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Abstract 

Background Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tis-
sues. This process is initiated by the release of inflammatory mediators from apoptotic cells and plays a crucial role 
in resolving inflammation. The signals associated with efferocytosis have been found to regulate the inflammatory 
response and the tumor microenvironment (TME), which promotes the immune escape of tumor cells. However, 
the role of efferocytosis in glioblastoma multiforme (GBM) is not well understood and requires further investigation.

Methods In this study, we conducted a comprehensive analysis of 22 efferocytosis-related genes (ERGs) by searching 
for studies related to efferocytosis. Using bulk RNA-Seq and single-cell sequencing data, we analyzed the expression 
and mutational characteristics of these ERGs. By using an unsupervised clustering algorithm, we obtained ERG clus-
ters from 549 GBM patients and evaluated the immune infiltration characteristics of each cluster. We then identified 
differential genes (DEGs) in the two ERG clusters and classified GBM patients into different gene clusters using univari-
ate cox analysis and unsupervised clustering algorithms. Finally, we utilized the Boruta algorithm to screen for prog-
nostic genes and reduce dimensionality, and the PCA algorithm was applied to create a novel efferocytosis-related 
scoring system.

Results Differential expression of ERGs in glioma cell lines and normal cells was analyzed by rt-PCR. Cell function 
experiments, on the other hand, validated TIMD4 as a tumor risk factor in GBM. We found that different ERG clusters 
and gene clusters have distinct prognostic and immune infiltration profiles. The ERG signature we developed pro-
vides insight into the tumor microenvironment of GBM. Patients with lower ERG scores have a better survival rate 
and a higher likelihood of benefiting from immunotherapy.

Conclusions Our novel efferocytosis-related signature has the potential to be used in clinical practice for risk stratifi-
cation of GBM patients and for selecting individuals who are likely to respond to immunotherapy. This can help clini-
cians design appropriate targeted therapies before initiating clinical treatment.
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Introduction
Glioblastoma (GBM) is the most common primary brain 
malignancy, accounting for approximately 12%-15% of all 
brain tumors [1, 2]. Despite significant advancements in 
chemotherapy, radiation therapy, and surgical treatment, 
GBM patients’ 5-year survival rate remains less than 5% 
[3]. Although epidemiological studies suggest that ioniz-
ing radiation increases glioblastoma incidence [4], most 
GBM patients have no clear pathogenetic cause. The 
widespread heterogeneity within and between individu-
als is the root cause of GBM treatment failure, making it 
one of the most aggressive and treatment-resistant malig-
nancies [5]. Therefore, discovering new biomarkers and 
establishing effective molecular staging systems to select 
appropriate treatments for GBM patients is crucial, as 
molecular alterations are increasingly important in gli-
oma classification and grading [6, 7].

Phagocytes, such as macrophages and immature den-
dritic cells, play a vital role in efferocytosis, the process 
of recognizing and engulfing dying cells during apopto-
sis [8]. Unlike regular cytokinesis, efferocytosis preserves 
the membrane integrity of dead cells, preventing expo-
sure to immunogenic substances and avoiding secondary 
cell damage caused by inflammatory responses [9, 10]. 
Although numerous genes that promote efferocytosis are 
involved in tumor development and metastasis and are 
frequently overexpressed in various cancers, including 
lung cancer, breast cancer, and leukemia [11, 12]. Cur-
rent theories suggest that efferocytosis may contribute to 
tumor progression due to the unaccompanied release of 
inflammatory factors and production of killer effector T 
cells, resulting in a suppressive immune microenviron-
ment and the immune escape of tumor cells [12, 13]. In 
contrast, uncleared apoptotic cells and secondary necro-
sis promote a proinflammatory environment and antitu-
mor immunity [14]. The receptors for phagocytes, such 
as tumor-associated macrophages (TAM), have been 
extensively studied. For example, MerTK is involved 
in epidermal growth factor receptor (EGFR) inhibitor 
resistance in non-small-cell lung cancer [15], and block-
ing phagocytic receptors with the membrane-linked pro-
tein V can effectively slow tumor progression in prostate 
cancer [16]. Additionally, TIM-4 acts as a PS receptor on 
the surface of phagocytes and promotes angiogenesis in 
colorectal cancer by upregulating vascular endothelial 
growth factor (VEGF) [17].

The crucial role of efferocytosis in cancer develop-
ment and progression is attributed to its effect on tumor 
cell growth, metastasis, EMT, and angiogenesis [18]. 
Although traditional oncology therapies such as chemo-
therapy and radiotherapy trigger apoptosis and effero-
cytosis, they also lead to tumor inflammation and limit 
antitumor immunity [19]. Studies have indicated that 

solely blocking efferocytosis cannot completely inhibit 
the production of tumor immunosuppressive cells and 
mediators [20]. However, combined inhibition of tumor 
cell apoptosis and efferocytosis has been observed to 
effectively suppress metastatic recurrence of tumors. 
Notably, the immunosuppressive microenvironment in 
GBM patients forms a comprehensive and self-sufficient 
system [21]. Additionally, the efferocytosis process may 
function as an immune checkpoint similar to PD-1/
PD-L1, which could be targeted for therapeutic interven-
tions [22]. Therefore, developing a combination therapy 
that targets both conventional oncology therapy and effe-
rocytosis presents a significant technical challenge.

