
Zhong et al. BMC Medical Genomics          (2023) 16:265  
https://doi.org/10.1186/s12920-023-01687-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Genomics

Inflammatory response-based 
prognostication and personalized therapy 
decisions in clear cell renal cell cancer to aid 
precision oncology
Weimin Zhong1†, Huijing Chen1†, Jiayi Yang1†, Chaoqun Huang1, Yao Lin2* and Jiyi Huang3* 

Abstract 

Objective The impact of inflammatory response on tumor development and therapeutic response is of significant 
importance in clear cell renal cell carcinoma (ccRCC). The customization of specialized prognostication approaches 
and the exploration of supplementary treatment options hold critical clinical implications in relation to the inflamma-
tory response.

Methods In the present study, unsupervised clustering was implemented on TCGA-KIRC tumors using transcrip-
tome profiles of inflammatory response genes, which was then validated in two ccRCC datasets (E-MATB-1980 
and ICGC) and two immunotherapy datasets (IMvigor210 and Liu et al.) via SubMap and NTP algorithms. Combining 
co-expression and LASSO analyses, inflammatory response-based scoring system was defined, which was evaluated 
in pan-cancer.

Results Three reproducible inflammatory response subtypes (named IR1, IR2 and IR3) were determined and inde-
pendently verified, each exhibiting distinct molecular, clinical, and immunological characteristics. Among these 
subtypes, IR2 had the best OS outcomes, followed by IR3 and IR1. In terms of anti-angiogenic agents, sunitinib 
may be appropriate for IR1 patients, while axitinib and pazopanib may be suitable for IR2 patients, and sorafenib 
for IR3 patients. Additionally, IR1 patients might benefit from anti-CTLA4 therapy. A scoring system called IRscore 
was defined for individual ccRCC patients. Patients with high IRscore presented a lower response rate to anti-PD-L1 
therapy and worse prognostic outcomes. Pan-cancer analysis demonstrated the immunological features and prog-
nostic relevance of the IRscore.

Conclusion Altogether, characterization of inflammatory response subtypes and IRscore provides a roadmap 
for patient risk stratification and personalized treatment decisions, not only in ccRCC, but also in pan-cancer.
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Introduction
Clear cell renal cell carcinoma (ccRCC) occupies approxi-
mately 75% of all renal cancer cases, with a rising global 
incidence. It is considered an angiogenic and immuno-
genic tumor [1]. Patients with early-stage ccRCC pri-
marily receive surgical resection, with pharmacological 
management (anti-angiogenic treatment, immunother-
apy, etc.) for those with metastases [2]. About 40% of 
resected ccRCCs will relapse and develop metastasis [3]. 
Additionally, rapid resistance to antiangiogenic drugs 
and low response rates to immune checkpoint blockade 
(ICB) necessitate novel strategies [4].

Tumors are infiltrated by various immune and non-
immune cell types, which possess pro- and anti-tumor 
effects [5]. The balance of the mediators and cellular 
effectors of inflammatory response exerts an impor-
tant role in controlling tumor progression and efficacy 
of ICB [6]. Therefore, manipulation of the inflamma-
tory response is an attractive approach to enhance ICB 
efficacy when combined with cancer treatment that can 
exert immunostimulatory effects, or via directly miti-
gating pro-tumor inflammation [7]. For instance, anti-
inflammatory agents (COX2 inhibitor, EP2-4 PGE2 
receptor antagonist, etc.) can remodel the tumor immune 
landscape to improve tumor immunogenicity and effi-
cacy of ICB [8]. Photothermal therapy combined with 
nonsteroidal anti-inflammatory drug Aspisol mitigates 
immunosuppression and enhances anti-cancer treatment 
[9]. Cytokine as well as immune-checkpoint inhibitors 
are acceptable therapeutic options for ccRCC, demon-
strating that management of inflammatory response is 
crucial for treating ccRCC [10]. Notably, chronic inflam-
mation is remarkably linked to ccRCC progression, and 
local and systemic inflammation are usually found in 
advanced-stage patients, providing an opportunity to tar-
get the inflammatory response to improve survival out-
comes [11].

Herein, a systematic analysis of inflammatory response 
features was conducted in large-scale ccRCC cohorts to 
characterize the inflammatory response-based catego-
rization and define an IRscore system for refining risk 
stratification and personalized therapy in ccRCC.

Materials and methods
Patients and datasets
This study retrospectively analyzed the transcriptome 
profiling and clinical parameters of ccRCC patients 
from The Cancer Genome Atlas (TCGA)-kidney renal 
clear cell carcinoma (KIRC) (n = 537), E-MATB-1980 
(n = 101) and International Cancer Genome Consortium 
(ICGC) (n = 91). Supplementary Table 1 summarized the 
clinical features of each dataset. Somatic mutation, copy 

number variation (CNV), DNA methylation and micro-
RNA (miRNA) expression data of ccRCC patients were 
acquired from TCGA. We gathered two ICB cohorts 
(IMvigor210 (n = 298) [12] and Liu et  al. (n = 121) [13]), 
including expression profiles, immunotherapeutic 
response, and survival information. The transcriptome 
profiling and prognostic information of pan-cancer were 
obtained from TCGA.

Collection of inflammatory response genes
Totally, 200 genes defining inflammatory response 
were acquired from “HALLMARK_INFLAMMA-
TORY_RESPONSE” gene set of the Molecular Sig-
natures Database (MSigDB; http:// www. broad insti 
tute. org/ msigdb) (Supplementary Table  2) [14]. Pro-
tein–protein interactions were predicted through 
the STRING online database [15]. The associations 
between inflammatory response genes and overall sur-
vival (OS) were evaluated via univariate-cox regression 
analysis. Hazard ratio (HR) and p-value were calcu-
lated, respectively. The above information combined 
with the genomic position was visualized in circos 
track plots using RCircos package [16].

