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Abstract

Aim and Objective Intellectual disability (ID) is a heterogeneous condition affecting brain development, function,
and/or structure. The X-linked mode of inheritance of ID (X-linked intellectual disability; XLID) has a prevalence of 1
out of 600 to 1000 males. In the last decades, exome sequencing technology has revolutionized the process of dis-
ease-causing gene discovery in XLIDs. Nevertheless, so many of them still remain with unknown etiology. This study
investigated four families with severe XLID to identify deleterious variants for possible diagnostics and prevention
aims.

Methods Nine male patients belonging to four pedigrees were included in this study. The patients were studied
genetically for Fragile X syndrome, followed by whole exome sequencing and analysis of intellectual disability-related
genes variants. Sanger sequencing, co-segregation analysis, structural modeling, and in silico analysis were done

to verify the causative variants. In addition, we collected data from previous studies to compare and situate our work
with existing knowledge.

Results In three of four families, novel deleterious variants have been identified in three different genes, includ-

ing ZDHHCY (p. Leu189Pro), ATP2B3 (p. Asp847Glu), and GLRA2 (p. Arg350Cys) and also with new clinical features

and in another one family, a reported pathogenic variant in the L1CAM (p. Glu309Lys) gene has been identified related
to new clinical findings.

Conclusion The current study’s findings expand the existing knowledge of variants of the genes implicated in XLID
and broaden the spectrum of phenotypes associated with the related conditions. The data have implications
for genetic diagnosis and counseling.
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Introduction

Intellectual disability (ID) is a heterogeneous condition
affecting brain development, function, and/or struc-
ture. ID has a prevalence of about 2-3% of global pop-
ulations, and males exceed females by 20-30%, likely
due to an enrichment of genes on the X-chromosome
that are required for the neurodevelopment and the
genetic imbalances in X-chromosomes. The prevalence
of X-linked ID (XLID) in males has been estimated
at 1 case in 600 to 1000 births. Thus, it is the most fre-
quent cause of ID in males [1, 2]. XLID can be grouped
into syndromic and non-syndromic forms. At least 209
different XLID disorders have been described, includ-
ing 143 syndromic forms [3]. Fragile X syndrome is the
most common and most studied XLID syndrome. In the
recent decade, remarkable progress has been made in
identifying new causative genes and understanding the
underlying mechanisms in over 100 XLID conditions [4].
Next-generation sequencing (NGS) is the most powerful
technique for identifying new variants and genes in XLID
conditions [5]. Despite all advances, more than 80 XLID
conditions remain without a molecular diagnosis [6], and
identifying disease-causing genes and variants is neces-
sary for precise diagnosis. It would expand the existing
knowledge of XLID and the spectrum of phenotypes
associated with the identified variants. A vast majority of
known causative genes are highly expressed in the brain
and involved in different biological functions and path-
ways [7]. Four of XLID- associated genes involved in neu-
ronal signaling pathways are LICAM, ZDHHCY, GLRA2,
and ATP2B3. The LICAM gene (MIM No. 308840)
encodes a neural cell adhesion molecule involved in cell
adhesion dynamics and the generation of transmem-
brane signals at tyrosine kinase receptors. It is critical
in multiple processes during brain development, includ-
ing neuronal migration, axonal growth and fasciculation,
and synaptogenesis [8]. The ZDHHC9 gene (MIM No.
300646) encodes a palmitoyl-transferase that adds pal-
mitate onto various protein substrates. It is implicated in
neurological disorders [9]. The GLRA2 gene (MIM No.
305990) encodes a glycine receptor responsible for medi-
ating glycine’s inhibitory effects in neurons and is widely
distributed throughout the CNS, particularly within
the hippocampus, spinal cord, and brain stem [10]. The
ATP2B3 gene (MIM No. 300014) encodes an ATP-driven
calcium ion pump involved in the maintenance of basal
intracellular calcium levels at the presynaptic terminals
[11]. Clinical and genetic studies on these genes are few
and more studies have led to precise diagnoses of the
conditions and the design of new therapeutic approaches;
the knowledge could also be helpful in genetic coun-
seling, prenatal diagnosis (PND), pre-implementation

Page 2 of 20

genetic diagnosis (PGD), and predict prognosis of the
disease.

The present study was launched on four families sus-
pected with XLID. Whole exome sequencing (WES) and
clinical evidence were used to identify pathogenic vari-
ants in the subjects. Furthermore, precise phenotyping
and literature review were performed.

