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Abstract
Background DNA methylation is associated with cardiovascular (CV) disease. However, in type 2 diabetes (T2D) 
patients, the role of gene methylation in the development of CV disease is under-studied. We aimed to identify the 
CV disease-related DNA methylation loci in patients with T2D and to explore the potential pathways underlying the 
development of CV disease using a two-stage design.

Methods The participants were from the Jinan Diabetes Cohort Study (JNDCS), an ongoing longitudinal study 
designed to evaluate the development of CV risk in patients with T2D. In the discovery cohort, 10 diabetic patients 
with CV events at baseline were randomly selected as the case group, and another 10 diabetic patients without CV 
events were matched for sex, age, smoking status, and body mass index as the control group. In 1438 T2D patients 
without CV disease at baseline, 210 patients with CV events were identified after a mean 6.5-year follow-up. Of 
whom, 100 patients who experienced CV events during the follow-up were randomly selected as cases, and 100 
patients who did not have CV events were randomly selected as the control group in the validation cohort. Reduced 
representation bisulfite sequencing and Targeted Bisulfite Sequencing were used to measure the methylation profiles 
in the discovery and validation cohort, respectively.

Results In the discover cohort, 127 DMRs related to CV disease were identified in T2D patients. Further, we validated 
23 DMRs mapped to 25 genes, of them, 4 genes (ARSG, PNPLA6, NEFL, and CRYGEP) for the first time were reported. 
There was evidence that the addition of DNA methylation data improved the prediction performance of CV disease in 
T2D patients. Pathway analysis identified some significant signaling pathways involved in CV comorbidities, T2D, and 
inflammation.
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Introduction
Cardiovascular (CV) disease, accounting for 52% of 
deaths, is the main cause of death in patients with type 2 
diabetes (T2D). [1] People with T2D are two to six times 
more likely to die from CV disease than those without 
T2D. [2, 3] Long-term hyperglycemia is strongly associ-
ated with macrovascular complications and microvascu-
lar complications (such as kidney diseases, retinopathy, 
and nervous system diseases). [4] In severe cases, hyper-
glycemia can even lead to blindness, renal failure, dete-
rioration of life quality, and even death. [5] Even after 
glycemic control is achieved, patients with T2D continue 
to increase inflammation and vascular problems. [6]

Burgeoning evidence suggests that epigenetic modifi-
cations may significantly derail transcriptional programs 
implicated in angiogenesis, oxidative stress and inflam-
mation. [7] DNA methylation is a major epigenetic modi-
fication involving the addition of a methyl group to the 5 
position of cytosine by DNA methyltransferase to form 
5-methylcytosines. [8] There is increasing evidence that 
DNA methylation plays a vital role in the development of 
CV events. [9, 10]. For example, in a European prospec-
tive cohort study, it was reported that the methylation 
level of the ABCG1 gene was positively correlated with 
the risk of CV disease. [11] Carraro et al. found that there 
was a significant correlation between the high methyla-
tion level of the SERPINE1 gene and several cardiac met-
abolic indexes (waist circumference, waist-hip ratio, and 
uric acid). [12] Aberrant DNA methylation represents 
one of key determinants of vascular lesions and, thus, 
putative useful biomarkers for prevention and diagno-
sis of CV risk in diabetics. [13] In a recent pilot study, 
Benincasa et al. reported that SPARC hypomethylation 
in CD08 + T cells may be a useful biomarker of vascular 
complications in pre-diabetics patients. [14] However, 
the role of gene methylation in the development of CV 
disease need to be further investigated.

Growing evidence has demonstrated that network 
medicine is a promising molecular-bioinformatic 
approach to identify the signaling pathways underlying 
the pathogenesis of CV disease in patients with T2D. [13, 
15, 16] The purpose of this study was to identify the CV 
disease-related DNA methylation loci in patients with 
T2D and to explore the potential pathways underlying the 
development of CV disease using network approaches.

Methods
Study subjects
The participants were from the Jinan Diabetes Cohort 
Study (JNDCS), an ongoing longitudinal study designed 
to evaluate the development of CV risk in patients with 
T2D. A total of 2756 patients were continuously recruited 
between 2012 and 2017 from the First Affiliated Hospi-
tal of Jinan University, Guangzhou, China. All patients 
were diagnosed according to the 2003 American Diabetes 
Association [17].

Demographic information was collected by standard-
ized questionnaire, and physical measurements and 
laboratory test results were extracted from the hospital 
medical record system. The venous blood (5 mL) was 
drawn in the morning and stored at -70 ºC. All patients 
were followed up by telephone calls in 2021, to collect 
information on CV events, including coronary artery 
disease, myocardial infarction, percutaneous coronary 
angioplasty and/or stenting, coronary artery bypass 
grafting, heart failure, and CV death.

The study was approved by the Institutional Review 
Board of Jinan University, and all participants provided 
written informed consent.