In this study, we categorized 20 genes associated with 
efferocytosis into different clusters and assessed their 
impact on the prognosis of GBM patients. To achieve 
this, we used an unsupervised consensus clustering 
method and combined three GBM cohorts. The univari-
ate Cox analysis and Boruta algorithm were used to iden-
tify the differentially expressed genes among the ERG 
clusters. Then, a scoring system was established based on 
the PCA algorithm. The primary objective of the study 
was to determine whether this novel efferocytosis char-
acteristic could accurately predict the prognosis of GBM 
patients and assist medical professionals in identifying 
potentially responsive patients for the development of 
effective immunotherapies.

Materials and methods
Acquisition of raw data
We collected RNA-seq data and clinical information of 
GBM patients from two databases, UCSC Xena (https:// 
xena. ucsc. edu/) and CGGA (http:// www. cgga. org. cn/). 
In addition, we downloaded mutation data of TCGA-
GBM patients and removed 8 duplicates, leaving us with 
a TCGA cohort comprising 161 GBM tissue samples and 
5 normal samples. The CGGA-325 cohort contained 139 
GBM samples, while the CGGA693 cohort had 249 GBM 
samples. Gene expression profiles were measured using 
the transcript per million estimation and log2-based 
transformation. After combining the mRNA expression 
data of GBM patients from these three cohorts, we used 
the “sva” package [23] to perform batch correction. We 
identified 103 efferocytosis-related genes from the gen-
ecards portal (http:// www. genec ards. org/) using the key-
word “efferocytosis”. After comparing these genes on the 
Pubmed website (https:// pubmed. ncbi. nlm. nih. gov/) for 
their research applications in efferocytosis, we selected 
the most plausible 22 genes. These 22 efferocytosis-
related genes are listed in Supplementary Table 1, and we 
have provided a brief illustration of the efferocytosis pro-
cess in Fig. 1.

https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://www.cgga.org.cn/
http://www.genecards.org/
https://pubmed.ncbi.nlm.nih.gov/
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Consensus unsupervised clustering
To identify distinct ERG clusters based on the expression 
of 20 ERGs, we employed consensus unsupervised clus-
ter analysis using the “ConsensusClusterPlus” software 
program [24]. We used the “Pam” algorithm with “Euclid” 
as the distance measure, and resampled items with a rate 
of 80% for 1000 replications to determine the optimal k 
value based on the proportion of ambiguous clustering 
(PAC). Next, we used the “limma” package to identify 
differentially expressed genes among the various ERG 
clusters, where expression levels were considered signifi-
cant if |log2 FC| exceeded 1 and the adjusted P-value was 
below 0.05 [25, 26].

Functional enrichment analysis
To explore the biological functions of the differentially 
expressed genes in various ERG clusters, we conducted 
GO enrichment and KEGG pathway analyses. We used 
the clusterProfiler package and applied the BH method to 
adjust the P-value [27]. It is important to note that the 
GO enrichment functions include cellular components, 
biological processes, and molecular functions [28, 29].

Establishment of the efferocytosis‑related signature
After conducting one univariate Cox analysis (with a 
significance level of P < 0.05), we proceeded to a sec-
ond clustering analysis on differentially expressed genes 
(DEGs) identified in the various ERG clusters. Among 
the DEGs associated with the ERG gene cluster, we 
defined genes positively associated with the ERG gene 
cluster as gene signature A and genes negatively associ-
ated with the ERG gene cluster as gene signature B. We 
utilized the “Boruta” software package to further screen 
significant genes among the candidate genes, applying 
the Boruta algorithm with a maxRuns value of 500. By 
using the Boruta algorithm, we retained the genes identi-
fied as “confirmed”. Principal component analysis (PCA) 
was applied to reduce the dimensionality of the ERG gene 
cluster. Subsequently, an ERG score was assigned to each 
patient by computing the score for each GBM sample 
using the following formula: score = ∑PCA A—∑PCA 
B. To classify GBM patients into high-risk (HR) and low-
risk (LR) groups, we used the “surv_cutpoint” function 
from the “survminer” package to determine the optimal 
cutoff values [30].

Fig. 1 Brief process of efferocytosis
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Prediction of immunotherapy
We aimed to evaluate the ability of the ERG signature 
to predict the response to immunotherapy in GBM 
patients, by utilizing the Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm that integrates both 
tumor immune dysfunction and exclusion factors [31]. 
We obtained a subset of genes associated with cancer 
and immunity by using the website developed by Xu et al. 
[32] (http:// biocc. hrbmu. edu. cn/ tip/) and selecting genes 
that were positively associated with anti-PD-L1 drug 
response based on Mariathasan’s study features [33]. We 
then applied the GSVA method to calculate the enrich-
ment scores for gene signatures associated with the can-
cer immune cycle, considering p-values less than 0.05 
to indicate statistically significant differences between 
the two groups. To assess the relationship between risk 
scores and the two genetic features mentioned above, we 
used the R package “ggcor”.