Discovery of inflammatory response subtypes
Prognosis-related inflammatory response genes were 
utilized for unsupervised clustering analysis through 
ConsensusClusterPlus package [17]. The reliability and 
stability of clusters was further verified through cumu-
lative distribution function (CDF) curves and tracking 
plots.

Analysis of immunological features
Common immune checkpoint molecules (CD274, 
PDCD1, CD247, PDCD1LG2, CTLA4, TNFRSF9, and 
TNFRSF4) were measured at the transcription level. The 
relative abundance of 22 immune cell types and two stro-
mal cell types was estimated via single-sample gene set 
enrichment analysis (ssGSEA) computational method 
[18]. Additionally, the fractions of infiltrating immune 
and stromal cells were quantified utilizing ESTIMATE 
method [19]. Tumor immunogenicity factors comprising 
tumor mutation burden (TMB), microsatellite instabil-
ity (MSI), aneuploidy score, cancer testis antigen (CTA) 
score, homologous recombination defects, intratumor 
heterogeneity, mRNA expression-based stemness index 
(mRNAsi), and single nucleotide variants (SNV) neoan-
tigens were collected from TCGA and previously pub-
lished literature. Based on the gene sets of steps within 
cancer-immunity cycle [20], activity of each step was 
computed via Gene Set Variation Analysis (GSVA) [18].

http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/msigdb
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Functional enrichment analysis
Annotated gene sets (“h.all.v7.4.entrez.gmt” and “c2.
cp.kegg.v7.5.1”) of hallmark and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways were acquired 
from the MSigDB [14], and pathway activity was esti-
mated with GSVA [18]. Gene ontology (GO) and KEGG 
pathway enrichment analysis was executed using the 
ClusterProfiler R package with a threshold of false dis-
covery rate (FDR) < 0.05 [21].

Genomic mutation analysis
Somatic mutation data with mutation annotation for-
mat was utilized for somatic mutation analysis via 
maftools package [22]. The mutational OncoPrint plots 
were generated utilizing ComplexHeatmap package 
[23]. Significant copy-number amplifications and dele-
tions were evaluated through GISTIC2.0 based on the 
criteria of FDR < 0.25 [24]. Fraction genome altered 
(FGA), fraction genome gain (FGG), and fraction 
genome loss (FGL) of each ccRCC sample were calcu-
lated, respectively [25].

External verification of inflammatory response‑based 
categorization
With a threshold of adjusted p < 0.05, unique up- or 
down-regulated genes in each inflammatory response 
subtype were selected by comparing the other sub-
types using the limma computational method [26]. The 
top 200 down and up-regulated genes were regarded 
as biomarkers of each inflammatory response sub-
type. The inflammatory response-based categoriza-
tion was externally verified in two ccRCC datasets 
(E-MATB-1980 and ICGC) and two ICB datasets 
(IMvigor210 and Liu et  al.) via nearest template pre-
diction (NTP) algorithm [27].

Subclass mapping (SubMap)
The expression similarity between groups was esti-
mated through SubMap computational approach [28]. 
The degree of commonality was computed utilizing 
GSEA. Bonferroni correction, with a p-value of < 0.05, 
suggested a significant similarity between the groups.

Drug sensitivity analysis
We collected drug sensitivity data of cancer cell lines 
from the GDSC [29], CTRP [30], as well as PRISM 
[31] databases. The GDSC comprises the semi-inhib-
itory concentration (IC50) values. Additionally, the 
CTRP and PRISM databases include the area under the 
curve (AUC) data. The lower the IC50 or AUC value, 
the higher the drug sensitivity. Transcriptome profiles 

of CCLs were also obtained from the Cancer Cell Line 
Encyclopedia [32]. The IC50 or AUC value of a specific 
compound was computed via pRRophetic package [33].

Multi‑omics analysis of immunomodulators
Multi-omics features (covering transcriptome, methyla-
tion and CNV) of 75 immunomodulators (Supplemen-
tary Table  3) in each ccRCC sample were analyzed in 
each ccRCC sample [34].

Co‑expression analysis
Weighted gene co-expression network analysis 
(WGCNA) was utilized to establish a scale-free co-
expression network [35]. Briefly, the similarity matrix 
was generated via computing the Pearson correlation 
between genes based on the transcriptome profiling. 
Next, the optimal soft threshold β was selected for ensur-
ing a scale-free co-expression network. The similarity 
matrix was transformed to an adjacency matrix, followed 
by conversion of a topological matrix. Average linkage 
hierarchical clustering was established for identifying a 
gene dendrogram, and the co-expression modules were 
clustered with dynamic tree cut method. A gene module 
that presented the strongest correlation to inflammatory 
response subtypes was determined through Pearson cor-
relation test, and the genes in this module were regarded 
as inflammatory response-related genes, which were 
further validated through gene significance and module 
membership.

Generation of an inflammatory response‑related 
prognostic signature
Inflammatory response-related genes were utilized 
for least absolute shrinkage and selection operator 
(LASSO) analysis via glmnet package [36]. Variables 
with nonzero coefficients were selected through ten-
fold cross-validation. Inflammatory response-based 
score (IRscore) was generated based on the regression 
coefficients derived from multivariable-cox regres-
sion analysis for variables and their expression in 
TCGA-KIRC dataset. The IRscore equation was as fol-
lows:  IRscore =

n
coefficientofgene(n) ∗ expressionofgene(n) . All 

patients were classified as low and high IRscore groups 
using the median IRscore. The repeatability of the IRscore 
was externally verified in the E-MATB-1980 dataset.