Material and methods

Human subject and consent approval

The research was performed according to the Declaration
of Helsinki and was approved by the Ethics Committee
of the Medical University of Isfahan, Isfahan, Iran (Eth-
ics code: IRRMULMED.REC.1400.042). Four families with
two or more ID patients suspected with the X-linked
mode of inheritance were ascertained from the Isfahan
and, Sistan & Balouchestan provinces of Iran. Through
genetic counseling, medical history was taken, and pedi-
grees were drawn by the “Progeny” software (Progeny
Software, LLC).

DNA extraction and molecular testing

Peripheral blood was withdrawn after taking informed
written consent from the legal guardians. DNA was
extracted using the DNSol Miniprep Kit (provided by
ROJETECHNOLOGIES company, Tehran, Iran). All
probands were tested for FMRI CGG repeats to rule out
Fragile X syndrome. It was done using Deviner® Fragile X
(FMRI Gene) Carrier Screen Kit (provided by KEYSAR
Company, Tehran, Iran).

Library preparation & whole exome sequencing

WES was done by 3Billion Inc. Exome capture was per-
formed using xGen Exome Research Panel v2 (Integrated
DNA Technologies, Coralville, Iowa, USA). Sequenc-
ing was performed using NovaSeq 6000 (Illumina, San
Diego, CA, USA).

Data analysis

The bases of the sequences were generated and uniquely
aligned to the Genome Reference Consortium Human
Build 37 (GRCh37) and revised Cambridge Reference
Sequence (rCRS) of the mitochondrial genome. The vari-
ant interpretation was performed using the EVIDENCE
software [12] to prioritize variants and interpreted based
on the guideline recommended by the American Col-
lege of Medical Genetics and Genomics (ACMG) and
the Association for Molecular Pathology (AMP) [13] in
the context of the patient’s phenotypes. Relevant family
history and previous clinical test results were provided
through genetic counseling. Only variants deemed to be
clinically significant and relevant to the patient’s primary
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clinical indications at the time of variant interpretation
were considered.

Bioinformatics tools

We used the Genome Aggregation Database (gnomAD
v2.1.1) for population allele frequency analysis. The
potential pathogenicity of the variants was assessed using
the following prediction tools: FATHMM & FATHMM-
MKL (Functional Analysis through Hidden Markov Mod-
els (v2.3), http://fathmm.biocompute.org.uk), LIST-S2
(https://list-s2.msl.ubc.ca/?session=28 AB3E5BOSFD16A
F971162581885ACC2), M-CAP (Mendelian Clinically
Applicable Pathogenicity, http://bejerano.stanford.edu/
mcap/), Mutation assessor (http://mutationassessor.
org/), MutPred (http://mutpred.mutdb.org/), PROVEAN
(PROVEAN scores (v1.1)), SIFT (Scale-Invariant Feature
Transform, https://sift.bii.a-star.edu.sg) & SIFT4G, Muta-
tionTaster (https://www.mutationtaster.org/), BayesDel
(addAF and noAF)( https://fenglab.chpc.utah.edu/Bayes
Del/), MetaLR (e!lEnsembl https://useast.ensembl.org/
index.html), MetaRNN (http://www.liulab.science/metar
nn.html), REVEL (Rare Exome Variant Ensemble Learner,
e!lEnsembl https://useast.ensembl.org/index.html), DEO-
GEN2 (http://deogen2.mutaframe.com/).

Primer designing and sanger validation

All candidate variants were confirmed using Sanger
sequencing, and co-segregation analysis was performed
on affected and unaffected members of the families. Spe-
cific primers for the variants were designed using the
Primer3 online tool (Primer3web, version 4.1.0) and vali-
dated by online tools such as Primer-BLAST [14], MFEp-
rimer3.1 [15] and SNPCheck (gene tools, SNPCheck V3).
The used primers sequences include LICAM (F: CCA
CGCCCACCATCAAATG, R: CGGTGACATAGTACG
CATGC (product size of 177bp)), ZDHHC9 (F: CTGGGT
GGGGAATTGTGTTG, R: GTGCTCATTTCTAACCTG
TCCT (product size of 250bp)), GLRA2 (F: CTCTCTCTC
TCAGGTCTCCTATG, R: TCTGAACTGAGGGGCAAT
CAT (product size of 186 bp)), ATP2B3 (F: CAACTTCAC
CAGCATCGTCAA, R: ACCCTCACTCTCACAATCTG
(product size of 213 bp)).