Study design
The prevalence of CV disease was 50% (1378/2756) at 
baseline. In the discovery cohort, 10 diabetic patients 
with CV events were randomly selected as the case 
group, and another 10 diabetic patients without CV 
events were matched for sex, age (± 1 years), smoking 
status, and body mass index (± 0.5  kg/m2) as the con-
trol group. Reduced representation bisulfite sequencing 
(RRBS) was used to measure the methylation profiles. 
The selection principle of methylated fragments for vali-
dation were as follows: (1) The results of GO enrichment 
and KEGG enrichment [18]; (2) Literature review; (3) 
Significantly different methylation sites. The details were 
provided in Supplementary File 1. (Figure S1-S2 and 
Table S1-S3)

In 1438 T2D patients without CV disease at baseline, 
210 patients with CV events were identified after a mean 
6.5-year follow-up. Of whom, 100 patients who expe-
rienced CV events during the follow-up were randomly 
selected as cases, and 100 patients who did not have CV 
events were randomly selected as the control group (a 
nested case-control design) in the validation cohort. (Fig-
ure S3 in Supplementary File 1)

Conclusions In this study, we identified 23 DMRs mapped to 25 genes associated with CV disease in T2D patients, of 
them, 4 DMRs for the first time were reported. DNA methylation testing may help identify a high CV-risk population in 
T2D patients.

Keywords Type 2 diabetes, Cardiovascular disease, Methylation, Biomarker, The Han Chinese
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Reduced representation bisulfite sequencing (RRBS)
Genomic DNA was extracted from peripheral whole 
blood using DNeasy Blood & Tissue Kit (Qiagen). RRBS 
library was prepared using the Acegen Rapid RRBS 
Library Prep Kit (Acegen, Cat. No. AG0422). In brief, 
100 ng of genomic DNA was digested with MspI, end-
repaired, 3’-dA-tailed, and ligated to 5-methylcytosine-
modified adapters. After bisulfite treatment, the DNA 
was amplified with 12 cycles of PCR using Illumina 8-bp 
dual index primers. Size selection was performed to 
obtain DNA fractions of MspI-digested products in the 
range of 100–350 bp using a dual-SPRI® protocol accord-
ing to the manufacturer’s protocol. The constructed 
RRBS libraries were then analyzed by Agilent 2100 Bio-
analyzer and finally sequenced on Illumina platforms 
using a 150 × 2 paired-end sequencing protocol. [19–21].

Targeted Bisulfite sequencing (TBS)
We used trimming to truncate the sequencing adapters 
and low-quality data of the sequencing data and obtain 
clean data for subsequent analysis. Trimmomatic (ver-
sion 0.36) software was used for raw data trimming. 
Using the sliding window method, 4 bases are a window. 
If the average base quality value of the window is lower 
than 15, the reads will be truncated there. Next, the clean 
data was aligned with the amplified target sequence, 
and the BSMAP 2.73 software was used for alignment. 
The alignment mode was mapped to 2 forward strands, 
i.e. BSW (++) and BSC (-+). After the alignment was 
completed, the methylation level of the CG site was cal-
culated using the python program for calculating methyl-
ation that comes with BSMAP. The calculation principle 
is Methyl value = C-reads / (C-reads + T-reads) * 100%, 
where C-reads is the number of methylation-supporting 
reads covering the site (the site is measured as C reads), 
T-reads is the number of reads that do not support meth-
ylation covering the site (reads with a T at the site). [22, 
23].

Statistical analysis
Continuous variables were expressed as means ± standard 
deviation, and the mean values of the two groups are 
compared by student’s t-test. Categorical variables were 
reported as percentages (n [%]), and the χ2 test was used 
to test differences between groups. The DNA methylation 
rates in DMRs and CpG sites between the two groups 
were compared by student’s t-test, and an FDR < 0.05 was 
considered validated successfully. Moreover, random for-
ests were used to evaluate the variable importance of CV 
risk factors. The area under the receiver operating char-
acteristic curve (AUC) was estimated to assess the poten-
tial predictive value of DNA methylation data.

R (version 4.0.5) package “org.Hs.eg.db” (version 3.12.0) 
and “clusterProfiler” (version 4.4.4) were used for GO-BP 

biological process analysis, GO-MF molecular function 
analysis, GO-CC cytological component analysis, and 
KEGG signaling pathway analysis [18]. In the process of 
GO enrichment analysis, functional items were selected 
from the results of GO enrichment and plotted according 
to the value of P < 0.05. In the process of KEGG enrich-
ment analysis, the parameter was set as P < 0.05. We also 
performed Protein-protein interaction (PPI) Network 
analysis for DMR along the sequencing direction of RRBS 
and TBS, respectively. String [24] (https://string-db.
org/) is one of the databases of protein-protein interac-
tion networks that enables the analysis of known proteins 
and the prediction of proteins with possible biological 
effects. The connection between the protein network was 
set as reliability, and the minimum action score was set 
as 0.400. The isolated or scattered nodes were removed 
before retrieval analysis and graph drawing. Further, we 
utilized a network visualization tool ‘Cytoscape’ [25] for 
the visualization of the network where nodes denote 
proteins and edges denote the connections between the 
nodes, and the genes we uploaded were filled in yellow.