Immune microenvironment‑related analysis
We utilized various algorithms for immune cell infil-
tration analysis, including XCELL [34], TIMER [35], 
QUANTISEQ, MCPCOUNT, EPIC [36], CIBERSORT 
[37] and CIBERSORT- ABS. The results from these algo-
rithms were compared and further analyzed using the 
“ComplexHeatmap” R package [38, 39]. We examined 
the correlation between immune cells and risk scores 
using Spearman correlation analysis. To differentiate 
GBM patients with low ERG scores from those with high 
scores based on their immune cell features, we employed 
the single-sample gene set enrichment analysis (ssGSEA) 
technique. We also estimated the immune and stromal 
scores of each glioma sample using the R program “ESTI-
MATE,” which provides an estimate of the quantities of 
immune and stromal components present in  vivo [40]. 
To comprehensively investigate the tumor microenviron-
ment’s heterogeneity in different datasets and cell types, 
we utilized the Tumor Immune Single-Cell Hub (TISCH) 
database. TISCH is an extensive single-cell RNA-seq 
database dedicated to the tumor microenvironment 
(http:// tisch. comp- genom ics. org).

Drug sensitivity
The semi-inhibitory concentration, also known as IC50, 
represents the drug concentration that corresponds to a 
50% ratio of apoptotic cells to the total number of cells 
and is often used to assess a drug’s ability to induce apop-
tosis. A lower IC50 value indicates a higher induction of 
apoptosis, whereas a higher value suggests that the cells 
are more tolerant to the medication. To assess the effi-
cacy of our ERG signature in targeted chemotherapy, we 
used the “pRRophetic” tool to compute the IC50 values 

for various chemotherapeutic agents typically used in 
GBM treatment [41]. We compared the IC50 values 
between the high and low-scoring groups and evaluated 
the patients’ sensitivity to each drug.

Transfection of cells and real‑time PCR
U251MG, LN229, and SW1783 human glioma cells and 
human astrocytes (NHA) were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM, Gibco, C11995500BT, 
Canada) supplemented with 10% fetal bovine serum 
(FBS, Gibco, 10091148, Canada) and 1 × penicillin/strep-
tomycin (Gibco, 15,140–122, Canada). All cultures were 
maintained in a CO2 incubator (TFS3111, USA) at 37 °C 
with 5% CO2. TIMD4 gene knockdown was achieved 
using small interfering RNA (siRNA). The specific 
TIMD4 siRNA sequences can be found in Supplementary 
Table 2. In brief, cells were seeded at 50% confluency in 
6-well plates and transfected with negative control (NC) 
and siBARD1 using Lipofectamine 3000 (Invitrogen, 
USA).

Total RNA was extracted from cell lines and tissues 
using TRIzol (Sigma-Aldrich, T9424, America) according 
to the manufacturer’s instructions. cDNA was synthe-
sized using the PrimeScriptTM RT Reagent Kit (Takara, 
RR047, Japan). Real-time polymerase chain reaction 
(RT-PCR) was performed using SYBR Green Master Mix 
(Q111-02, Vazyme) to quantify mRNA expression lev-
els normalized to GAPDH mRNA levels. The 2 − ΔΔCt 
method was used to calculate the expression levels. All 
primers were provided by Qingdao BioScience (Beijing, 
China), and the primer sequences can be found in Sup-
plementary Table 2.

Cell counting Kit8 assay and transwell assay
First, cells (1000 cells per well) were seeded into a 96-well 
plate and incubated at 37 °C for 4 h with CCK-8 reagent 
(10 μL) (Dojindo, CK18, Japan). The absorbance was 
measured at a wavelength of 450  nm using an ELx800 
plate reader (Thermo, Multiskan Spectrum, USA) to 
count the cells. Cell growth was represented as fold 
change from day 0 to day 4 and presented in a graph.

Cell invasion and migration studies were performed 
using a transwell assay. The upper chambers of a 24-well 
plate were filled with treated SW1783 cells (2 × 10^5 
cells) and incubated for 48  h. To evaluate the invasive 
and migratory abilities of the cells, the top surface of the 
plate was pre-coated with a matrix gel solution (BD Bio-
sciences, USA) or left uncoated. The remaining cells at 
the bottom layer were fixed with 4% paraformaldehyde 
and stained with 0.1% crystal violet (Solarbio, China) 
after removing the surface cells.

http://biocc.hrbmu.edu.cn/tip/
http://tisch.comp-genomics.org
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Statistical analysis
All analyses were performed using R version 4.1.1, 64-bit, 
and its support package. To assess prognostic value and 
compare patient survival in various subgroups within 
each data set, Kaplan–Meier survival analysis and log-
rank tests were performed. For significance tests compar-
ing the various groups, Kruskal–Wallis and Wilcoxon’s 
tests were performed. By displaying univariate and mul-
tivariate forest plots, we examined if this created ERG 
signature is an independent predictive factor in com-
parison to other clinical features. The “stats” package 
and “prcomp” function were used to perform principal 
component analysis. Spearman correlation analysis was 
used to investigate the correlation coefficients. In all sta-
tistical investigations, P < 0.05 was considered statistically 
significant.