Homology modeling

I-TASSER  Web  Server (https://zhanggroup.org/I-
TASSER/) was used for modeling the 3-dimensional
structure of proteins, and the structure refinement was
done by Galaxy Refine (https://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE). Also, we used the PRO-
CHECK program to generate the Ramachandran plot for
the evaluation of the predicted 3-D structures. PyMOL
(Version 2.2.3, Schrodinger, LLC.) software was used
for visualization, mutagenesis, and structural analysis.
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Also, multiple stability prediction tools (SAAFEC-SEQ,
mCSM, INPS-3D, and I-Mutant2.0) were used for evalu-
ating the effects of mutations on the proteins’ stabilities.

Results

Clinical manifestations

Nine severe ID male patients belonging to four fami-
lies were recruited from the Isfahan and, Sistan &
Balouchestan provinces of Iran. Pedigree analysis sug-
gested the possibility of XLID (Fig. 1). The ages of patients
ranged from 3 to 40 years at the time of recruitment, and
they mainly exhibited severe ID with or without dys-
morphic features congenitally. Clinical descriptions of
patients are as follows:

Family I: The proband (Fig. 1-I-A-P(III-3)) was a
14-year-old boy with severe ID who was prenatally
diagnosed with hydrocephalus and underwent ven-
triculoperitoneal shun surgery ten days after birth.
He had lower limb muscle weakness in infancy and
delayed milestones. He started walking at five years
old through occupational therapy. He had no his-
tory of difficulties with upper limbs. He suffered
from delayed speech and language development and
showed poor unclear speech (aphasia). He experi-
enced multiple spasms, such as persistent neck and
back muscle spasms that lasted about ten days (spas-
tic paraplegia) and persistent stomach spasms since
childhood. He manifested behavior problems, includ-
ing; aggressive behavior, stressfulness, agitation, and
self-injurious behavior (He showed bumps on finger
joints due to chewing his fingers). He shows some
dysmorphic features such as a long thin face, stra-
bismus (hypertropia type), low-set ears, wide nasal
bone, and a severe toe deformity that was corrected
by surgery a couple of years ago. The mother had
an abortion history of a male fetus in the 5™ month
of pregnancy for an unknown reason. He has two
normal sisters without any medical issues. There
are family histories of brain hemangioblastoma and
severe ID in the maternal uncle (34 years old).

Family II: The proband (Fig. 1-II-A-P(III-3)) was a
three-year-old boy with severe ID, neurodevelop-
mental delay, delayed milestones with no speech,
and no walking. The Magnetic Resonance Imaging
(MRI) showed corpus callosum agenesis and colpo-
cephaly. His parents were not consanguineous. He
has an elder brother (8 years old) with a similar con-
dition who suffered from severe ID, developmental
delay (delayed milestone; i.e., he started walking at six
years old), and speech disorder, and also shows vision
problems, persistent leg pains, and muscle weakness
beginning from six years old of age. They have a sis-
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Fig. 1 The pedigrees, and chromatogram of studied patients. I: Family |, A: pedigree of the family, B: Sanger sequencing data of the normal, mutant
hemizygous, and heterozygous female carrier of the family; II: Family II, A: pedigree of the family, B: Sanger sequencing data of the normal, mutant
hemizygous and the heterozygous female carrier of the family; lll: Family Ill, A: pedigree of the family, B: Sanger sequencing data of the normal,
mutant hemizygous and the heterozygous female carrier of the family; IV: Family IV, A: pedigree of the family, B: Sanger sequencing data

of the normal, mutant hemizygous and the heterozygous female carrier of the family

ter with no medical issues. There is a family history
of severe ID, speech disorder, and vision problems in
the maternal uncle, who is 40 years old and a child of
consanguineous marriage.