Nomogram generation
Uni- and multivariate-cox regression analyses on the 
IRscore and clinicopathological parameters were exe-
cuted to select independent prognostic factors using 
survival package. These were then utilized to generate 
a nomogram, which was plotted utilizing rms package. 
The nomogram-predicted and actual OS probabilities 
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were visualized into calibration curves. Concordance 
index (C-index) was computed to appraise the predictive 
performance of survival with survConcordance pack-
age. Clinical benefits from each variable were evaluated 
through decision curve analysis.

Analysis of post‑transcriptional mechanisms
Aberrant miRNAs were selected through comparing 
low and high IRscore groups in accordance with |fold 
change|> 1.5 and p < 0.05. Next, targeted pathways were 
enriched via KEGG pathway enrichment analysis.

Statistical analysis
All statistical analyses were achieved using R software. 
Principal component analysis was conducted to visual-
ize the dissimilarity between groups, and the proportions 
of explained variances were calculated. Kaplan–Meier 
curves of OS with log-rank test were implemented via 
survminer package. Time-dependent receiver operating 
characteristic (ROC) curves were drawn utilizing tim-
eROC package. Categorical variables between groups 
were compared via chi-square test. Continuous vari-
ables between two groups were compared utilizing Stu-
dent’s t-test or Wilcoxon rank sum test, with analysis of 
variance or Kruskal–Wallis test for three or more groups. 
Pearson or Spearman correlation tests were applied for 
correlation analysis. Statistical significance was set as 
p < 0.05.

Results
Characterization of three inflammatory response subtypes 
with diverse molecular and immunological features 
and clinical outcomes
Figure  1 illustrates a graphic abstract of the study. To 
systematically dissect the functional roles of inflamma-
tory response in ccRCC, we collected 200 inflammatory 
response genes. Their genomic locations are illustrated in 
Fig.  2A. Among these inflammatory response genes, 41 
acted as protective factors, with 37 as risk factors (Sup-
plementary Table  4), indicating the prognostic implica-
tions of inflammatory response in ccRCC. At the protein 
level, notable interactions were observed. By unsuper-
vised clustering analysis, we estimated the number of 
inflammatory response-based classes in TCGA-KIRC 
dataset. As illustrated in Fig.  2B, ccRCC samples were 
clearly clustered into three subtypes, named IS1 (high 
inflammatory response), IS2 (modest inflammatory 
response), and IS3 (low inflammatory response). When 
k = 3, the CDF reached an approximate maximum, dem-
onstrating that the categorization was reliable (Figure 
S1A, B). Moreover, according to tracking plots, the cat-
egorization under k = 3 was stable (Figure S1C). PCA 
also demonstrated that the three subtypes were well 

distinguished (Fig.  2C). Next, we focused on the differ-
ence in OS among the three subtypes. IR2 had the best 
OS outcomes, followed by IR3 and IR1 (Fig.  2D). Each 
inflammatory response subtype had unique immunologi-
cal features. The highest expression of immune check-
point molecules and the highest abundance of immune 
and stromal cells were found in IR1, followed by IR2 
and IR3 (Fig.  2E). Most oncogenic hallmark pathways 
presented the highest activity in IR1, contributing to 
the poorest OS outcomes (Fig.  2F). Analysis of clinico-
pathological features showed the highest proportions of 
advanced grade and stage in IR1, followed by IR3 and 
IR2, partially explaining the difference in OS among the 
three inflammatory response subtypes (Fig.  2G). More 
importantly, this inflammatory response subtypes were 
independent of known immune subtypes (Fig. 2H).

Genomic features of the three inflammatory response 
subtypes
To explore the genomic alterations of the three inflam-
matory response subtypes, we visualized the somatic and 
CVN frequency of ccRCC patients in TCGA-KIRC data-
set. Overall, VHL (58.5%) followed by PBRM1 (49.5%) 
occurred the highest frequency of mutations in ccRCC 
(Fig.  2I). The notable differences in mutated VHL and 
PBRM1 were observed among the three inflammatory 
response subtypes, with the highest frequency in IR2 
(53.1% and 48.8%), followed by IR1 (41.7% and 27.8%) 
and IR3 (26.7% and 22.2%) (Table  1). Next, this study 
evaluated the differences in FGA, FGG, and FGL among 
the three subtypes. Consequently, the highest FGA, FGG, 
and FGL occurred in IR3, followed by IR1 and the low-
est in IR2 (Fig.  2J). This indicated that increased copy-
number amplifications and deletions may contribute to 
low inflammatory response in ccRCC. Follow removal of 
germline CNVs, significant amplifications and deletions 
were measured according to FDR < 0.25. We found more 
regions were altered in IR2 (Fig. 2K-M).

