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Abstract 

Background Endometrial cancer (EC) is one of the worldwide gynecological malignancies. Endoplasmic reticulum 
(ER) stress is the cellular homeostasis disturbance that participates in cancer progression. However, the mechanisms 
of ER Stress on EC have not been fully elucidated.

Method The ER Stress-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and GeneCards, 
and the RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA). The risk signature 
was constructed by the Cox regression and the least absolute shrinkage and selection operator (LASSO) analysis. The 
significance of the risk signature and clinical factors were tested by time-dependent receiver operating characteristic 
(ROC) curves, and the selected were to build a nomogram. The immunity correlation was particularly analyzed, includ-
ing the related immune cells, pathways, and immune checkpoints. Functional enrichment, potential chemotherapies, 
and in vitro validation were also conducted.

Result An ER Stress-based risk signature, consisting of TRIB3, CREB3L3, XBP1, and PPP1R15A was established. Patients 
were randomly divided into training and testing groups with 1:1 ratio for subsequent calculation and validation. Based 
on risk scores, high- and low-risk subgroups were classified, and low-risk subgroup demonstrated better prognosis. 
The Area Under Curve (AUC) demonstrated a reliable predictive capability of the risk signature. The majority of sig-
nificantly different immune cells and pathways were enriched more in low-risk subgroup. Similarly, several typical 
immune checkpoints, expressed higher in low-risk subgroup. Patients of the two subgroups responded differently 
to chemotherapies.

Conclusion We established an ER Stress-based risk signature that could effectively predict EC patients’ prognosis 
and their immune correlation.
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Immune infiltration
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Introduction
EC is a worldwide gynecological malignancy, ranking as 
the fourth most common cancer and the sixth top cause 
of cancerous death in females. Although the median 
diagnostic age is already more than 61 years, EC still 
tends to occur in the younger population in recent dec-
ades [1]. The most significant risk factor for EC is expo-
sure to estrogen, whether endogenous or exogenous, or 
even obesity. Other correlated factors include delayed 
menopause, early-onset menarche, nulliparity, diabetes, 
Lynch Syndrome, and Cowden Syndrome [2]. Despite 
many obvious achievements in EC treatment, such as 
surgery, radiotherapy, cytotoxic chemotherapy, and hor-
monal therapy [3], the morbidity and mortality rates of 
EC patients remain quite high globally. So, the action 
of identifying molecular mechanisms and then search-
ing for novel treatment targets is still urgent for effi-
ciently improving or even remarkably advancing the EC 
treatment.

As demonstrated, the tumoral abnormalities will cause 
the microenvironment mess, such as ischemia, hypoxia, 
oxidative stress, nutrient imbalance, and DNA damage, 
so as to disturb the homeostasis of endoplasmic reticu-
lum, following misfolded or unfolded protein accumu-
lation, thus leading to an intracellular state named ER 
Stress [4]. In turn, the continuous activation of the ER 
Stress will alter the tumorigenesis through both the tran-
scriptional and translational pathways [5]. Furthermore, 
ER Stress can reprogramme the function of immune cells 
and thus apparently temper anti-cancer immunity [6]. ER 
Stress induces tumor cells to release factors that change 
the leucocytes around tumor cells, thus promoting tumor 
growth [7]. ER-stressed tumor cells secrete PD-L1 that 
drives M2 macrophage polarization, facilitating the 
escape from immune surveillance [8]. On the other hand, 
ER-stressed M1-like macrophages secrete DAMPs that 
lead to tumor cell death [9].

So far, continuously accumulated studies have pre-
sented that ER Stress should have played a critical role 
in endometrial carcinogenesis [10]. Protein and mRNA 
levels of several ER Stress-induced apoptosis indicators, 
including GRP78 and ATF6, are apparently increased in 
endometrial cancer immunohistochemical samples [11]. 
And GRP78 plasma membrane localization is elevated 
in endometrial cancer [12]. Therefore, cancer therapy 
focused on ER Stress is promising for deeper exploration.

In this paper, we constructed a bioinformatic method-
based risk signature to explore the relevance and effect 
of ER Stress on EC progression. First, by combining ER 
Stress-related gene expression with clinical data, sig-
nificantly differentially expressed genes between nor-
mal endometrial tissues and EC tissues were selected. 
After Cox analyses and LASSO regression analysis, 4 

prognostic genes were filtered out. Based on these 4 
genes that were identified as screening biomarkers of 
EC, a risk signature (risk score) was established by sec-
ondary clustering, which helped to discover molecular 
characteristics and immune infiltration specific to ER 
Stress of EC patients.