Family III: The proband (Fig. 1-III-A-P(III-5)) was
a 17-year-old boy with severe ID and aggressive
behavior. He had speech and developmental delays
diagnosed as pervasive developmental disorders
(PDD) by a pediatric neurologist due to behavioral
and communication problems. He also shows some
facial features such as a broad face, prominent lips,
low-set-ears, broad eyebrows, long eyelashes, promi-
nent eyelashes, and a broad nasal tip. His electroen-
cephalogram (EEG) reports were normal. He is not
a child of consanguineous marriage. He has an elder
brother (29 years old) with similar conditions, includ-
ing; severe ID and developmental and speech delay.
However, there are some differences between these
affected brothers in phenotype; the elder brother
did not show aggressive behavior, is incommunica-
tive and silent, shows a milder phenotype in facial
features, and also experienced epilepsy in childhood,

which was controlled by medicine. The mother had
a history of abortion in the 3rd month of pregnancy.
They had no positive family history of intellectual
disability.

Family IV: The proband (Fig. 1-IV-A-P(IV-1)) was
a four-year-old boy with severe ID, neurodevelop-
mental delay, delayed milestones with no speech, no
walking, and hearing impairment. He manifested
behavioral problems such as restlessness and cry-
ing. He shows dysmorphic facial features such as
strabismus, congenital hypotrichosis, and low eye-
brow. He had seizures at the age of two that is con-
trolled by medicine. There are some bumps on the
skull in touch examinations with no medical diag-
nosis. EEG showed a severe abnormality, and Audi-
tory Brainstem Response (ABR) showed moderate
hearing loss in the right ear and moderate to severe
hearing loss in the left ear. Metabolic panel screen-
ing was negative. Brain computerized tomography
(CT) scan showed coronal and axial thin sections
in petrous bone, normal appearance of both exter-
nal auditory canal, middle ear cavity, ossicular chain,
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and inner ear structure, no bony erosion, and normal
scan of petrous bones. His parents are relatives. He
had a family history of severe ID and seizures in the
maternal uncle (19 years old), who has a movement
disability in the left limbs. He also has facial features
such as; a long face, prominent ear, low eyebrow, and
broad nasal tip.

Molecular analysis

Screening for CGG trinucleotide repeats in the 5’
untranslated regions of the FMRI gene showed nor-
mal ranges of repeat numbers (less than 55). All of
the probands were selected for WES, and after WES
data analysis, deleterious candidate variants were
revealed on the X chromosome; LICAM (ChrX:153,1
35,577:C>T(GRCh37), NM_001278116.2, c.925G>A,
p.Glu309Lys), ZDHHC9 (ChrX:128,948,693:A > G(GRCh3
7), NM_016032.4, ¢.566T >C, p.Leul89Pro), GLRA2(Chr
X:14,708,949:C > T(GRCh37), NM_002063.4, c.1048C>T,
p.Arg350Cys) and ATP2B3 (ChrX:152,823,677:C>G(G
RCh37), NM_001001344.2, c.2541C>G, p.Asp847Glu).
Sanger sequencing validated candidate variants. In Fam-
ily I, the variant was found to be co-segregated with the
conditions in the proband, and his maternal uncle and
mother and one of the proband’s sisters showed carrier
status (Fig. 1-I-B). In Family II and IV, the variants were
segregated in affected members, while the mothers were
heterozygote carriers (Fig. 1-II-B and Fig. 1-IV-B). In
Family III, two brothers were hemizygous for the candi-
date variant, the mother was heterozygote, and the candi-
date variant was not seen in healthy males in the pedigree
(Fig. 1-11-B).

The stability tools predicted all three novel candidate variants
to be destabilizing/decreased stability (Table 1). Population
frequency databases revealed the NM_016032.4(ZDHHC9):
¢566T>C and NM_001001344.2(ATP2B3), ¢.2541C>G
were not observed in the gnomAD database. The
NM_002063.4(GLRA2):c.1048C>T variant was observed at
an extremely low frequency in the gnomAD database (total
allele frequency: 0.002%).

The NM_016032.4(ZDHHCY9): ¢.566T>C  vari-
ant has a damaging effect based on FATHMM-MKL
(score=0.9845), LIST-S2 (score=0.9765), M-CAP
(score=0.3318), Mutation assessor (score=4.115), Mut-
Pred (score=0.749), PROVEAN (score=4.25), SIFT
(score=-0.003), SIFT4G (score=-0.031), MutationTaster
(score=1).

