres-
sion and phenotype [17]. We carried out the TWAS anal-
ysis using two asthma-GWAS summaries from European 
and Japanese, and two eQTL datasets, Korean asthmatic 
and GTEx eQTL data. We tested 1,160 and 8,799 genes 
that passed the gene expression heritability threshold 
(Ph2 < 0.01) for Korean asthma and GTEx, respectively.

After applying the Bonferroni correction to the 
TWAS analysis using Korean asthmatic eQTL data-
set, we identified 22 significant genes (P < 4.31 ×  10–5). 
Of these 22 genes, 20 and 3 genes identified from the 
TWAS results using European and Japanese GWASs, 
respectively (Additional File 2: Table  S8). In addi-
tion, the RPS26 gene was found to be significant in 
both European and Japanese asthma-GWASs. We 
then performed a replication analysis using GTEx 
data. Of the 22 TWAS genes, 6 were not available in 
the GTEx eQTL datasets. Among the remaining 16 
genes, 11 were replicated in the GTEx TWAS analysis 
(P < 3.13 ×  10–3 = 0.05/16), while five genes, including 
INPP5B, LCLAT1, MYRF, TUBG2 and CASTOR3, were 
significant only in the Korean asthmatic dataset. Nota-
bly, the MYRF gene was also identified in colocalization 
analysis (Additional File 2: Table S5 and S8).

Asthma‑related genes specific to the Korean asthmatic 
blood eQTL data as therapeutic targets
In this study, using the asthmatic blood eQTL, we iden-
tified 15 asthma-related genes; two from the SMR, four 
from the TWAS, eight from the colocalization analysis, 

Table 2 Korean asthma‑specific colocalization genes

Study ID ID of the paper which provided asthma-GWAS summary, Var num number of genetic variants used in the colocalization analysis, PP4 Posterior probability of 
colocalization, NA Not available because gene was out of analysis criteria or does not exist in the dataset

Study ID Ensemble ID Gene symbol Var num PP4 Korean asthma PP4 GTEx PP4 Japanese

GCST010042 ENSG00000124920 MYRF 796 0.890 3.25 ×  10–10 0.304

GCST010042 ENSG00000185800 DMWD 1181 0.817 0.114 0.109

GCST010042 ENSG00000186088 GSAP 1097 0.979 0.002 0.096

GCST010042 ENSG00000173917 HOXB2 961 0.927 0.116 0.074

GCST010042 ENSG00000104147 OIP5 991 0.755 0.211 0.069

GCST010042 ENSG00000163608 NEPRO 1249 0.654 3.49 ×  10–6 0.063

GCST010042 ENSG00000203747 FCGR3A 1281 0.619 9.39 ×  10–6 0.053

GCST010042 ENSG00000197070 ARRDC1 711 0.982 2.90 ×  10–5 0.016

GCST010042 ENSG00000260261 AC124944.3 1163 0.994 0.143 6.58 ×  10–4
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and one from both TWAS and colocalization analy-
sis. To investigate the druggable genes, we mapped 
the 15 asthma-related genes onto licensed drugs or 
compounds from the DGIdb [50]. Of all the asthma-
related genes, only FCGR3A (Fc gamma receptor IIIa) 
was found to interact with 24 drugs. We again inves-
tigated the 24 drugs in Drug Bank [52] and CheMBL 
[51], and confirmed that FCGR3A was associated with 
six asthma drugs that were approved or under clini-
cal trials (Additional File 2: Table  S9). Among these 
drugs, prednisolone, an approved asthma drug that 
targets the NR3C1, gene was found to interact with 
FCGR3A. We analyzed FCGR3A-NR3C1 interaction 

using STRING, a database of known and predicted 
protein–protein interactions. While no direct inter-
action was observed between FCGR3A and NR3C1, 
we identified an interaction network comprising the 
path FCGR3A—FCER1G—ZAP70—EGFR—NR3C1 
based on known PPI results from curated databases 
and experiments. Additionally, three asthma drugs 
undergoing clinical trials were found to interact with 
FCGR3A, despite targeting TNF (adalimumab and 
etanercept) and PTGS1/PTGS2 (indomethacin). No 
direct interaction was observed between FCGR3A and 
TNF or between FCGR3A and PTGS1/PTGS2. How-
ever, similar to the PPI result of FCGR3A and NR3C1, 
we identified an interaction network comprising the 

Fig. 3 FCGR3A colocalization across the three eQTL data resources. Among all three eQTL datasets, namely the Korean asthmatic, GTEx, 
and Japanese eQTL data, FCRG3A showed a clear colocalization pattern in the Korean asthmatic data. The top panel presents a scatter 
plot to visualize the colocalization events, with eQTL P‑values (y‑axis) and GWAS P‑values (x‑axis). A bona fide signal should be present 
toward the top‑right corner. The middle and bottom panels present regional plots for GWAS and eQTL P‑values, respectively. A Korean asthmatic 
eQTL; B GTEx eQTL; and C Japanese eQTL
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path FCGR3A—FCER1G—ZAP70—TNF. Furthermore, 
we found an interaction network comprising the path 
FCGR3A—SRC—PTGS1/PTGS2 based on the known 
PPI results from curated databases and experiment.

Discussion
The main aim of this study was to identify asthma-related 
genes from asthmatic eQTL data, given that gene expres-
sion may change in a context-specific manner depending 
on the disease status. We identified 15 asthma-related 
genes specific to the asthmatic eQTL data, by three 
methods of colocalization, SMR and TWAS, using two 
asthma-GWAS summary statistics from European and 
Japanese populations, and suggested these genes as ther-
apeutic targets for asthma.