According to the survival prediction, EC patients with 
higher risk scores represented worse prognoses which 
indicated the clinical implication of our risk signa-
ture. For further analyses, results showed patients with 
higher risk scores were with less immune infiltration to 
evade the immune surveillance, as well as a lower rate 
of immune checkpoints, demonstrating that risk sig-
nature was capable to forecast the EC patients’ immu-
notherapies response. Furthermore, special potential 
chemotherapies were identified based on risk scores. 
4 risk signature genes were then experimentally veri-
fied in EC cell lines and EC tissues. One challenge our 
risk signature face is that despite the strong correlation 
between immune and our risk signature, our risk signa-
ture was not significantly correlated with Tumor Muta-
tion Burden (TMB), which is a potential biomarker in 
tumor immunotherapies selection [13, 14]. Overall, our 
study provided an effective prognostic signature based 
on ER Stress-related genes and helped personalized 
therapy for EC patients.

Materials and methods
Normal and tumor datasets
The transcriptome RNA-seq data of the EC samples 
(554 tumor datasets) and the normal samples (23 nor-
mal datasets) were obtained from TCGA database 
(https:// portal. gdc. cancer. gov/ repos itory) on 1st Janu-
ary 2023. The clinical features of EC patients were also 
obtained from the TCGA.

Identification of ER stress‑related differentially expressed 
genes
304 ER Stress-related genes (ERGs) were obtained from 
GSEA (http:// www. gsea- msigdb. org/ gsea/ index. jsp), 
while 818 ERGs from GeneCards (http:// www. genec 
ards. org/) and 178 ERGS were finally selected after fin-
ishing intersection. The differentially expressed genes 
(DEGs) were selected based on the mRNA expression 
difference between the EC patients and the control via 
“limma” R package [15], and then following |log2fold 
change (FC)|>1 and false discovery rate (FDR) < 0.05. 
The Protein-Protein Interaction (PPI) networking was 
conducted by utilizing search tools for the retrieval 
of interacting genes (STRING) (http:// string- db. org/) 
[16].

https://portal.gdc.cancer.gov/repository
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.genecards.org/
http://www.genecards.org/
http://string-db.org/
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Establishment and validation of the risk signature based 
on differentially expressed genes
To improve the predictive value of the DEGs in the EC 
patients selected, we already combined the DEGs with 
survival data from TCGA. The univariate Cox (uni-Cox) 
regression analysis was performed to filter prognostic 
ERGs from the DEGs with P < 0.05. 6 ERGs were identi-
fied for subsequent analysis. LASSO and the multivariate 
Cox (multi-Cox) regression analyses [17] were applied to 
establish a prognostic signature with “glmnet” R package 
[18]. 4 ERGs were eventually selected to calculate the risk 
score. The formula for performing risk score [19, 20] is 
presented below:

where the expr is an expression of the ERGs, and the coef 
is the corresponding regression coefficient calculated by 
multi-variant Cox regression analysis.

Next, we summarized 523 samples and then randomly 
divided them into a training group and a testing group 
with a 1:1 ratio, and the extra portion was placed in the 
training group. The training group was mainly used to 
establish a risk signature, while the testing one was then 
utilized to validate the risk signature. The samples from 
both the training and testing groups were respectively 
separated into a high-risk subgroup and a low-risk sub-
group according to the median risk score. The Kaplan-
Meier analysis was performed on both the functioned 
groups above and ROC curves of the overall survival (OS) 
were employed to assess both the sensitivity and effec-
tiveness of the risk signature. The patients with missing 
OS value or its value < 30 days were eliminated to reduce 
the statistical bias during comparison.

Independent prognostic factor analysis
We tested whether the clinical characteristics (age, 
stage, grade) and the risk score could be used as inde-
pendent prognostic factors through uni-Cox and multi-
Cox regression analyses. By using “timeROC” and 
“survminer” R packages, both the time-dependent ROC 
curves and AUC were respectively constructed for com-
paring the efficiency of different predictive factors and 
the time-dependent survival rate.

Function prediction analysis
To identify the possible functions of the ERGs chosen, we 
conducted both the gene ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [21–23] 
enrichment analyses based on the DEGs between the 
high- and low-risk subgroups by applying “clusterPro-
filer” R package [24]. The KEGG analysis was employed 

risks core =
n

k=1
expr(ERGs)× coef(ERGs)

to find out the significantly enriched pathways, and then 
GO analysis consists of three enrichment parts: cellular 
component (CC), molecular function (MF), and biologi-
cal process (BP), respectively.

Nomogram and calibration analysis
The essential issues including the nomogram, the inte-
grating risk score, age, stage, and grade along with a 
consistency index, were created to illustrate the predic-
tion efficiency of 1-, 2-, and 3-year OS using the “rms” R 
package. The calibration curves were used to visualize the 
results and then evaluate the prediction consistency of 
the nomogram. The diagonal line (45°) can be recognized 
according to the best prediction value.