Validation of the high reproducibility of the inflammatory 
response‑based categorization in multiple datasets
The top 200 unique up- and down-regulated genes were 
selected as biomarkers of each inflammatory response 
subtype (Fig.  3A, B; Supplementary Table  5). Next, 
KEGG pathways involved in these biomarkers were ana-
lyzed. Immunological functions of B cells, T cells, NK 
cells, and macrophages, etc., interleukins, chemokines, 
cytokines, complement, etc. presented the highest activ-
ity in IR1, indicating high inflammatory response; IR2 
was next, and IR3 was the lowest (Fig. 3C). The inflam-
matory response-based categorization was applied in 
the E-MATB-1980 and ICGC datasets. The stability 
and robustness of inflammatory response subtypes was 
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Fig. 1 Graphic abstract of the study

Fig. 2 Identification of three inflammatory response subtypes with diverse immunological features, clinical outcomes, and genomic alterations 
in TCGA-KIRC dataset. A Circos track plots illustrate genomic location, interactions, and prognostic relevance of inflammatory response genes. 
In the inner circle, protein–protein interactions are displayed. Blue dots denote univariate cox regression analysis-derived HR > 1, and red dots 
denote HR < 1. In the outer circle, genomic location of each inflammatory response gene is shown. B Consensus matrix k = 3. Colors from white 
to blue denote never cluster together to always cluster together. C PCA demonstrates the subtype assignments utilizing transcriptome profiles. D 
K-M curves of OS among three inflammatory response subtypes. E Transcriptional levels of common immune checkpoint molecules, abundance 
of immune and stromal cell types, and immune and stromal scores across the three subtypes. F Activity of oncogenic hallmark pathways 
and clinicopathological features in the three subtypes. G Differences in clinicopathological parameters among the three subtypes. H Sankey 
diagram illustrates the interactions of inflammatory response subtypes with known immune subtypes. I The mutational waterfall among the three 
inflammatory response subtypes. Mutated genes are ranked by mutational frequency. J Differences in the fractions of genome altered, amplification 
and deletion among the three subtypes. * p < 0.05. (K-M) Detection and comparison of significant copy-number amplifications and deletions 
across the three subtypes

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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further verified through SubMap and NTP analyses. Sub-
Map results demonstrated that inflammatory response 
subtypes in TCGA-KIRC dataset were highly similar to 
those in the E-MATB-1980 and ICGC datasets (Fig. 3D, 
E). Additionally, NTP analysis revealed that the three 
inflammatory response subtypes displayed high repro-
ducibility in the E-MATB-1980 and ICGC datasets, 
respectively (Fig.  3F, G). Similarly, in terms of ICB, we 
applied the inflammatory response-based categoriza-
tion to two ICB cohorts. The high reproducibility of this 
categorization was proven in IMvigor210 and Liu et  al. 
cohorts (Fig.  3H, I). The remarkable differences in OS 
outcomes among the three inflammatory response sub-
types were confirmed in the E-MATB-1980 and ICGC 
datasets (Fig. 3J, K). We also observed the differences in 
immune checkpoint molecules and immune and stro-
mal cells in the E-MATB-1980, ICGC, IMvigor210 and 
Liu et  al. datasets (Fig.  3L-O). Hence, the inflammatory 
response-based categorization was reproducible and sta-
ble both in ccRCC and immunotherapy patients.

Targeted drug resistance of inflammatory response 
subtypes
Small molecule vascular endothelial growth factor 
receptor (VEGFR) 1/2/3 inhibitors (axitinib [37], pazo-
panib [38], sorafenib [39], sunitinib [40], etc.) have 
gained the approval for treating ccRCC. Resistance to 

these anti-angiogenic agents is always unavoidable. 
We observed that IR1 displayed the highest sensitiv-
ity to sunitinib; IR2 presented the highest resistance 
to sorafenib, with the highest sensitivity to axitinib and 
pazopanib; IR3 presented the highest resistance to axi-
tinib, pazopanib and sunitinib, with the highest sensitiv-
ity to sorafenib (Fig. 4A-D). Above findings indicated that 
sunitinib might be suitable for IR1 patients, axitinib and 
pazopanib for IR2, and sorafenib for IR3.

Tumor immunogenicity features and ICB efficacy 
of inflammatory response subtypes
Tumor immunogenicity factors were measured in 
TCGA-KIRC dataset. No significant differences observed 
in TMB, MSI, SNV neoantigens between the inflam-
matory response subtypes; IR2 presented lower ane-
uploidy score, and CTA score, with higher homologous 
recombination defects, and intratumor heterogeneity 
in IR1 (Fig.  4E-L). Also, mRNAsi that reflects stemness 
had the highest score in IR3, followed by IR2, and the 
lowest in IR1. Next, the heterogeneity in mRNA expres-
sion, methylation and CNVs of immunomodulators was 
observed among the three inflammatory response sub-
types (Fig. 4M). SubMap analysis indicated that IR1 had 
the high similarity to response to anti-CTLA4 therapy 
at the transcriptome profiling, which was observed in 
TCGA-KIRC, ICGC and E-MATB-1980 three datasets 

Table 1 The differences in mutational frequencies among the three inflammatory response subtypes