Results
Genetic and transcriptional alterations of ERGs in GBM
In this study, we collected a total of 22 ERGs, 21 of 
which were identified in the TCGA and CGGA cohorts. 
Initially, we compared the expression levels of ERGs 
between GBM and normal tissues using TCGA, CGGA, 
and GTEx expression profiles. Our analysis showed that 
all ERGs, except RAB17, had different expression levels 
between tumor and normal tissues (Fig.  2A). We also 
examined the somatic mutation frequencies of the 20 dif-
ferentially expressed ERGs and found that they had low 
mutation frequencies, with only 31 out of 390 GBM sam-
ples (7.95%) having mutations in these genes (Fig. 2B). In 
addition, somatic copy number variation analysis showed 
a general decrease in copy number variation (CNV) for 
genes such as FPR2, TYRO3, IGF2R and AXL, while 
GAS6 showed a gain in CNV (Fig.  2C). The chromo-
somal localization of these ERGs is shown in Fig. 2D. We 
constructed an efferocytosis-related network to demon-
strate the comprehensive landscape of ERG interactions, 
regulator connections, and their prognostic value in 
patients with GBM (Fig. 2E). Additionally, we compared 
the expression levels of TIMD4 in HA cells and three 
GBM cell lines by cell line experiments and found that 
BARD1 was significantly highly expressed in tumor cells, 
especially SW1783 cells (Fig. 2F). We then examined the 

expression level of TIMD4 5  days after transfection by 
qRT-PCR to test the effectiveness of siRNA knockdown 
of TIMD4 in SW1783 cell lines (Fig.  2G). Subsequent 
CCK-8 cell assays showed that knockdown of BARD1 
significantly reduced the proliferative capacity of the 
SW1783 cell line (Fig. 2H). In addition, GBM cells trans-
fected with si-TIMD4 exhibited weaker migratory inva-
sion ability in transwell assays (Fig. 2I, J). Thus, TIMD4 
is a pro-carcinogenic factor in GBM. These findings sug-
gest that there are significant differences in the genetic 
profiles and expression levels of ERGs between GBM and 
control samples, and that ERGs may play a crucial role in 
the development of GBM.

Validation of single‑cell sequencing data
To investigate the expression of 20 ERGs within the 
tumor microenvironment (TME), we analyzed the 
GBM single-cell dataset GSE141982 obtained from the 
TISCH database. Among the 20 ERGs, MPO expression 
was not detected. The GSE141982 dataset consisted of 
16 cell clusters and 4 major cell types, which were dis-
tributed and counted as shown in Fig.  3A and B. Our 
analysis revealed that IGF2R, NCF1, and FPR2 were pre-
dominantly expressed in CD8T cells, with lower expres-
sion levels observed in malignant cells. Conversely, FN1 
and GAS6 were primarily expressed in endothelial cells. 
Notably, our findings showed that almost all ERGs were 
associated with immune cell infiltration, indicating that 
efferocytosis plays a crucial role in the GBM immune 
microenvironment (Fig. 3C, D).

Identification of ERG clusters
We utilized the TCGA-GBM, CGG325, and CGGA-693 
cohorts and performed PCA analysis to demonstrate 
a significant reduction in the corrected batch effect 
(Fig.  4A, B). The optimal number of clusters was deter-
mined to be k = 2, based on our findings, and we divided 
the 549 GBM patients into two clusters (Fig. 4C, Supple-
mentary Figure S1, and Supplementary Table 3). Patients 
in cluster A had a worse prognosis than those in cluster B, 
as evidenced by Kaplan–Meier survival analysis (Fig. 4D, 
P < 0.001). Significant differences in transcriptional pro-
files between the two clusters were also observed using 

Fig. 2 Genetic and transcriptional alterations of ERGs in GBM. A Distribution of expression of ERGs between normal and GBM. B Mutation 
frequency of 20 ERGs in the TCGA cohort of 390 GBM patients. C Copy number variation (CNV) of 20 ERGs in TCGA-GBM. D Localization of 20ERGs 
in chromosomal regions. E Network plot showing the correlation between the 20 ERGs. Red connecting lines indicate positive correlations, 
while blue indicates negative correlations. F TIMD4 was highly expressed in GBM cell lines compared to normal human astrocyte NHA cell lines. 
G RT-qPCR was performed to detect the relative expression of TIMD4 in GBM cells transfected with si-RNAs or negative control (NC). H CCK8 assay 
showed that SW1783 cells with reduced TIMD4 expression had significantly reduced proliferative capacity compared to the NC group. I, J Transwell 
assay showed that down-regulation of TIMD4 expression inhibited the migration and invasion ability of SW1783 cells. All data are expressed 
as mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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PCA analysis (Fig. 4E). We conducted the “ssGSEA” algo-
rithm to explore the tumor microenvironment in both 
clusters, and the results indicated that cluster A had a 
higher abundance of immune cells than cluster B, except 
for CD56dim NK cells and type 2 helper T cells (Fig. 4F).

We then examined ERG expression and clinicopatho-
logical features in both clusters and found significant dif-
ferences, with cluster A exhibiting significantly higher 
ERG expression (Fig.  5A). GSVA enrichment analy-
sis revealed that immune activation-related pathways 
were significantly enriched in cluster A, including the 
JAK/STAT signaling pathway, programmed cell death, 
cytokine receptor interactions, chemokine signaling 
pathway activation, NOD-like, and Toll-like receptor 
signaling pathway (Fig. 5B). Differential expression anal-
ysis between the two clusters revealed 641 DEGs (Sup-
plementary Table  4), which were enriched in functions 
related to efferocytosis and immune-related pathways 
such as neutrophil-mediated immunity, immune receptor 

activity, cytokine receptor activity, and leukocyte activa-
tion (Fig.  5C). KEEG enrichment analysis showed that 
these DEGs were associated with the progression of cer-
tain autoimmune diseases (Fig. 5D).