Tumor immune analysis
We integrated the risk scores and the immune factors for 
predicting the relationship between the tumor immune 
and the ERGs. The immune cells and the immune path-
way infiltrating scores were calculated according to the 
TCGA data via “gsva” R package [25]. The expression and 
survival differences of the high- and low-score patients in 
each immune cell/pathway type were further explored. A 
contrast was conducted according to the median immune 
cell or immune pathway enrichment level. The immune 
cell composition in the subgroups was analyzed carefully 
through the Cell type Identification By Estimating Rela-
tive Subsets of RNA Transcripts (CIBSORT) algorithm 
(http:// ciber sort. stanf ord. edu) with “corrplot” R pack-
age. The relationship between immune cell infiltration 
and ERGs expression was explored based on TIMER 
database (Tumor Immune Estimation Resource) [26], as 
well as the gene copy number variation (CNVs) of ERGs. 
The analyzed immune cells include B cells, CD4 + T cells, 
CD8 + T cells, macrophages, neutrophils, and dendritic 
cells.

Potential treatment compounds
To find out a suitable potential clinical treatment that 
could be used for EC patients, we used the Genomics of 
Drug Sensitivity in Cancer (GDSC) (https:// www. cance 
rrxge ne. org/) database to calculate the half-maximal 
inhibitory concentration (IC50) of the compounds for 
predicting the sensitivity via “pRRophetic” R package 
[27].

Verification of target ERGs in databases
The protein expression in EC tissues and normal tissues 
was verified according to the HPA (The Human Protein 
Atlas) [28]. And the mRNA expression was examined 
from the CCLE (Cancer Cell Line Encyclopedia).

http://cibersort.stanford.edu
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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Quantitative real‑time polymerase chain reaction
A quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) was used to verify the expression of the target 
ERGs in EC cell lines. The total RNA was extracted from 
the EC cells with TRIZOL reagent (Takara, Otsu, Japan) 
according to the protocol, and then a 20 µl correspond-
ing cDNA was reversely transcribed with Hiscript@ QRT 
157 SuperMix (Vazyme, Nanjing, China). The PCR reac-
tion steps were then followed as different configurations: 
95  °C for 30  s, 95  °C for 5  s, and 60  °C for 1  min with 
40 cycles. The qRT-PCR process was performed through 
the CFX Connect Real-Time PCR Detection System (Bio-
Rad, 161 Hercules, CA, USA) with SYBR green supermix 
(Vazyme, Nanjing, China). β-Actin acted as an endoge-
nous control to normalize the expression of each target 
ERG, and the relative expression levels were calculated 
with the  2−ΔΔCt method (ΔCt = ΔCt target – ΔCt β-actin). 
The primer sequences were already listed in Table 1.

Statistical analysis
The statistical analyses were performed with R in ver-
sion 4.1.0. The classification of variables in the training 
and testing groups was decided by the Person chi-square 
test. The overall survival was analyzed via Kaplan–Meier 
method along with log-rank test. An independent prog-
nostic analysis was conducted by uni- and multi-Cox 
regressions. The analyses of several typical characteris-
tics such as the clinicopathological factors, the risk score, 
and the immune infiltration levels, were assessed using 
the Wilcoxon test. In general, P < 0.05 was considered as 
being significantly different.

Results
Identifying 4 prognostic‑related differentially expressed ER 
stress genes
The process of this study was exhibited in the flow 
chart (Fig.  1). We already obtained 23 normal sam-
ples and 554 tumor samples with mRNA expression, 
and the clinical data from TCGA in total. 178 ER 

Stress-related gene expression was compared practi-
cally between the normal and tumor groups, and then 
41 ERGs were selected as differentially expressed genes 
based on |log2FC|>1 and FDR < 0.05, among them, 
12 samples (CAV1, ITPR1, LRRK2, THBS1, ATF3, 
BCL2, SERP2, MAP3K5, CLU, PRKN, CREB3L2, 
PPP1R15A) were downregulated, while 29 samples 
(LONP1, GRINA, EIF2AK1, HYOU1, AUP1, BAX, 
EDEM2, AIFM1, HM13, PDIA3, ERMP1, DNAJC10, 
XBP1, CXCL8, ATP2A1, MANF, DERL3, CALR, BAK1, 
ERO1A, PPP1CA, PDIA4, CREB3L3, P4HB, SDF2L1, 
TRIB3, RNF183, PDIA2, ERN2), were upregulated. 
The expression level of the 41 DEGs was presented in 
the heatmap (Fig.  2A). We further conducted the PPI 
manipulation (Fig.  2B), which presented the direct 
interaction between the proteins encoded by DEGs to 
better understand the potential roles of ER Stress in 
manipulating EC progression. 132 ERGs were identified 
as hub genes with a restriction of the interaction score 
as the highest confidence of 0.9, among them 32 were 
DEGs (Table 2).