Pathogenicity score of the NM_002063.4(GLRA2):
c.1048C>T variant using in silico prediction tools
such as BayesDel addAF (score=0.2), BayesDel
noAF (score=0.17), MetaLR (score=0.7), MetaRNN
(score=0.68), REVEL (score=0.69), DEOGEN2
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(score=0.77), FATHMM (score=1.68), FATHMM-
MKL (score=0.85), LIST-S2 (score=0.99), M-CAP
(score=0.38), MutationTaster (score=1), PROVEAN
(score=4.16, 4.08,4.28), SIFT (score=-0.01, -0.003),
SIFT4G (score =-0.005, -0.009) showed this variant as
damaging.

The pathogenicity of the NM_001001344.2(ATP2B3),
¢.2541C>G variant had been analyzed by BayesDel
addAF (score=0.4), BayesDel noAF (score=0.33), Met-

aLR (score=0.93), MetaRNN (score=0.85), REVEL
(score=0.84), FATHMM (score=4.49), FATHMM-
MKL (score=0.95), LIST-S2 (score=0.96), M-CAP

(score=0.45), MutationTaster (score=0.9999), PROVEAN
(score=3.71) and SIFT (score=-0.001), which suggested
it’s the damaging effect.

According to the results of the current study,
the NM_016032.4(ZDHHCY9): ¢.566T>C and the
NM_001001344.2 (ATP2B3), ¢.2541C>G variants met
the criteria of PM1 (located in a mutational hot spot
and/or critical and well-established functional domain
without benign variation), PM2 (absent from controls
or at extremely low frequency if recessive in Exome
Sequencing Project, 1000 Genomes or ExAC), PP1 (co-
segregation with the disease in multiple affected family
members in a gene definitively known to cause the dis-
ease) and PP3 (Multiple lines of computational evidence
support a deleterious effect on the gene or gene product)
and the NM_002063.4(GLRA2):c.1048C >T variant had
evidence for PM1, PM2, PM5 (novel missense change at
an amino acid residue where a different missense change
determined to be pathogenic has been seen before), PP1
and PP3 criteria. Therefore, all three novel candidate
variants were classified as “likely pathogenic” based on
ACMG guideline of variant interpretation [13].
Homology modeling
The Ramachandran plot of predicted 3-D structures of
three proteins is shown in Fig. 2. In general, a good qual-
ity model should contain>90% amino acids in favorable
region [16]. As shown in Table 2, more than 90% of the
amino acids in all three predicted models are located
in the favorable region, so all three can be considered
suitable. As a result of the p.Leul89Pro variant in the
ZDHHC9 gene, which was found in Family II, a leucine
amino acid (Fig. 3-B) at position 189 of ZDHHC9 protein
(Fig. 3-A) has been substituted with a proline (Fig. 3-C).
Figure 3-A shows that this residue is located in an alpha
helix secondary structure.

The variant p.Arg350Cys in the GLRA2 protein (Fig. 3-
D) in Family III leads to the replacement of arginine 350,
which forms salt bridges and hydrogen bonds with glu-
tamic acid 347 and salt bridges with arginine 343 (Fig. 3-
E), to the cysteine, and all the mentioned bonds are lost
(Fig. 3-F).
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Fig. 2 Ramachandran plot of three predicted structures. Plot of ZDHHC9, GLRA2, and ATP2B3 proteins depicted in A, B, and C numbers,
respectively. Four colored areas of red, yellow, cream, and white show the most favored region, the additional allowed region, the generously

allowed region, and the non-allowed region, respectively

Finally, in the ATP2B3 protein (Fig. 3-G), because of
the p.Asp847Glu variant in Family IV, an aspartic acid
847 (Fig. 3-H), which is an acidic residue, is replaced
with another acidic residue (glutamic acid) (Fig. 3-I).
As shown in Fig. (3-H), aspartic acid 847 forms a salt
bridge and a hydrogen bond with arginine 911. Due to its
smaller side chain, the glutamic acid replacement results
in the loss of the abovementioned salt bridge and hydro-
gen bond (Fig. 3-I). Moreover, several stability tools pre-
dicted all of the tree mutations as destabilizing.

Discussion

X-linked intellectual disability (XLID) is characterized by
extensive genetic heterogeneity; to date, variants in more
than 100 genes on the X-chromosome are known to be
associated with XLID [17]. Here, we investigated four
families with XLID conditions using WES and identified
novel deleterious variants in three genes with variable
clinical findings and a reported deleterious variant with
new clinical features.