Mutated gene TMB IR1 IR2 IR3 P Adjusted p

BAP1 34 (10%) 13 (18.1%) 17 (8.0%) 4 (8.9%) 5.53E-02 1.52E-01

VHL 155 (47%) 30 (41.7%) 113 (53.1%) 12 (26.7%) 2.97E-03 1.63E-02

DST 25 (8%) 6 (8.3%) 14 (6.6%) 5 (11.1%) 5.02E-01 7.30E-01

SETD2 39 (12%) 8 (11.1%) 24 (11.3%) 7 (15.6%) 6.73E-01 8.23E-01

MUC16 23 (7%) 7 (9.7%) 14 (6.6%) 2 (4.4%) 5.31E-01 7.30E-01

DNAH9 17 (5%) 3 (4.2%) 11 (5.2%) 3 (6.7%) 8.68E-01 8.68E-01

LRP2 17 (5%) 3 (4.2%) 11 (5.2%) 3 (6.7%) 8.68E-01 8.68E-01

KDM5C 18 (6%) 2 (2.8%) 12 (5.6%) 4 (8.9%) 3.61E-01 7.30E-01

PBRM1 134 (41%) 20 (27.8%) 104 (48.8%) 10 (22.2%) 1.64E-04 1.80E-03

MTOR 23 (7%) 5 (6.9%) 11 (5.2%) 7 (15.6%) 5.33E-02 1.52E-01

TTN 68 (21%) 11 (15.3%) 47 (22.1%) 10 (22.2%) 4.68E-01 7.30E-01

(See figure on next page.)
Fig. 3 Validation of the high reproducibility of the inflammatory response classification in multiple datasets. A, B Up- and down-regulated 
biomarkers of each inflammatory response subtype. C Activity of KEGG pathways based on biomarkers. D SubMap analysis proves the similarities 
in inflammatory response subtypes between TCGA-KIRC and E-MATB-1980 datasets. E SubMap analysis proves the similarities in inflammatory 
response subtypes between TCGA-KIRC and ICGC datasets. F‑I Transcriptome profiling of the template features across inflammatory response 
subtypes in the E-MATB-1980, ICGC, IMvigor210 and Liu et al. datasets. J, K K-M curves of OS among subtypes in the E-MATB-1980, and ICGC 
datasets. L‑O Validation of transcriptional levels of immune checkpoints, abundance of immune and stromal cells, and immune and stromal scores 
across subtypes in the E-MATB-1980, ICGC, IMvigor210 and Liu et al. datasets
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Fig. 3 (See legend on previous page.)
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(Fig. 4N-P). Hence, IR1 patients might benefit from anti-
CTLA4 therapy.

Recognition of inflammatory response‑related genes
WGCNA was conducted with transcriptome profiles 
and inflammatory response subtypes to establish a 
scale-free co-expression network with the soft thresh-
old β = 20 (Fig.  5A, B). After clustering the genes with 
similar expression patterns into one module, sixteen co-
expression modules were established (Fig.  5C). Purple 
module presented the strongest correlation to inflamma-
tory response subtypes (Fig.  5D). Genes in this module 
(n = 445) were regarded as inflammatory response-related 
genes (Fig. 5E; Supplementary Table 6). They showed the 
highest expression in IR1, followed by IR2, and the lowest 
in IR3 (Fig.  5F), indicating their inflammatory response 
relevance. As demonstrated by functional enrichment 
results, inflammatory response-related pathways (TGF-β, 
cytokine, etc.) were remarkably enriched by inflamma-
tory response-related genes (Fig. 5G-J).

Generation and verification of an inflammatory 
response‑based scoring system for ccRCC 
To unveil the potential prognostic implications of inflam-
matory response-related genes, the optimal prognos-
tic signatures were selected with LASSO approach in 
TCGA-KIRC dataset (Fig.  6A, B). Based on the mini-
mum lambda, eight inflammatory response-related genes 
were selected to define the inflammatory response-based 
scoring with the equation of IRscore = (-0.143745793) 
* ELN expression + (-0.003594107) * PALLD expres-
sion + 0.031521892 * CRABP2 expression + 0.03571109 
* TIMP1 expression + 0.09335266 * CNTNAP1 expres-
sion + 0.102379987 * EIF4EBP1 expression + 0.13084054 
* NUMBL expression + 0.228098316 * COL7A1 expres-
sion (Fig.  6C). TCGA-KIRC patients were separated 
into low and high IRscore subgroups, respectively. High 
IRscore subgroup presented a higher proportion of dead 
cases (Fig. 6D). PCA result uncovered the remarkable dif-
ferences in transcriptome profiling between subgroups 
(Fig.  6E). Patients with high IRscore presented worse 
OS outcomes than those with low IRscore (Fig. 6F). The 
high reproducibility of the IRscore was proven in the 
E-MATB-1980 dataset (Fig.  6G-I). ROC curves at one-, 

three- and five-year OS demonstrated the excellent effi-
cacy of the IRscore in ccRCC prognostication both in 
TCGA-KIRC and E-MATB-1980 datasets (Fig. 6J, K).

Clinical relevance of the IRscore in ccRCC 
Next, this study characterized the phenotype correlated 
to poor prognostic outcomes in high IRscore group. No 
significant associations of the IRscore with age, and gen-
der were found across ccRCC (Fig.  7A, B). The IRscore 
gradually increased with grade and stage (Fig.  7C, D). 
Additionally, high IRscore group had the prominently 
higher proportions of advanced grade and stage (Fig. 7E). 
From uni- and multivariate-cox regression analyses, the 
IRscore and common clinicopathological parameters 
(age, grade, and stage) acted as independent risk factors 
of ccRCC prognosis (Fig. 7F, G).

Establishment of an IRscore‑based nomogram 
for individuals
For providing a readable and quantitative measurement 
for the IRscore to clinically predict the survival prob-
ability, this study generated an integrated nomogram 
combining the IRscore and other independent clin-
icopathological parameters (age, stage, and grade), as 
illustrated in Fig.  7H. C-index was 0.788, indicating the 
powerful predictive capacity of this nomogram. Calibra-
tion curves showed that the nomogram-predicted 1-, 3-, 
and 5-year OS was nearly coincided with the standard 
one (Fig.  7I). Additionally, the nomogram achieved the 
maximum net benefits of survival at 1-, 3- and 5-year OS 
(Fig. 7J-L).