Construction and validation of the 4 ERGs‑based risk 
signature for prognostic effectiveness
To identify the candidates for constructing a risk sig-
nature, we first filtered 6 genes related to the progno-
sis of EC according to the uni-Cox regression analysis 
with P < 0.05 (BAK1, CREB3L3, DNAJC10, PPP1R15A, 
TRIB3, XBP1) (Fig.  3A). Then, the LASSO regression 
analysis confirmed that these 6 genes are related to the 
survival of the EC patients (Fig. 3B, C). To avoid overfit-
ting the prognostic signature, we applied the minimum 
likelihood of deviance of the first-rank value of Log(λ) 
during LASSO regression analysis. We also performed 
a multi-Cox regression analysis, and then 4 genes were 
finally identified as significant risk signature genes 
(CREB3L3, PPP1R15A, TRIB3, XBP1). Among them, 
PPP1R15A and XBP1 are related to the protective 

Table 1 The primers sequence of 4 prognostic-related ERGs

Gene Primer Sequences

TRIB3-F TGC GTG ATC TCA AGC TGT GT

TRIB3-R GCT TGT CCC ACA GGG AAT CA

CREB3L3-F ATC TCC TGT TTG ACC GGC AG

CREB3L3-R GTC GTC AGA GTC GGG GTT TG

XBP1-F AGG AGT TAA GAC AGC GCT TGG GGA TGGAT 

XBP1-R CTG AAT CTG AAG AGT CAA TAC CGC CAG AAT 

PPP1R15A-F CTG GCT GGT GGA AGC AGT AA

PPP1R15A-R TAT GGG GGA TTG CCA GAG GA

Table 2 List of 32 DEGs with 0.9 interaction score between EC 
tissue and normal endometrial tissue in TCGA 

AIFM1 CLU ERN2 PDIA3

ATF3 CREB3L2 HM13 PDIA4

AUP1 CREB3L3 HYOU1 PPP1CA

BAK1 CXCL8 ITPR1 PPP1R15A

BAX DERL3 LRRK2 SDF2L1

BCL2 DNAJC10 MANF THBS1

CALR EDEM2 MAP3K5 TRIB3

CAV1 EIF2AK1 P4HB XBP1
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effect with hazard ratio (HR) < 1, whereas CREB3L3 and 
TRIB3 are the increased risk factors with HR > 1. The 
calculation formula of the risk scoring is as below:

After screening out, we first sorted out 523 clinical 
samples from TCGA. Next, we randomly divided the 
patients into the training and testing groups with 1:1 
ratio (of 262 samples in the training group and 261 sam-
ples in the testing group). The risk scores of the training 
and testing groups were then calculated separately. Based 
on the median score, all samples from both the training 

Risk Score = (0.3965)× (CREB3L3 exp .)

+ (−0.4152)× (PPP1R15A exp .)

+ (0.2223)× (TRIB3 exp .)

+ (−0.3508)× (XBP1 exp .)

and testing groups were classified into high- and low-risk 
subgroups. As demonstrated, patients from the low-risk 
subgroup already exhibit a better prognosis with sta-
tistically lower risk and fewer deaths than the high-risk 
subgroup (Fig.  4A, B). Furthermore, the OS between 
the high- and low-risk subgroups were significantly dif-
ferent with P < 0.05 (Fig.  4C). The AUCs of the training 
and testing cohorts were 0.711 or 0.678 at 1 year, 0.696 
or 0.625 at 2 years, 0.690 or 0.610 at 3 years, respectively 
(Fig. 4D). The above data imply that the risk score can be 
used as a valid factor for effectively predicting the prog-
nosis of EC patients. Both the PCA and tSNE analyses 
indicate that the risk signature constructed by us can be 
utilized to distinguish high-risk patients from low-risk 
patients (Fig. 4E, F). The heatmaps constructed by us can 
also be used to visualize the variance of the prognostic 
ERGs expression between the high- and low-risk sub-
groups (Fig.  4G). It should be noted that the risk score 

Fig. 1 Main flowchart of the working procedure including an initial data collection, a key prognostic signature establishment, several 
comprehensive analyses, and a final verification
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Fig. 2 Expression of DEGs between the case of EC and the normal patients of TCGA corhort. A Heatmap shows DEGs between tumor (red) 
and normal (blue) samples. B PPI network indicates the interaction between DEGs
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can be used as an independent predictor from uni-Cox 
and multi-Cox regression analyses that the HR of the risk 
score and 95% confidence interval (95% CI) was 1.422, 
and 1.244–1.627 (P < 0.05) in uni-cox regression while 
1.717, and 1.009–1.360 (P < 0.05) in multi-cox regression 
(Fig. 5A).