In Family I, a previously known pathogenic variant
(NM_001278116.2: ¢.925G>A, p. Glu309Lys) in the
LICAM gene was identified. The LICAM gene is located
near the telomere of the long arm of the X chromosome
at Xq28. It consists of 29 exons and encodes the L1 Cell
Adhesion Molecule (LICAM protein), a neuronal cell
adhesion molecule that plays an essential role in nerv-
ous system development, including neuronal migration
and differentiation [8]. To date, 240 different LICAM
mutations have been reported, scattered over the entire

gene without hot spots, and more than 200 are disease-
causing mutations [18]. Mutations in this gene are associ-
ated with eight phenotypic conditions and, interestingly,
can lead to a clinical spectrum called L1 syndrome that
varies not only between families but sometimes also
within families. The p.Glu309Lys (c.925G > A) variant in
this gene identified in the present study is related to the
phenotypic features in two relative patients( Fig. 1-1-A).
It is located in exon 8 and affects the Ig-like C2-type 3
ectodomain of the LICAM protein [8]. The identified
p-Glu309Lys (c.925G > A) variant in the LICAM gene was
previously described [19, 20], related to MASA (Mental
retardation, Aphasia, Shuffling gait, Adducted thumbs)
syndrome and is confirming genotype—phenotype cor-
relation in which milder phenotypes are related to the
missense mutation in the extracellular domain of the
LICAM gene. However, there are phenotypic differences
between the previous studies on this deleterious variant
and the current study on patients diagnosed with this
variant (Table 3). We encountered some new clinical fea-
tures in the present study, including; behavior problems
such as self-injurious, aggressive behavior, agitation, and
stressfulness, and some dysmorphic characteristics such
as a long thin face, strabismus (hypertropia type), low
set ears, wide nasal bone, and severe toe deformity, not
previously reported for L1 syndrome or other LICAM
gene mutations. These differences can be due to variable
expression related to the LICAM gene mutations, which
may be caused by modifier genes, epigenetics, or envi-
ronmental factors. This study confirmed prior knowledge
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Fig. 3 The 3-D structure of the ZDHHC9, GLRA2, and ATP2B3 proteins. A: The modeled structure of the mutated ZDHHC9 protein containing the p.
Leu189Pro variant, the Leucine residue has been substituted with proline 189 (B, C); due to its irregular geometry, the proline residue destabilizes
a-helices and probably disrupts the protein function. D: It illustrated the structure of the GLRA2 protein. Figure E shows that arginine 350 forms

a salt bridge and a hydrogen bond with glutamic acid 347 and a salt bridge with arginine 343 (p.Arg350Cys). As a result of cysteine substitution, all
of the mentioned hydrogen bonds are lost (F). G: The modeled structure of the ATP2B3 protein containing the p.Asp847Glu variant, the aspartic
acid residue, has been substituted with glutamic acid 847 (H, ). As with aspartic acid, glutamic acid is an acidic residue; however, it has a smaller
side chain, and due to its distance from the arginine 911 side chain, the salt bridge is broken

Table 1 The results of prediction servers on protein stability due to three novel deleterious variants

Stability prediction server INPS-3D mCSM SAAFEC-SEQ |I-Mutant2.0

GLRA2: (p.Arg350Cys) Destabilizing Destabilizing Destabilizing Decreased stability
ZDHHC9: (p.Leu189Pro) Destabilizing Destabilizing Destabilizing Decreased stability
ATP2B3: (p.Asp847Glu) Destabilizing Destabilizing Destabilizing Decreased stability

of a broad range of phenotypic manifestations of LICAM
gene mutations and the pleiotropic effects of the LICAM
gene.

In the second family (Family II), a novel deleteri-
ous hemizygous missense variant in the ZDHHC9 gene
(NM_016032.4: ¢.566T >C, p.Leul89Pro) in two broth-
ers with severe ID, developmental delay, and speech dis-
order (Fig. 1-II-A) was identified. The ZDHHC9 gene is
located on chromosome Xq26.1 and consists of 12 exons

and encoded five transcripts. It encodes an integral mem-
brane protein member of the zinc finger DHHC domain-
containing protein family which forms a complex with
golgin subfamily A member seven and functions as a pal-
mitoyl transferase [9]. The ZDHHC enzymes are impli-
cated in several neurological and neurodevelopmental
disorders. Loss-of-function mutations in the ZDHHC9
gene have been identified in XLID patients and are
related to increased seizure risk [21]. According to the
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Table 2 Ramachandran plot statics. As shown, all three
predicted structures have >90% amino acids in the most favored
region so they are good structures