Among the 9 colocalization genes specific to Korean 
asthma, FCGR3A is well known for its association with 
various innate immune responses [55], and has been 
reported to interact with certain approved asthma drugs 
(Additional File 2: Table S9). As shown in Fig. 3, FCGR3A 
was highly colocalized with the eQTL and GWAS vari-
ants only in the Korean asthmatic eQTL data. In the 
normal blood eQTL datasets, eQTL variants around the 
GWAS-lead SNP rs2070901 were not found to be signifi-
cant. The eQTL P-values of rs2070901 were 0.0014, 0.53, 
and 0.07 in the Korean, GTEx, and Japanese, respectively. 
Additionally, ARRDC1 (arrestin domain containing 1) 
is located in the extracellular vesicles (EVs), which are 
known to contribute to the pathogenesis of asthma via 
various mechanisms related to both inflammation and 
pathological remodeling [56].

Interestingly, among the colocalization genes, four 
genes (MYRF, DMWD, GSAP, and NEPRO) were 
involved in neuronal survival and proliferation. MYRF 
(myelin regulatory factor) encodes a transcription factor 
required for myelination of the central nervous system. 
This gene is located near the fatty acid desaturase (FADS) 
gene cluster and is associated with an increased risk of 
inflammation [57]. DMWD (DM1 locus, WD repeat con-
taining) is predicted to be located in the dendrites, nuclei, 
and perikarya of neurons, however its function is poorly 
characterized. The amino acid sequence of DMWD is 
similar to that of WD repeat domain 20 (WDR20), which 
is associated with childhood asthma [58]. In addition, 
GSAP (gamma-secretase activating protein) plays an 
important role in Alzheimer’s disease by regulating lipid 
homeostasis and mitochondrial function [59], but its 
functional relevance in asthma is not largely unknown. 
NEPRO (nucleolus and neural progenitor protein) is 
predicted to be located in the nucleolus and is known to 
act as a Notch effector for the development and main-
tenance of neural progenitor cells in the neocortex [60]. 
We do not know how to link the functions of these genes 

to asthma, and future studies are required to determine 
their underlying mechanisms. The remaining colocaliza-
tion genes belong to embryo development (HOXB2) [61], 
cell division (OIP5) [62], and one with an unknown func-
tion (AC124944.3).

Among the two asthma-related genes identified 
through the SMR analysis, MED24 is associated with 
increased concentrations of phosphatidylcholine, a 
metabolite that is positively associated with asthma [63]. 
In addition, DDX5 is known to be a hub gene of the cilia 
module in asthma and a regulator of ERBB2, which is 
associated with epithelial repair processes in asthma 
patients [64, 65].

Through a TWAS analysis, five genes related to asthma 
were identified, including the MYRF gene which was also 
identified in colocalization analysis. The INPP5B gene 
encodes an inositol polyphosphate-5-phosphatase B pro-
tein that regulates calcium signaling, which is involved in 
inflammatory cellular responses and interactive signaling 
pathways that mediate the development of asthma [66]. 
The LCLAT1 gene encodes a lysocardiolipin acyltrans-
ferase 1 protein that is involved in phosphatidylinosi-
tol acyl-chain remodeling. Researchers have found that 
changes in microRNA (miRNA) expression can contrib-
ute to the pathogenesis of asthma, and there is a negative 
correlation between LCLAT1 and miRNAs (miR-199b-5p 
and miR-223-3p) associated with asthma [67]. The CAS-
TOR3 gene regulates amino acid metabolism, which plays 
a role in various anti-oxidant and immunological activi-
ties relevant to asthma pathogenesis. And differences in 
amino acid levels may be involved in the development 
of asthma [68]. Additionally, the TUBG2 gene encodes a 
tubulin gamma-2 chain protein, which is a major constit-
uent of microtubules. Microtubules play a role in smooth 
muscle cell migration and airway remodeling a key fea-
ture of asthma [69].

This study had several limitations. First, our eQTL 
analysis was performed only in Korean asthma patients 
only, without comparable eQTL data from normal Kore-
ans. Therefore, we compared our findings with two nor-
mal blood eQTL datasets of European and Japanese 
ancestry. Second, we used two asthma-GWAS summa-
ries of European and Asian ancestry for the colocaliza-
tion, SMR, and TWAS analysis, with different sample 
sizes (64,538 cases vs. 8,216 cases) for the asthma GWAS. 
Both of these limitations can affect the power of the 
analysis and contribute to bias related to ethnicity due 
to differences in LD structures between populations. To 
validate our findings, future analyses will require a com-
parison with normal Korean eQTL data and a larger sam-
ple size for the asthma-GWAS of East Asian ancestry. 
Third, through the drug target analysis, we discovered 
that the FCGR3A gene interacts with asthma drugs that 
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have either been approved or are currently undergoing 
clinical trials. While we did not observe direct interac-
tions between FCGR3A and drug target genes, we iden-
tified indirect interaction network based on the curated 
databases and experiments. These interactions could 
have potential implications for asthma research and 
treatment, but further investigation into these interac-
tions could be necessary to fully understand their poten-
tial impact. Another limitation is that we used PBMCs, 
which may not fully capture the disease context. Using 
asthma-relevant tissues such as bronchial epithelial cells, 
airway smooth muscle cells, and nasal epithelial cells can 
provide more accurate insights into the molecular mech-
anisms of asthma and help identify eQTLs that are spe-
cific to these tissues. This limitation may affect our ability 
to identify eQTLs specific to asthma-relevant tissues and 
may impact the interpretation of our results, so our find-
ings will need to be confirmed in additional asthma-rele-
vant tissues.

Conclusions
This study provided asthma cis-eQTL data and identified 
15 asthma-related genes by integrating them with GWAS 
data. We envisage that our findings will contribute to 
understanding the etiological mechanisms of asthma and 
provide novel therapeutic targets.
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