Nomograph construction and the clinical correlation
According to 4 independent prognostic factors such as 
risk score, age, stage, and grade (all p < 0.05 in uni-Cox 
and multi-Cox), we built a clinical nomogram to predict 
the prognosis of the EC patients through a comprehen-
sive score (Fig.  5B). We also utilized the 1- and 2- and 
3-year calibration plots to present or prove that the nom-
ogram had a reliable prediction efficiency, which can be 
used to exhibit excellent accordance between the predic-
tive and actual survival in both the training and testing 
groups (Fig. 5C, D). As shown, the diagonal line presents 
the ideal prediction. Furthermore, the performed ROC 
analyses show that the AUC of the 1-and 2- and 3-year 
predictive survival according to the nomograph are 
0.691and 0.689and 0.676 in the training group, and then 
0.677 and 0.623 and 0.608 in the testing group, which 
means that the nomograph can be effectively used to pre-
dict (Fig. 5E, F).

Enriched functions based on the risk signature
To further illustrate the biological functions and the 
enriched pathways of the risk signature, we performed 
both the KEGG pathway analysis and the GO enrich-
ment analysis between the high- and low-risk subgroups. 
The KEGG demonstrates that the pathways enriched in 
the low-risk subgroup are: protein export, alpha-lino-
lenic acid metabolism, fatty acid metabolism, ether lipid 
metabolism, and peroxisome, respectively, whereas the 
pathways in the high-risk subgroup are: DNA replication, 

RNA polymerase, type II diabetes mellitus, glycosami-
noglycan biosynthesis chondroitin sulfate and heparan 
sulfate (Fig.  6A). Moreover, the GO showed that genes 
are mainly enriched in the response to the factors such 
as endoplasmic reticulum stress, endoplasmic reticulum 
lumen, and endoplasmic reticulum protein-containing 
complex, which indicates that the genes chosen by us are 
closely related to the ER Stress to some extent (Fig. 6B).

Relationship between 4 ERGs‑based risk signature 
and clinical characteristics
The correlation between the survival probability and dif-
ferent clinicopathological characteristics was further 
interrogated. The data demonstrate that the patients 
from the low-risk subgroup present much better survival 
overall, and the risk scores are significantly related to the 
issues such as age, grade, and stage features (Table  3). 
The patients with a higher stage and grade level are more 
likely to present significant differences based on the risk 
score (Fig.  6C). Instructively, the risk signature con-
structed by us is convictive and reliable for diagnosing 
and treating EC patients.

Immune infiltration differences between two subgroups
Generally, immune abnormalities will play a critical role 
in oncogenesis, thus we continuously analyzed the enrich-
ment of the immune cells and then immune pathways 
based on the risk score through a single sample gene set 
enrichment analysis (ssGSEA) method. According to the 
box plot, cells such as B cells naïve, plasma cells, T cells 
CD4 memory resting, macrophages M1, macrophages 
M2, dendritic cells resting, dendritic cells activated, mast 
cells resting, mast cells activated, and neutrophils, are all 
sensitive to the risk score with p < 0.05 criteria. Among 
them, only macrophages M1 and macrophages M2 are 
higher in the high-risk subgroup (Fig. 7A). Continuously, 
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we analyzed the survival probability of the samples 
including immune cells, dendritic cells activated, NK 
cells activated, plasma cells, T cells CD8, and T cells 
regulatory (Tregs), which all exhibited a significant dif-
ference between the high- and low-risk subgroups (Fig. 
S1A). The dendritic cells were activated and the plasma 
cells showed a better prognosis in the low-risk subgroup, 

whereas the NK cells were activated, and the T cells CD8 
and T cells regulatory (Tregs) were in the high-risk sub-
group. It is evident that the risk signature was closely 
related to immune cell infiltration, thus we performed 
the CIBERSORT to further explore the tumor micro-
environment (TME). The compositions of 22 immune 
cells in the samples and the relative percentage filtered 
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in the high- and low-risk subgroups were analyzed fur-
ther (Fig.  7B, C). The high-risk subgroup had a higher 
proportion of anti-inflammatory macrophage M2 cells, 
while the low-risk subgroup had an increased propor-
tion of resting memory CD4 T cells, activated dendritic 
cells and mast cells, indicating the potential anti-tumor 
effects of the low-risk subgroup. Meanwhile, we further 
investigate the correlation between the abundance of sev-
eral typical immune cells and the mRNA expression of 4 

Table 3 Endometrial cancer patient clinical characteristics from 
TCGA 

Variables Number of cases Percentage(%)