Protein ZDHHC9 GLRA2 ATP2B3
Residue in most favored region  (178) 90.4% (371) 90.7% (1017) 95.6%
Residue in additional allowed (17) 8.6% (26) 6.4% (41) 3.9%
region

Residue in generously allowed (1) 0.5% (7)1.7% (2)0.2%
region

Residue in disallowed region (1)0.5% (5) 1.2% (4) 0.4%

Human Gene Mutation Database (HGMD), LOVD?,
ClinVar, and literature review, to date, about 18 patho-
genic/likely pathogenic mutations have been identified,
all of which are related to intellectual disability except
one is related to an abnormality of the nervous system
(Table 4). Hence, the ZDHHCY gene is frequently asso-
ciated with a syndromic condition called “Raymond-type
X-linked syndromic intellectual developmental disorder
(MRXSR, OMIM: 300,799)” that is characterized by mild
to severe intellectual disability, speech and language dif-
ficulties, and additional variable features including mar-
fanoid habitus, epilepsy, facial dysmorphism, hypotonia,
and behavioral problems. In family II, the c.566T >C (p.
Leul89Pro) variant of the ZDHHC9 gene was identified,
which is located on exon seven and in the DHHC domain
that is required for palmitoyl transferase activity [9]. As
a result of this study, this mutation causes the enzyme
aberrant activity, leading to the disease conditions. In this
Family, two brothers and their maternal uncle were stud-
ied (Fig. 1-1I-A), all three patients suffer from severe ID,
developmental delay, and speech disorder that met the
primary phenotype of the MRXSR, but there are some
additional and variable clinical manifestations in these
patients. The proband shows agenesis of the corpus cal-
losum and Colpocephaly which is a new and previously
unreported symptom in this condition. His elder brother
has new clinical features, including vision problems,
persistent leg pains, and muscle weakness beginning
at six years of age. A similar vision problem has been
encountered in their maternal uncle. These differences in
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phenotype between previous studies and within the pre-
sented family signify variable expression and pleiotropic
effects of the ZDHHCY gene (Table 4). Notably, vision
and muscular problems may be due to the progression
of the disorder by age (age-related onset). As few clinical
features have been reported related to the variants of this
gene, the genotype—phenotype correlations cannot be a
result at this stage.

In the third family (Family III), a novel deleteri-
ous hemizygous missense variant in the GLRA2 gene
(NM_002063.4:c.1048C>T, p.Arg350Cys) was identi-
fied. The GLRA2 gene is located on Xp22.2, consists of 13
exons, and encodes eight transcripts. GLRA2 is a protein-
coding gene that encodes the alpha subunit of the glycine
receptor; which are widely distributed throughout the
CNS, particularly within the hippocampus, spinal cord,
and brain stem. It plays a role in the down-regulation of
neuronal excitability and contributes to generating inhib-
itory postsynaptic currents [10]. Recent investigations
have noted that missense variants in this gene can result
in a loss, gain, or altered function of the encoded protein.
In turn, missense variants are likely to either negatively
or positively deregulate cortical progenitor homeostasis
and neuronal migration in the developing brain, leading
to changes in cognition, learning, and memory [31]. The
most associated disorder with GLRA2 is X-Linked Intel-
lectual Developmental Disorder, Syndromic, Pilorge Type
(MRXSP, OMIM: 301,076). The MRXSP is characterized
by a global developmental delay with variably impaired
intellectual development, speech delay, behavioral abnor-
malities, autism spectrum disorder (ASD), and more var-
iable features, including motor incoordination, seizures,
and ocular abnormalities. Based on our knowledge, to
date, about 12 pathogenic/likely pathogenic variants have
been reported according to literature, HGMD, LOVD?,
and ClinVar (Table 5), most of which are related to
MRXSP or ASD. Here, we identified a novel deleterious
hemizygous missense variant (NM_002063.4:c.1048C> T,
p.Arg350Cys) in this gene in a family with two affected
boys with severe ID. They suffered developmental and
speech delays, but some differences were found, includ-
ing seizures in the elder brother and behavior prob-
lems in the younger one. In addition, Piton et al. (2011)

Table 3 A review of the literature on the NM_001278116.2(L1CAM): 925G > A (p. Glu309Lys) variant