Identification of ERG gene clusters
To investigate the association between gene expres-
sion and GBM prognosis, we conducted univariate Cox 
regression analysis on the 641 DEGs and identified 296 
genes that were prognostic for GBM (Supplementary 
Table 5). We then performed clustering analysis on these 
296 DEGs, and found that the optimal number of clusters 
was 2 based on the slope of the cumulative distribution 
function curve (Fig.  6A, Supplementary Figure S2, and 
Supplementary Table 6). The heat map in Fig. 6B shows 
the expression of the 296 DEGs in the two gene clus-
ters, as well as the clinicopathological characteristics of 
each sample. Remarkably, all 20 ERGs were more highly 
expressed in gene cluster A (Fig.  6C). Furthermore, 

Fig. 3 20 ERGs in single-cell RNA sequencing. A, B Annotation of all cell types in GSE141982 and the percentage of each cell type. C, D The 
expression of 20 ERGs in each cell type
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Fig. 4 Identification of two ERG clusters. A Principal component analysis of common gene profiles before the combination of the TCGA-GBM, 
CGGA-325, and CGGA-693 cohorts. B Principal component analysis of common gene profiles after the combination of TCGA-GBM, CGGA-325, 
and CGGA-693 cohorts. C Heat map of the consensus matrix defining two clusters (k = 2) and their associated regions. D Kaplan–Meier survival 
analysis of OS in 2 ERG clusters. E PCA analysis shows significant differences in the transcriptome between the two clusters. F The abundance 
of tumor-infiltrating immune cells between two ERG clusters was calculated by ssGSEA. ns no significance, *** p < 0.001
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Fig. 5 Clinicopathological and biological characteristics of two ERG clusters. A Differences in clinicopathological features and expression levels 
of ERG between the two different subtypes. B Differential enrichment of the KEGG pathway between the two ERG clusters based on GSVA analysis. 
C, D GO and KEGG enrichment analyses of DEGs among two ERG clusters
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Fig. 6 Identification and characterization of two ERG gene clusters. A Heat map of the consensus matrix defining the two gene clusters (k = 2) 
and their associated regions. B Relationship between clinicopathological features and the two gene clusters. C Expression differences of 20 ERGs 
between two ERG gene clusters. D Kaplan–Meier survival analysis of OS between two ERG gene clusters. E The abundance of tumor-infiltrating 
immune cells between two ERG gene clusters was calculated by ssGSEA. ns no significance,* p < 0.05, *** p < 0.001
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Kaplan–Meier survival analysis revealed that patients in 
gene cluster A had a worse prognosis than those in gene 
cluster B (Fig. 6D, p < 0.001). To explore the tumor micro-
environment of both gene clusters, we used the “ssGSEA” 
algorithm. Consistent with previous ERG clusters, dif-
ferential enrichment of immune cells showed a higher 
abundance of immune cells in cluster A than in cluster 
B, except for CD56dim NK cells and type 2 helper T cells 
(Fig. 6E).

Development of an efferocytosis‑related scoring system
We identified 296 differentially expressed genes (DEGs) 
and categorized 54 genes that were positively correlated 
with the ERG gene cluster signature as gene signature 
A, while 242 genes that were negatively correlated were 
assigned to gene signature B (Figure S6). To identify can-
didate genes from these important genes, we employed 
the “Boruta” package, resulting in 53 genes for signature 
A and 202 genes for signature B (Supplementary Table 7). 
We then calculated ERG scores for 549 GBM patients 
using the PCA formula described earlier. After determin-
ing the best cut-off value for the PCA score, we divided 
the TCGA and CGGA cohorts into high-risk (HR) and 
low-risk (LR) groups. Significant differences in overall 
survival (OS) were observed between the two groups 
in the whole cohort and in three separate cohorts, with 
patients in the LR group often having a better progno-
sis (Fig. 7A, D, E, F). The risk curves and survival status 
plots emphasized the strong discriminatory power of this 
ERG signature (Fig. 7B, C). The Sankey plots showed that 
the majority of ERG gene cluster A with poorer progno-
sis belonged to the HR group, indicating poorer survival 
outcomes (Fig.  7G). Both ERG cluster A (Fig.  7H) and 
ERG gene cluster A (Fig. 7I) with poorer prognosis had 
higher ERG scores, further highlighting the prognostic 
value of this signature.

Validation of an efferocytosis‑related scoring system
After conducting univariate Cox regression analysis, we 
observed that age, IDH mutation status, and ERG score 
were significantly associated with OS in all datasets of 
GBM patients (Fig.  8A). Subsequently, we performed 
multivariate Cox regression analysis and identified 
that age and ERG score were independent prognostic 

indicators for GBM patients (Fig. 8B). Additionally, using 
the chi-square test, we found that our ERG grouping 
was associated with the gender and IDH mutation sta-
tus of the patients (Fig. 8C), and that lower ERG scores 
were linked to IDH mutations (Fig. 8D, E). These findings 
suggest that our developed ERG signature is a reliable 
predictor of OS for GBM patients, irrespective of other 
clinical characteristics.