Age(year) < 65/≥65 288/247 53.8/46.2

Grade G1/G2/G3 99/1212/316 18.4/22.7/58.8

Stage I-II/III-IV 390/147 72.6/27.4
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ERGs through TIMER database (Fig. 8). Macrophages are 
significantly related to all 4 ERGs. TRIB3 expression level 
is only correlated with the abundance of another immune 
cell, neutrophil. CREB3L3 is strongly correlated with B 
cells and  CD4+ T cells with similarly positive tenden-
cies. Except for CD4 + T cells, XBP1 shows significantly 
negative correlations with CD8 + T cells, neutrophils, 
and dendritic cells. PPP1R15A is positively related to 
the abundance of neutrophils and dendritic cells. Com-
pared with the diploid/normal group, we further figure 
out that immune cell infiltration is also related to CNVs 
of 4 ERGs (Fig.  9). Arm-level deletion of TRIB3, XBP1, 
and PPP1R15A decreases the infiltration of immune cells. 
Compared with the arm-level deletion, the arm-level 
gain of CREB3L3 is more likely to decrease the infiltra-
tion of  CD8+ T cells, neutrophils, and dendritic cells. 
High amplification of PPP1R15A mainly affects B cells, 
 CD8+ T cells, macrophages, and dendritic cells. TRIB3, 
CREB3L3, and XBP1 are lack of deep deletion.

Besides the immune cells, we have also explored the 
relationship between the immune pathways and the 
risk score. The box plot also shows the typical charac-
teristics of the microstructures including B_cells, CCR, 
checkpoint, iDCs, aDCs, HLA, neutrophils, NK_cells, 
T_helper_cells, TIL, Treg, T_cell_co-inhibition, T_cell_
co-stimulation, Type_I_IFN_Response, and Type_II_
IFN_Response, are significantly different according to the 
risk score (Fig. 7D). The survival analysis of the immune 
pathways was further conducted, and the results indi-
cate that the immune pathways with prominent survival 
differences, all have better survival in the high-risk sub-
groups than in the low-risk subgroup (Fig. S1B). Because 
the immune checkpoints are significantly different 
between the two subgroups, the expression distinction 
was then analyzed, where only a few are expressed higher 
in the high-risk subgroup, like CD 40. As demonstrated, 
the majority of the immune checkpoints are higher in the 
low-risk subgroup, especially corresponding to CTLA4 
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Fig. 8 The relationship analyses of immune cell infiltration level and 4 ERGs mRNA expression based on TIMER database
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and CD28. Unfortunately, there is no significant differ-
ence in PD-1 or PD-L1 (Fig. 7E).

The above outcomes suggest that the risk score will 
exhibit a considerable impact on the prognosis of various 
immune cells and pathways, which may helpfully predict 
new individualized immunotherapy for EC patients.

Consensus clusters selection based on the expression level
The consensus clustering analysis of all 523 EC samples 
in the TCGA cohort for recognizing the relationship 
between the expression levels of 4 risk-signature ERGs 
and subtypes, was performed. We already selected the 
clustering variable (k) = 3 from 2 to 9 based on a higher 
intragroup correlation and a lower intergroup correlation 
(Fig. 10A), with 225 cases in cluster 1, 142 cases in cluster 

2, and 156 cases in cluster 3. Survival analysis indicates 
that there exists an evident difference in survival among 
the three subgroups above. As compared to Cluster 
2 and Cluster 3, Cluster 1 has a much better prognosis 
(Fig. 10B).

The issues including the information on mRNA expres-
sion, clusters, and clinical characteristics concerning 
grade and stage, and age, were integrated and displayed 
in the heatmap. As shown, the parameter grade and stage 
were significantly different among the three clusters 
(Fig. 10C). Furthermore, we further explored the expres-
sion differences of 30 immune checkpoints in three clus-
ters, among them, the samples of CD244, TNFSF9, Lag3, 
CD200, TNFSF15, HHLA2, ICOSLG, TNFRSF25, CD40, 
TNFRSF14, TNFSF14, CD44, and BTNL2, are more sta-
tistically significant than others (p < 0.001) (Fig. 10D).

Fig. 9 The relationship analyses of immune cell infiltration level and 4 ERGs CNVs based on TIMER database. *P < 0.05, **P < 0.01, ***P < 0.001
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Diverse potential chemotherapies of two subgroups
Because chemotherapy is one of the effective and widely-
accepted treatments for EC patients, we further did a 
prediction of the sensitivity of potential chemotherapies 
based on IC50 for each sample in both the low- and high-
risk subsgroups. Generally, the patients with a lower risk 
score are more sensitive to medicines such as AKT inhib-
itor VIII, Bicalutamide, Docetaxel, and Temsirolimus. 
While the higher-risk score patients should be more sen-
sitive to Pyrimethamine, Shikonin, Rucaparib, and Veli-
parib (Fig. 11). These findings might provide new options 
for future clinical treatment.