Aberrant expression and prognostic implications 
of the IRscore‑derived genes
Each gene in the IRscore signature was further ana-
lyzed in TCGA-KIRC dataset. Aberrant expression was 
observed in ccRCC versus normal specimens. CNT-
NAP1, EIF4EBP1, ELN, NUMBL and TIMP1 were 
notably up-regulated in ccRCC, with down-regulated 
COL7A1, CRABP2 and PALLD (Fig.  8A-H). Next, their 
prognostic value was investigated. Patients with high 
expression of CNTNAP1, COL7A1, CRABP2, EIF4EBP1, 
NUMBL and TIMP1 presented worse OS outcomes, 
with opposite effects for ELN and PALLD (Fig.  8I-P). 

Fig. 4 Differences in therapeutic responses and tumor immunogenicity among inflammatory response subtypes. A-D Comparison of estimated 
IC50 values of axitinib, pazopanib, sorafenib, and sunitinib among the three inflammatory response subtypes. E-L Differences in tumor 
immunogenicity factors including TMB, MSI, aneuploidy score, CTA score, homologous recombination defects, intratumor heterogeneity, 
mRNAsi, and SNV neoantigens among the subtypes. M Landscape of transcriptional levels, methylation, copy-number amplification, and deletion 
of immunomodulators across the three subtypes. N-P SubMap analysis demonstrates the similarities in expression patterns between inflammatory 
response subtypes and responses to anti-PD-1 and anti-CTLA4 in TCGA-KIRC, ICGC and E-MATB-1980 datasets

(See figure on next page.)
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Fig. 5 Recognition of inflammatory response-related genes in TCGA-KIRC dataset. A Sample dendrogram and heatmap of inflammatory response 
subtypes. B Scale independence together with mean connectivity under distinct soft threshold β values. C Cluster dendrogram of co-expression 
modules. D Relationships of co-expression modules with inflammatory response subtypes. E Module membership of purple module versus gene 
significance of inflammatory response subtypes. F Transcriptome profiling of inflammatory response-related genes in the three inflammatory 
response subtypes. G‑J GO and KEGG enrichment results of inflammatory response-related genes

Fig. 6 Generation and verification of an inflammatory response-based scoring system for ccRCC. A, B LASSO Cox regression analysis for selecting 
the most robust prognostic inflammatory response-related genes. C An ensemble of identified eight genes with individual LASSO coefficients. 
D Distribution of IRscore, survival time, and mRNA expression of each gene in TCGA-KIRC dataset. E PCA plots visualize the dissimilarity of low 
and high IRscore groups in TCGA-KIRC dataset. F K-M curves of OS between groups in TCGA-KIRC dataset. G Validation of distribution of IRscore, 
survival time, and mRNA expression of each gene in the E-MATB-1980 dataset. H Validation of the dissimilarity of low and high IRscore groups 
in the E-MATB-1980 dataset. I Validation of the OS difference between groups in the E-MATB-1980 dataset. J, K ROC curves demonstrate 
the accuracy of OS prediction in TCGA-KIRC and E-MATB-1980 datasets

(See figure on next page.)
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Moreover, we also investigated the eight genes at pro-
tein expression level based on the Human Protein Atlas 
(HPA) database. EIF4EBP1 showed a relatively high 
antibody staining level in tumor tissue when compared 
to normal tissue, while PALLD presented high protein 
expression level in normal tissue (Figure S2).

Potential of the IRscore in predicting ICB response
Immune-infiltrating cells within the tumor microen-
vironment are capable of modulating the tumor phe-
notype. The high IRscore group presented the higher 
abundance of immune and stromal cells (Fig. 9A). Can-
cer immune cycle encompasses a series of steps required 
for immune-mediated tumor growth control [41]. The 
IRscore presented the noteworthy relationships with 
most events of cancer-immunity cycle (Fig.  9B). Fur-
ther investigation demonstrated that the IRscore was 
negatively correlated with stromal activation-relevant 
processes and positively linked to DNA damage repair 
(Fig.  9C). In light of the immunological relevance of 
the IRscore, this study further detected the potential 
of the IRscore in inferring ICB efficacy. On the basis of 
the IRscore, patients receiving anti-PD-L1 therapy in 
the IMvigor210 cohort were classified as low and high 
IRscore subgroups (Fig. 9D). Patients with high IRscore 
presented worse responses to anti-PD-L1 therapy and 
more undesirable OS outcomes in comparison to those 
with low IRscore (Fig.  9E, F). This suggested that the 
IRscore might be a promising and reliable biomarker of 
ICB response and clinical outcomes.

Prediction of promising compounds and druggable targets 
based on the IRscore
Drug candidates that exhibited higher sensitivity in 
patients with high IRscore were examined using the 
CTRP and PRISM datasets. In accordance with cor-
relation coefficient < -0.35 (p < 0.05) from association 
analysis of the IRscore with AUC value, we found six 
compounds (vincristine, BI-2536, paclitaxel, leptomycin 
B, GSK461364, and SB-743921) from the CTRP dataset 
and ten compounds (vindesine, vinblastine, verubulin, 
vincristine, dolastatin-10, irinotecan, talazoparib, gem-
citabine, topotecan and rubitecan) from the PRISM data-
set (Fig. 9G, H).