The correlation with tumor microenvironment
In the tumor microenvironment (TME), immune cell 
infiltration plays a crucial role in immune response. 
Initially, we conducted Spearman correlation analy-
sis in the TCGA cohort to examine the relationship 
between ERG scores and immune cell abundance in 
the GBM TME using different algorithms. Figure  9A 
illustrates the immune cell infiltration landscape in dif-
ferent risk groups, where we found that most immune 
cells were positively correlated with ERG scores. Inter-
estingly, macrophage abundance linked to efferocy-
tosis showed a positive correlation with ERG scores 
across all algorithms (Fig.  9B). To further investigate 
the association between ERG grouping and immune 
cells and functions, we quantified the ssGSEA enrich-
ment scores for different immune cell subpopulations, 
related functions, or pathways. The results revealed 
that the high-scoring subgroups had more infiltration 
of B cells, CD8 + T cells, dendritic cells (DCs), imma-
ture DCs (IDCs), macrophages, neutrophils, plasmacy-
toid DCs (pDCs), helper T cells, type 1 T helper cells 
(Th1), type 2  T helper cells (Th2), tumor-infiltrating 
lymphocytes (TILs), and regulatory T cells (Tregs) 
(Fig.  9D). Similarly, all immune pathways, including 
APC_co_inhibition, Check-point, HLA, Inflamma-
tion-promoting, and T_cell_co-inhibition, were higher 
in the high-scoring subgroup (Fig.  9D). Furthermore, 
stromal scores, immune scores, and estimation scores 
were higher in the high-risk (HR) group (Fig. 9F). We 
also observed that some common immune checkpoints 
(ICs) were more highly expressed in the HR group, 
and we present the TME scores, immune check-
point expression, and immune cell infiltration land-
scape between the two groups in the form of a heat 
map (Fig.  9C). Our findings in the CGGA-325 and 

(See figure on next page.)
Fig. 7 Construction and validation of the ERG scoring system. A Kaplan–Meier survival analysis of OS between high- and low-achieving subgroups 
in the entire cohort. B Distribution of ERG scores in the whole cohort. C Relationship between ERG characteristics and survival status in the whole 
cohort. D Kaplan–Meier survival analysis of OS between high and low-scoring subgroups in the TCGA-GBM cohort. E Kaplan–Meier survival 
analysis of OS between high- and low-achieving subgroups in the CGGA-325 cohort. F Kaplan–Meier survival analysis of OS between high-scoring 
and low-scoring subgroups in the CGGA-693 cohort. G Sankey diagram demonstrating the relationship between patient survival status and ERG 
group. H The difference in scores between the two ERG clusters. I The difference in scores of two ERG gene clusters
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Fig. 7 (See legend on previous page.)
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CGGA-693 cohorts were similar to those discussed 
above (Supplementary Figure S3). Additionally, all 20 
ERGs were more highly expressed in the HR group, 
suggesting that the higher overall immune level and 
immunogenicity of TME in the HR group were likely 
triggered by the effects of efferocytosis (Fig. 9E).

Prediction and validation of immunotherapy efficacy, 
prediction of targeted chemotherapeutic drugs
To determine the suitability of patients for immuno-
therapy, we utilized the TIDE score to assess potential 
immune dysfunctions in the tumor and regional lymph 
nodes. We found that patients in the low-risk subgroup 

Fig. 8 Prognostic value of ERG scores in patients with GBM. A Univariate and B multivariate COX analysis to assess ERG signature and clinical 
characteristics (including age, gender, and IDH mutation status). C Histogram of clinical characteristics associated with ERG scores. D, E Correlation 
of ERG scores with IDH mutation status. ***p < 0.001
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were more likely to respond positively to immunother-
apy (Fig. 10A, B, C). We also examined the sensitivity of 
three classical chemotherapeutic agents, Lapatinib, Bort-
ezomib, and Elesclomol. In the low-risk group, patients 
treated with Lapatinib and Bortezomib had higher IC50 
values, indicating greater sensitivity to these drugs. Con-
versely, patients treated with Elesclomol showed higher 
sensitivity in the high-risk group (Fig. 11A-C).

Furthermore, we investigated the differences between 
the two subgroups in predicting immune checkpoint 

blockade (ICB) response characteristics. We observed 
that the LR group had higher scores in DNA replica-
tion, cell cycle, viral oncogenesis, base excision repair, 
and p53 signaling pathway, compared to the HR group 
(Fig.  10E). We also evaluated the relationship between 
ERG scores and ICB-related positive signals and found 
a negative correlation between ERG scores and signals 
such as DNA replication, cell cycle, depletion pathway, 
mismatch repair, base excision repair, and microRNAs 
in cancer (Fig. 10D). To assess the biological function of 