Dual verification of the 4 ERGs‑based risk signature
The protein level of 4 risk-signature ERGs (CREB3L3, 
PPP1R15A, TRIB3, XBP1) was verified according to the 

HPA database (Fig.  12A). Unfortunately, we couldn’t 
obtain successfully a protein expression of XBP1 in the 
HPA database. Besides this gene, we find that both the 
CREB3L3 and TRIB3 are upregulated, but PPP1R15A is 
downregulated on the protein level. The mRNA levels 
of 4 ERGs are different in 40 EC cell lines (Fig. 12B).

We then performed qRT-PCR to verify the mRNA 
expression of 4 risk-signature ERGs (CREB3L3, 
PPP1R15A, TRIB3, XBP1) in EC and normal tissues, 
separately. The expression level of these genes differs 
significantly between the tumor and normal tissues, 
but CREB3L3 and TRIB3, and XBP1 are overexpressed, 
while PPP1R15A is expressed conversely (Fig. 12C). The 
primer sequences are provided in Table 1. Overall, the 
experimental results further confirm the reliability of 
the risk signature (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Discussion
EC is one of the highly heterogeneous malignancies 
developed in the female genital tract. A great number of 
studies have reported that endoplasmic reticulum stress 
is closely related to the progression and outcome of dif-
ferent types of cancer, including the EC [11, 29], but the 
mechanisms have not yet been fully discovered. Further-
more, most studies investigated the impact of ER Stress 
on cancer biological activities, just a few focused on the 
prognostic significance of ER Stress-related genes, par-
ticularly in the case of EC. Therefore, it is necessary to 
develop a predictive risk signature based on the relation-
ship between both EC and ER Stress. Here, we have built 
a stable prognostic signature to predict the prognostic ER 
Stress-related genes and then divided them into different 
subgroups, to systemically learn the relationship among 
genes, tumor microenvironment, and immune activities. 
It should be noted that we further predict the potential 
chemotherapies that may be effectively utilized in future 
clinical treatment.

First of all, we successfully constructed a reliable 4-gene 
ER Stress-related prognostic signature for EC with 
TCGA gene expression and clinical files. 4 prognostic 
ERGs (CREB3L3, PPP1R15A, TRIB3, and XBP1) were 
screened from 178 ER Stress-related genes via Cox and 
LASSO regression analyses. Two subgroups were classi-
fied based on the risk score. A nomograph was employed 
to prove the reliable predictive value of the risk signa-
ture. OS results suggested a strong prognostic correlation 
between EC and ER Stress. The prediction ability of the 

risk signature was obviously affected by the clinical fea-
tures that patients with lower risk scores presented better 
prognoses.

The functional enrichment highlighted the interactive 
mechanisms between ER Stress and endometrial car-
cinogenesis. GO enrichment suggested that ERGs are 
mainly involved in apoptotic regulation besides ER Stress 
related to signaling pathways. The mutual effect between 
ER Stress and apoptosis in driving cancers has been well 
explained [30]. KEGG enrichment presenting pathways 
enriched in the high-risk subgroup show more carcino-
genesis correlation, like DNA replication. The metabo-
lism-related pathways are highly enriched in the low-risk 
subgroup, such as fatty acid, protein, and RNA metabo-
lism, to confirm that the patients from the high-risk 
subgroup exhibit unsatisfactory prognoses and immune-
suppressive status.

Considering the previous studies have demonstrated 
the critical role of immune-related activities in endo-
metrial cancer progression, we further analyze the dif-
ferences in immune infiltration between the subgroups. 
From ssGSEA results, B cells naïve, plasma cells, and 
resting memory  CD4+ T cells are evidently downregu-
lated in the high-risk subgroup. Both naïve B cells and 
plasma cells are critical subpopulations of B cells, naïve 
B cells are the precursor of functional B cells and plasma 
cells are recognized as the basis of humoral immunity 
[31, 32]. B cells and plasma cells are associated with bet-
ter survival, and particularly B-cell markers can prolong 
survival specifically in high-grade tumors [33]. Memory 
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Fig. 12 Verification of gene expression. A The protein expression level from HPA database. B mRNA expression level of EC cell lines from CCLE 
database. C Gene expression with clinical tissues. ***P < 0.001
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T cells play important roles in T cell persistence and 
tumor immunotherapy efficacy [34]. Thus, this obser-
vation may demonstrate the higher chance of the high-
risk subgroup to be a suppressive immune status than 
the lower-risk subgroup. By contrast, M1 and M2 mac-
rophages and mast cells are upregulated in the high-risk 
subgroup, indicating their relationship with the unfavora-
ble prognosis, which has been proved by previous studies 
[35].