NM_001278116.2(L1CAM): Intellectual Adducted Spastic Aphasia Hydrocephalus Behavior Dysmorphic
€.925G > A (p. Glu309Lys) disability thumbs paraplegia problems  features
Jouet et al. (1995) [20] Yes Yes Yes Yes Yes - -
Straussberg et al. (1991) [19] Yes Yes Yes No - - -
Patients in this study A Yes No Yes Yes Yes Yes Yes

B Yes No Yes Yes Yes Yes Yes
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previously described a pathogenic mutation in a similar
amino acid codon (NM_002063.4(GLRA2):c.1049G > T,
p-Arg350Leu), related to ASD [32]. After a while, Zhang
et al. (2017) showed that the R350L mutation altered
glycine receptor channel properties and kinetics, with
increased inhibitory postsynaptic current (IPSC) and
decreased decay times. The reduced decay times lead
to longer duration of active periods, and increased con-
ductance of the mutant channel indicated that the R350L
mutation results in a gain-of-function effect [33]. In line
with Piton et al. (2011) study, the two brothers of the cur-
rent research in Family III also showed PDD, a subtype or
milder type of ASD. The differences in phenotypic mani-
festation within these two brothers and between other
studies may be due to the gene’s variable expression or
modifier genes and pleiotropic effects. We also encoun-
tered some facial features that have been reported for a
likely pathogenic variant of this gene in ClinVar submis-
sion (ClinVar: RCV001813921.1), including some minor
features: a broad face, prominent lips, broad eyebrows,
long eyelashes, prominent eyelashes, and a broad nasal
tip, which can expand the spectrum of clinical manifes-
tations associated with the disorder. On the other hand,
there are few detailed clinical features that have been
reported related to this gene’s variants, and the lack of
such clinical details makes it impossible to find the geno-
type—phenotype correlations regarding this gene.

Family IV represents a novel deleterious hemizygous
missense variant in the ATP2B3 gene. The ATP2B3 gene
is located on Xq28 and consists of 26 exons. The ATP2B3
gene encodes ATPase Plasma Membrane Ca2+, Trans-
porting three involved in the maintenance of basal
intracellular Calcium levels at the presynaptic terminals
[38]. The most condition related to the ATP2B3 gene is
X-linked Cerebellar ataxia-1 (SCAX1, OMIM: 302,500),
an X-linked recessive neurologic disorder character-
ized by hypotonia at birth, delayed motor development,
gait ataxia, difficulty standing, dysarthria, and slow eye
movements. Brain MRI shows cerebellar ataxia. To our
knowledge, 10 pathogenic/likely pathogenic mutations
in this gene have been reported according to literature,
HGMD, LOVD?, and ClinVar databases (Table 6) related
to SCAX1, ataxic disorders, and other neurological dis-
orders. The studied family (Family IV) resulted in the
NM_001001344.2, ¢.2541C>G, p.Asp847Glu variant on
the ATP2B3 gene. Clinical findings matched other stud-
ies on ATP2B3 gene variants related to SCAX1 (Table 6).
The proband and his maternal uncle (Fig. 1-IV-A) both
suffer from severe ID and seizure. The different clinical
manifestations in the proband include neurodevelop-
mental delay, delayed milestones, no speech, no walk-
ing, hearing impairment, agitation, and excessive crying.
He shows dysmorphic facial features such as strabismus,
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congenital hypotrichosis, and low eyebrow. His mater-
nal uncles have movement disability in the left limb that
began after multiple seizures early after birth. He also
shows facial features such as a long face, prominent ear,
low eyebrow, and broad nasal tip. Additionally, as shown
in Table 6, missense changes are a common disease-caus-
ing mechanism in this gene. Another key finding in this
study was the existence of subtle differences in some clin-
ical features that suggest variable expression between and
within families with the same gene defects. Again, few
clinical features have been reported related to the vari-
ants of this gene, and the genotype—phenotype correla-
tions cannot be resolved at the moment.

Conclusion

In conclusion, this study revealed three novel deleteri-
ous variants in three known genes on X- chromosomes
by whole exome sequencing and described novel clinical
findings in four unrelated families with XLID disorders.
The results broaden the mutational and clinical spec-
trum of four rare XLID conditions and provide insights
into this highly heterogeneous disorder. New mutational
reports of families with detailed clinical descriptions will
add to the existing knowledge and help to a comprehen-
sive and clear picture of the genetic landscape of XLID.
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