Fig. 9 Analysis of the immune microenvironment in different risk groups. A Differences in immune infiltration status between different risk groups 
were evaluated by seven algorithms. B Bubble plot of the correlation between ERG score and immune cell abundance. C Heatmap showing 
differences in TME score, immune checkpoint expression, and immune cell infiltration calculated by ssGSEA among different risk subgroups. 
D Differences in ssGSEA scores of immune cells and immune function in the two score subgroups. E Differences in the expression of immune 
checkpoint genes in the two score groups. F Comparison of the differences in StromalScore, ImmuneScore, and ESTIMATEScore between the two 
score subgroups. ns no significance,* p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 10 Prediction and validation of the effect of immunotherapy. A Distribution of ERG scores between responders and non-responders. B ERG 
score predicts ROC curve for immunotherapy response. C Distribution of TIDE scores between high- and low-risk groups in the TCGA-GBM dataset. 
D The relationship between ERG scores, ICB response traits, and each stage of the tumor immune cycle. E The plot of the difference in enrichment 
scores between the high-risk and low-risk groups on the immunotherapy prediction pathway. F The plot of differences between the high-risk 
and low-risk groups on each step of the cancer-immune cycle. * p < 0.05, ** p < 0.01, *** p < 0.001
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the chemokine system and immunomodulators, we com-
pared the differences in the activity of tumor immune 
steps between the high- and low-risk groups. We 
observed that the HR group exhibited upregulated activ-
ity in most steps of the tumor immune cycle, including 
the release of cancer cell antigens (step 1), the presenta-
tion of cancer antigens (step 2), priming and activation 
(step 3), and the entry of immune cells into the tumor 
(step 4), such as T cell recruitment, CD8 T cell recruit-
ment, Th1 recruitment, DC cell recruitment, and Th22 
cell recruitment (Fig. 10F). Additionally, we found a posi-
tive correlation between each of these steps in the tumor 
immune cycle and ERG scores (Fig. 10D).

Discussion
GBMs can be categorized into different subgroups based 
on their gene expression profiles, which include muta-
tions in isocitrate dehydrogenase (IDH), promoter meth-
ylation of O6-methylguanine-DNA methyltransferase 
(MGMT), and amplification of epidermal growth fac-
tor receptor (EGFR), reflecting their histological and 
morphological characteristics [42, 43]. However, rely-
ing solely on tumor size, histologic grade, or individual 
genetic features to predict prognosis and determine treat-
ment options for GBM patients is insufficient due to the 
complex and multifactorial nature of GBM development. 

Thus, there is an urgent need for more accurate models 
for preclinical selection [29, 44].

Potential targets for cancer therapy include efferocy-
tosis-related genes and pathways, such as phosphatidyl-
serine, TYRO3, MerTK, indoleamine-2,3-dioxygenase 1, 
membrane-linked protein V, CD 47, TGF-β, and IL-10 
[45]. These signals are often upregulated in GBM and 
associated with poor prognosis [46, 47]. However, treat-
ing glioma is complicated by tumor heterogeneity, 
changes in immune checkpoints, and extensive immuno-
suppression in the hypoxic microenvironment [48–50]. 
In order to address these challenges, Wu et al. proposed 
MerTK, an efferocytosis-related receptor, as a potential 
therapeutic target for glioblastoma [51]. In light of the 
crucial role that efferocytosis plays in GBM progression, 
along with immunosuppressive medication and promo-
tion of tumor growth, a new efferocytosis-related scor-
ing system was developed to evaluate the risk and predict 
personalized therapy [52].

Due to the high heterogeneity of glioblastoma (GBM), 
identifying various subtypes is often the best prognostic 
approach for patient intervention (with diverse pheno-
types associated with efferocytosis). Despite efferocytosis 
and tumor development being popular topics in medical 
research, there is still insufficient literature on the com-
bined effect of efferocytosis-related phenotypes in GBM. 
In this study, we categorized 549 GBM patients from 

Fig. 11 ERG signature predicts chemotherapy sensitivity. A Lapatinib, B Bortezomib, C Elesclomol
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three cohorts into two ERG clusters. Patients in cluster 
A had worse overall survival (OS) than those in cluster 
B, indicating that these efferocytosis-associated genes 
might affect GBM prognosis. To assess the difference in 
the tumor immune microenvironment, we compared the 
enrichment scores of tumor-infiltrating immune cells 
(TIICs) in the ERG clusters using ssGSEA. Despite hav-
ing a worse prognosis, cluster A showed higher immune 
cell infiltration levels. The unique brain immunology 
contributes to GBM’s distinct tumor microenviron-
ment, where multiple peripheral immune components, 
including various types of monocytes and lymphocytes, 
are present in the tumor immune microenvironment 
(TIME). However, their infiltration rate is significantly 
lower in gliomas than other tumors. GBM’s tumor-infil-
trating lymphocytes (TILs) are low, while the content of 
CD4 + T cells and CD8 + T cells increases with tumor 
malignancy [53]. Treg cells also play an important role 
in the immunosuppressive microenvironment, as a com-
ponent of the glioma microenvironment [54]. However, 
in advanced gliomas, TAMs are mainly characterized by 
an “M2” phenotype, which induces immunosuppressive 
responses and tumor immune escape [55, 56]. Although 
natural killer cells (NK cells) are potent innate cytotoxic 
lymphocytes, in the context of immunosuppression, 
tumor-associated neutrophils (TANs) play a crucial role. 
TANs, myeloid-derived suppressor cells (MDSCs), and 
the combined negative regulation of Treg and NK cells 
infiltrating in the TIME of GBM are generally considered 
functionally incompetent [57]. Our findings are consist-
ent with GBM-derived cytokines and chemokines repro-
gramming TIICs. The distinct immune profiles of the 
two ERG clusters suggest that some underlying genes 
need to be identified. Therefore, we extracted differen-
tially expressed genes (DEGs) from both and found that 
these genes were enriched in cytophagy and immune-
related functions, indicating that they could be targeted 
in immunotherapy.