Possible druggable targets that demonstrate significant 
correlations with the IRscore may hold promise as thera-
peutic options for patients with high IRscore. Through 
correlation analysis between the IRscore and protein 
expression of druggable targets, a total of twenty-eight 
potential druggable targets were identified, with a cor-
relation coefficient greater than 0.30 (p < 0.05) (Fig.  9I; 
Supplementary Table  7). Additionally, by evaluating the 
association between the IRscore and CERES score of 
druggable targets, we identified 213 potential targets with 
a correlation coefficient less than -0.80 (p < 0.05) (Fig. 9J; 
Supplementary Table 8). Integrating above two analyses, 
PI3 that encodes an elastase-specific inhibitor was finally 
identified as promising therapeutic targets, implying 
that mitigating the function of PI3 in patients with high 
IRscore might lead to beneficial therapeutic effects.

Post‑transcriptional mechanisms underlying the IRscore
Next, we assessed the power of the IRscore in interpre-
tating post-transcriptional events. Differences in miRNA 
expression were analyzed in TCGA-KIRC dataset. Con-
sequently, 177 miRNAs with differential expression were 
determined between low and high IRscore groups (Sup-
plementary Table 9). Afterwards, we executed functional 
enrichment analysis of their targeted mRNAs. As illus-
trated in Fig. 10A, oncogenic pathways (PI3K-Akt, IL-17, 
NF-ΚB, TNF, AMPK, focal adhesion, pathways in cancer, 
etc.) were notably enriched, suggesting the IRscore was 
linked with post-transcriptional events as well as regula-
tion of oncogenic pathways.

Immunological features and prognostic relevance 
of the IRscore across pan‑cancer
Pan-cancer analysis was conducted to further elucidate 
the immunological features and prognostic relevance of 
the IRscore in different cancer types. Notably, the IRscore 
was significantly correlated to the abundance of most 
immune and stromal cells across pan-cancer (Fig.  10B). 
Additionally, we observed the prominent relationships of 
the IRscore with stromal and immune activation-related 
pathways in each cancer type (Fig.  10C). Next, we ana-
lyzed the differences in the IRscore between tumors and 
normal tissues. In most cancer types, the higher IRscore 
was observed in tumors versus normal tissues (Fig. 10D). 
Moreover, patients with high IRscore presented poorer 

(See figure on next page.)
Fig. 7 Establishment of an IRscore-based nomogram for individuals in TCGA-KIRC dataset. A‑D Differences in IRscore between different 
clinicopathological parameters (age, gender, grade, and stage). E Pie plots illustrate the differences in clinicopathological parameters between low 
and high IRscore groups. F, G Uni- and multivariate-cox regression analysis on IRscore and common clinicopathological parameters. H Details 
of the nomogram. I Calibration curves show the nomogram-predicted and actual OS probabilities. J‑L Decision curve analysis graphically illustrates 
the net benefits of 1-, 3- and 5-year OS from each variable
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OS outcomes in comparison to those with low IRscore 
across multiple cancers (Fig.  10E-M). Above findings 
demonstrated that the IRscore played essential roles in 
the tumor immune microenvironment and clinical out-
comes across pan-cancer.

Discussion
Tumor progression and therapeutic response are medi-
ated by inflammatory response, either promoting or miti-
gating tumor progression, potentially showing opposite 

effects on treatment outcomes [42]. Inducing acute 
inflammatory response usually triggers the maturation 
of dendritic cells as well as antigen presentation, result-
ing in anti-tumor immunity, while chronic inflammation 
promotes tumor development and therapeutic resist-
ance [43]. Tumor microenvironment contains diverse 
inflammatory cells and mediators, and targeting these 
factors remarkably lowers tumor development, growth 
and spread [44]. Therefore, the intricate network of the 
inflammatory response presents potential avenues for 

Fig. 8 Aberrant expression and prognostic implications of the IRscore-derived genes in TCGA-KIRC dataset. A‑H Differences in mRNA expression 
of CNTNAP1, COL7A1, CRABP2, EIF4EBP1, ELN, NUMBL, PALLD and TIMP1 in ccRCC relative to normal tissues. ns: p > 0.05; and *** p < 0.001. I‑P K-M 
curves of OS between groups separated by the median expression of CNTNAP1, COL7A1, CRABP2, EIF4EBP1, ELN, NUMBL, PALLD and TIMP1
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the prevention and treatment of ccRCC. However, the 
clinical research required to substantiate the targeting 
of cancer-related inflammation and innate immunity in 
cancer patients is still in its nascent stages [45]. Here, we 
comprehensively investigated inflammatory response fea-
tures across ccRCC tumors from multiple datasets, and 

characterized the inflammatory response-based categori-
zation as well as defined the IRscore system for ccRCC 
patients.

Three highly reproducible inflammatory response 
subtypes with distinct molecular, clinical, and immuno-
logical features were established in ccRCC. IR2 had the 

Fig. 9 Potential of the IRscore in predicting ICB response and potential compounds and druggable targets. A The abundance of immune 
and stromal cell types across low to high IRscore ccRCC samples in TCGA-KIRC dataset. B Associations of the IRscore with the activity of steps 
within the cancer-immunity cycle in TCGA-KIRC dataset. C Associations of the IRscore with the enrichment score of known biological processes 
in TCGA-KIRC dataset. D Distribution of the IRscore across different responses to anti-PD-L1 therapy in the IMvigor210 dataset. E Percentage 
of different therapeutic responses in low and high IRscore groups. F K-M curves of OS between groups. G, H Correlations between the IRscore 
and the AUC values of CTRP- or PRISM-derived compounds (left), and differences in the AUC values between low and high IRscore groups. *** 
p < 0.001. I, J Relationships of the IRscore with the protein expression and CERES score of druggable targets. Blue, positive correlation; red, negative 
correlation
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best OS outcomes, followed by IR3 and IR1. Large-scale 
tumor transcriptome analysis reveals that ccRCC is a 
highly immune-infiltrating solid tumor, but high immune 
infiltration is linked with an undesirable prognosis fol-
lowing nephrectomy [46]. Depending upon the balance of 
immune cell types and signaling within the tumor micro-
environment, inflammation can support or suppress 
tumor progression. Innate immune cell types present 

high heterogeneity and plasticity, and their phenotypes 
vary by grading, staging, etc. Immune cells and myofibro-
blasts are recognized as primary contributors to chronic 
inflammation [30]. There was widespread heterogeneity 
in immune and stromal cells among the subtypes, with 
the highest abundance in IR1, followed by IR2 and IR3.