CIBERSORT analysis demonstrates the top one cell 
enriched in the low-risk subgroup with a significant dif-
ference is resting memory CD4 T cells, indicating the 
protective role in the EC progression. Similar to the 
ssGSEA result, the high-risk subgroup had a higher pro-
portion of anti-inflammatory macrophage M2 cells. So 
far, the immune pathway analysis has paid more atten-
tion to CCR and DCs, and IFN responses. According to 
the differences in checkpoints, we further find that sev-
eral crucial immune checkpoints, such as CTLA 4, and 
CD 28, are differentially expressed. The drug targeting 
immune checkpoints could be used alone or combined 
with other appropriate treatments, and thus present an 
advantage of lower toxicity and much higher effective-
ness to some extent [36]. In general, ERGs will influence 
immune infiltration and prognosis. It should be noted 
that understanding the mechanisms is not enough for the 
EC patients’ treatment decision-making. Thus, the poten-
tial chemotherapies are continuously discussed. Patients 
in the high-risk subgroup are more sensitive to the com-
ponents such as AKT inhibitor VIII, Bicalutamide, Doc-
etaxel, and Temsirolimus, whereas the patients in the 
low-risk subgroup will benefit from the medications such 
as Pyrimethamine, Shikonin, Rucaparib, and Veliparib.

CREB3L3 (cAMP-responsive element-binding pro-
tein 3 like 3) is a membrane-bound transcription fac-
tor located in the ER and structurally similar to ATF6 
that could be proteolytically activated by ER Stress [37]. 
CREB knockdown in macrophages could downregulate 
M2 marker genes, then improve insulin resistance, sug-
gesting that CREB is important in maintaining insulin 
sensitivity in white adipose tissue via its initiation of the 
innate immune system [38].

PPP1R15A (protein phosphatase 1 regulatory subunit 
15 A), also known as GADD34, is a stress-inducible eIF2α 
phosphatase, which can accelerate cell death by boost-
ing protein synthesis and activating death-related path-
ways [39]. PPP1R15A has been proven to be a hypoxia/
autophagy-related gene in breast cancer respectively [40, 
41]. However, there are just a few studies focusing on the 
action of PPP1R15A in endometrial cancer progression 
to date, which requires more studies.

TRIB3 is one of the Tribbles Pseudokinase homologs 
with a weak ATP affinity. Despite the absence of kinase 
activity, TRIB3 is an adaptor/scaffold protein for numer-
ous functional proteins [42]. TRIB3 promotes endo-
metrial malignant actions via elevating CTNNB1 
transcription [43]. And it’s found that TRIB3 expression 
change is part of the anti-endometrial cancer activities in 
one ongoing clinical trial [44].

XBP1 (X-box binding protein 1) belongs to the CREB/
ATF basic leucine zipper (bZIP) protein family. XBP1 
can be alternatively spliced into two isoforms, the 
unspliced isoform (XBP1-u) is spliced into the spliced 
isoform (XBP1-s) under ER Stress [45]. XBP1 is highly 
enriched in endometrioid endometrial tumors [46]. 
One recent study indicates that XBP1 potentially dis-
tinguishes the polymerase epsilon exonuclease (POLE) 
from the copy number (CN)-low endometrial cancer 
subtype [47]. Therefore, XBP1 may be a strong pro-
moter of endometrial carcinogenesis. Otherwise, some 
studies suggest the dual roles of XBP1. XBP1-u inhibits 
autophagy [48] and protects cells from oxidative stress 
[49]. XBP1-s promotes cell death by altering calcium 
levels under strong ER Stress, while under non-fatal ER 
Stress, XBP1-s protects cell survival by transcription-
ally regulating UPR target genes [45]. Together, it may 
explain that XBP1 is identified as the protective factor 
in our risk signature, but expressed higher in EC tissues 
than normal tissues.

Despite already presenting an obvious value of the risk 
signature developed by us, some limitations and defi-
ciencies still exist. First off, the RNA-sequence and the 
sample data used by us are only acquired from TCGA, 
which might cause bias in the following calculations. It 
may be a better approach by combining the data from 
other resources to derive comprehensive results. Sec-
ond, the specific mechanisms based on ERGs should be 
dug out through more experiments. Last but not least, 
as the patients from the high-risk subgroup present a 
relatively worse prognosis, closer follow-ups should be 
required to further prove the risk signature and nomo-
graph viability.

Conclusion
In this paper, an effective ER Stress-related risk signature 
based on 4 prognostic genes is successfully established by 
us. The risk signature can accurately predict the progno-
sis and help treatment-decision making for EC patients. 
The fundamental relationship between immunity, TME, 
and EC-specific ER Stress, is discussed carefully through 
the risk signature. We also verified the reliability of the 
risk signature with basic experiments.
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