Using a bioinformatics approach, we developed an ERG 
signature for GBM based on the PCA algorithm and key 
DEGs to investigate the impact of efferocytosis-related 
phenotypes on prognosis. Our ERG signature effectively 
stratifies GBM patients based on risk and serves as an 
independent predictor of survival, with lower scores indi-
cating better OS compared to higher scores. In line with 
previous findings, higher ERG scores are associated with 
increased tumor-infiltrating immune cells (TIICs) and 
poorer prognosis. Additionally, higher tumor microenvi-
ronment (TME) scores are linked to higher ERG scores. 
Several bioinformatics studies have shown that high mes-
enchymal and immune scores are associated with malig-
nancy progression and a very poor prognosis [58]. Given 
that immunosuppressive cells within the TME can render 

immunotherapy ineffective, a high TME score is consid-
ered a red flag for GBM patients [59]. In addition to the 
suppressive role of TME, hypoxic conditions can also 
protect tumors from immune responses by inhibiting 
natural killer cell and connective tissue cell activity, and 
promoting immunosuppressive cytokine release and cell 
function enhancement. Our study shows that higher ERG 
scores are associated with an immunosuppressive micro-
environment, highlighting the OS advantage of patients 
in lower-scoring groups.

The use of immune checkpoint inhibitors (ICIs) has 
revolutionized treatment for multiple types of can-
cer, including melanoma, lung cancer, and kidney can-
cer, resulting in a significant increase in overall survival 
for oncology patients [60]. ICIs targeting CTLA4 and 
PD-1/PDL-1 pathways have improved immune activa-
tion, paving the way for new therapies. Although the effi-
cacy of immune checkpoint inhibition therapy for GBM 
is currently insufficient, ICIs are still the most clinically 
established form of immunotherapy [61]. Therefore, 
identifying patients who are likely to benefit from immu-
notherapy early on is crucial. Recently, a study demon-
strated that administering PD-1 inhibitors two weeks 
before surgery, as a neoadjuvant regimen, improved 
overall survival in patients with recurrent GBM, com-
pared to postoperative adjuvant therapy. This success 
supports the theory that PD-1 inhibitors can enhance 
antitumor immune responses [62, 63]. Nonetheless, cur-
rent clinical practice lacks specific biomarkers for GBM 
immunotherapy.

We examined the expression of immune checkpoints 
(ICs) in high-risk (HR) and low-risk (LR) subgroups. In 
the HR group, most ICs (PD-1, CTLA-4, IDO, LAG-
3, and TIM-3) were highly expressed. The interaction 
between PD-1 and PD-L1 generates an immune regula-
tory axis that promotes GBM cell invasion in brain tis-
sue [63]. Elevated PD-L1 in glioma cells binds to PD-1 
on tumor-associated macrophages (TAMs) and tumor-
infiltrating lymphocytes (TILs), creating a suppressive 
immune microenvironment and resulting in a poor prog-
nosis for GBM patients [64, 65]. Tumor-derived antigens 
increase LAG-3 expression, leading to CTL deficiency 
[66]. TIM-3 controls T-cell depletion by interacting with 
the ligand Gal-9 and contributes to tumor immune eva-
sion [67]. Overexpression of TIM-3 in GBM is associated 
with worse prognosis, lower quality of life, and increased 
malignancy [68, 69]. The cancer immune cycle reflects 
the immunological response of the human immune sys-
tem to cancer [70]. In our study of GBM tumor immune 
cycle and immune checkpoint blockade (ICB) response, 
we observed a significant positive correlation between 
ERG scores and ICB-related negative signals, as well as a 
positive correlation with the suppressive tumor immune 
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cycle. These results further support the presence of 
immunosuppression and an inflammatory tumor micro-
environment in the HR group. With the advent of bio-
informatics, various algorithms have been successfully 
utilized to predict immunotherapy outcomes in tumors 
[31]. Using the TIDE algorithm, we explored the immu-
notherapeutic potential of our ERG signature and found 
significantly higher TIDE scores in the HR group. Lower 
ERG scores were linked to a better prognosis and higher 
response rates to immunotherapy.

Unlike inflammatory diseases, tumors employ effe-
rocytosis to foster an immunosuppressive milieu that 
polarizes macrophages towards the M2 phenotype. This 
phenotype inhibits anti-tumor immunity, facilitates tis-
sue repair, and stimulates vascular growth, ultimately 
leading to a dismal prognosis. Augmented expression of 
efferocytosis-related positive molecules boosts tumor cell 
survival, migration, invasion, and metastasis. Upon bind-
ing to its receptor, phosphatidylserine (PS) impedes the 
generation of NF-κB and type I IFN, thereby constraining 
the antitumor immune response.

Conclusions
Despite offering valuable insights, our bioinformatics-
based investigation has limitations that must be acknowl-
edged. To confirm our findings, larger prospective studies 
and more in vivo and in vitro experiments are necessary, 
particularly for validating the efferocytosis-related sig-
nature in a genuine and larger cohort. Nevertheless, our 
study indicates that the ERG cluster signature may be 
associated with the prognosis and response to immuno-
therapy in GBM patients, and can direct future research 
on efferocytosis. Although the role of efferocytosis in 
tumor cell apoptosis is still in its preliminary stage of 
exploration, our study has successfully developed a sig-
nature linked to efferocytosis in GBM. In the future, our 
computational scoring method could help clinicians pre-
cisely assess the prognosis and immune status of GBM 
patients and recognize particular subgroups who may 
gain from tailored immunotherapy and chemotherapy 
treatments.
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