Tumors develop from normal cells by acquiring genetic 
alterations that allow them to proliferate uncontrollably. 

Fig. 10 Post-transcriptional mechanisms underlying the IRscore and pan-cancer analysis of immunological features and prognostic relevance. A 
Differences in miRNA-targeted signaling pathways in TCGA-KIRC dataset between low and high IRscore groups. Red dots denote miRNA-targeted 
mRNAs that are up-regulated in high IRscore group, while blue dots denote miRNA-targeted that are down-regulated in high IRscore group. The 
circles represent signaling pathways enriched by targeted mRNAs. Red lines indicate up-regulated miRNAs in high IRscore group, while blue lines 
indicate down-regulated miRNAs in high IRscore group. B, C Bubble diagram illustrates the associations of IRscore with the abundance of immune 
and stromal cells and the activity of known biological processes across pan-cancer. D Differences in IRscore between tumors and normal tissues 
for each cancer type. E‑M K-M curves of OS between low and high IRscore groups in different cancer types
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Genomic instability is a hallmark of cancer and shapes 
the genomic makeup of tumor cells, thus determining 
their behaviors and therapeutic response [47]. Evidence 
suggests that genomic instability causes activation of 
immune response. Notably, VHL and PBRM1 occurred 
the highest mutated frequency in IR2 (53.1% and 48.8%), 
followed by IR1 (41.7% and 27.8%) and IR3 (26.7% and 
22.2%). We also investigated the CNV heterogeneity 
among the subtypes. Thus, genomic alterations might 
correlate to inflammatory response in ccRCC. Due to the 
relationship between inflammation and tumors, exploit-
ing inflammation appears to be a crucial approach for 
more effective anti-cancer therapy. Anti-angiogenic 
agents act not only on endothelial and tumor cells, but 
also on immune cells [48]. However, the rapid develop-
ment of resistance has impeded the effective implemen-
tation of anti-angiogenic agents in clear cell renal cell 
carcinoma (ccRCC). In this study, we have identified that 
sunitinib may be a suitable treatment option for patients 
with immune response subtype 1 (IR1), while axitinib 
and pazopanib may be more appropriate for patients 
with immune response subtype 2 (IR2), and sorafenib 
for patients with immune response subtype 3 (IR3). Over 
the past decade, immunotherapy, particularly immune 
checkpoint blockade (ICB), has had a significant impact 
on the treatment of ccRCC. However, the therapeutic 
response rate remains relatively low [49]. Among the 
three inflammatory response subtypes, IR1 patients may 
derive benefits from anti-CTLA4 therapy, suggesting that 
the induction of inflammatory signaling could potentially 
enhance the efficacy of ICB therapy in ccRCC.

Recently, computational biology achieved much pro-
gresses in exploring molecular mechanisms and targets 
of disease or tumor. For example, Bao et  al. proposed a 
human-specific method [50] and 2-hydr_Ensemble resi-
dues’ identification algorithm [51], which provide new 
perspective in the studies of acetylation process in human 
body and improve the accuracy of modification residues 
identification, respectively. In our study, we defined an 
inflammatory response-based scoring (covering CNT-
NAP1, COL7A1, CRABP2, EIF4EBP1, ELN, NUMBL, 
PALLD, and TIMP1) called IRscore for individual ccRCC 
patients, which enabled to precisely predict patient sur-
vival and estimate anti-PD-L1 therapy efficacy. Limited 
evidence has revealed the implications of a single gene 
from the IRscore in ccRCC. A bioinformatics study found 
that CNTNAP1 is up-regulated in ccRCC, and appreci-
ably linked with poor clinical outcomes and immuno-
logical properties [52]. Two other bioinformatics studies 
demonstrated the prognostic relevance of COL7A1 and 

CRABP2 in ccRCC [53, 54]. Experimental research 
revealed that EIF4EBP1 facilitates ccRCC cell prolifera-
tion and metastasis [55]. Our pan-cancer analysis dem-
onstrated the immunological features and prognostic 
relevance of the IRscore. Thus, we speculated that inflam-
matory response served as a synergistic treatment target 
in ICB not only in ccRCC but also across pan-cancer.

Nonetheless, several limitations exist and should be 
acknowledged. First, the public datasets cannot pro-
vide direct information on the tumor microenviron-
ment. Thus, we only indirectly inferred the abundance 
of immune and stromal compositions through compu-
tational methods. Second, further molecular experi-
ments should be implemented to observe the functional 
roles of the identified inflammatory response-related 
genes in ccRCC. Third, although this retrospective study 
attempted to contain as many ccRCC patients as pos-
sible for more religious conclusion, the inflammatory 
response-based categorization requires prospective 
validation in independent well-designed clinical trials. 
Finally, all the result were based on the exited datasets 
analysis and in vitro and in vivo experiments need to be 
conducted to further validated these results.
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