All analyses were performed using Stata software ver-
sion 12 (STATA Corp., TX, US) and R 4.0.5 (R Founda-
tion for Statistical Computing Vienna, Austria).

Result
Characteristics of study participants
The basic characteristics and laboratory examination 
indices for the discovery and validation cohort were 
presented in Table 1. There are no statistical differences 
between the case and control groups in the discovery 
cohort. For the validation cohort, there was a statistical 
difference in educational attainment, urine protein, and 
carotid atherosclerosis (P < 0.05).

RRBS in the discovery cohort
Using the next generation RRBS, a total of 20,259 DMRs 
were measured, of them, 12,981 DMRs were significantly 
different between T2D patients with and without CV 
disease (FDR < 0.01) (6382 decreased, 6599 increased; 
Table S4 in Supplementary File 2). (Fig. 1A). There were 
57.19% of the methylation sites located in the gene body 
and 22.57% located in the promoter (Fig.  1B and Table 
S6 in Supplementary File 2). According to the results 
from GO enrichment, KEGG enrichment, and literature 
review, we initially selected 127 DMRs for further valida-
tion (Supplementary File 2 for more details). (Table S7 
in Supplementary File 2).

TBS in the validation cohort
Of 127 DMRs, the bisulfite sequencing primers in 87 
DMRs were successfully designed for TBS analysis. A 
total of 23 DMRs with 25 genes were further validated 
(Fig. 2and Table S7-9 in Supplementary File 2). Twelve 

https://string-db.org/
https://string-db.org/
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genes were hypermethylated (LMF1, FZD5, COL6A1, 
TBX1, CACNA1D, PTPRN2, NEFL, RXRA, G6PD, 
IKBKG, ADCY6 and WNT7A genes), and 13 genes were 
hypomethylation (PIK3CD, PDE4DIPP1, H19, MIR675, 
ARSG, PNPLA6, CRYGEP, TNIP1, PON1, COL5A1, 
KDM6A, CREB5 and SERPINE1). Of them, 4 genes 

(ARSG, PNPLA6, NEFL, and CRYGEP) were reported for 
the first time. (Table S9 in Supplementary File 2)

Predictive value of the identified methylation sites
A total of 32 potential variables in Table 1 were analyzed 
by random forest, of them, 9 variables (postprandial 
blood glucose, smoking status, peripheral neuropathy, 

Table 1 Baseline characteristics of the study population
Characteristics RRBS TBS

Controls (n = 10) Cases (n = 10) P-value Controls 
(n = 100)

Cases (n = 100) P-value

Gender, n (%) 1.000 1.000
Male 3 (30.00) 3 (30.00) 39 (39.00) 39 (39.00)
Female 7 (70.00) 7 (70.00) 61 (61.00) 61 (61.00)
Age (years) 59.50 ± 10.63 59.50 ± 10.63 1.000 64.79 ± 10.74 64.78 ± 10.77 0.995
Married, n (%) 10 (100.00) 10 (100.00) 95 (95.00) 97 (97.00) 0.470
Education attainment, n (%) 0.645 0.005
Less than primary school 4 (40.00) 3 (30.00) 55 (55.00) 43 (43.00)
Middle school 4 (40.00) 6 (60.00) 20 (20.00) 41 (41.00)
Tertiary school or higher 2 (20.00) 1 (10.00) 25 (25.00) 16 (16.00)
Occupation, n (%) 0.121 0.201
Retiree 1 (10.00) 4 (40.00) 50 (50.00) 59 (59.00)
Others 9 (90.00) 6 (60.00) 50 (50.00) 41 (41.00)
Body mass index (kg/m2) 25.33 ± 3.38 25.76 ± 3.91 0.793 24.09 ± 3.03 25.03 ± 3.86 0.057
Smokers, n (%) 0 (0.00) 0 (0.00) 16 (16.00) 26 (26.00) 0.083
Drinkers, n (%) 0 (0.00) 0 (0.00) 5 (5.00) 8 (8.00) 0.390
Laboratory results
Fast blood-glucose (mmol/L) 9.03 ± 3.15 8.57 ± 3.04 0.743 9.86 ± 4.66 8.69 ± 4.69 0.101
Postprandial blood glucose (mmol/L) 17.16 ± 4.73 15.13 ± 3.95 0.310 15.57 ± 5.86 14.51 ± 5.77 0.228
HbA1c (%) 8.77 ± 2.92 8.65 ± 2.25 0.929 9.12 ± 2.74 8.71 ± 2.67 0.309
Fasting C-peptide (ng/ml) 1.52 ± 0.84 1.74 ± 1.14 0.733 1.67 ± 1.50 1.80 ± 1.51 0.605
1 h postprandial, C-peptide (ng/ml) 4.57 ± 4.00 4.75 ± 4.91 0.960 3.38 ± 2.82 3.44 ± 2.82 0.921
2 h postprandial, C-peptide (ng/ml) 3.16 ± 1.82 6.21 ± 7.34 0.308 4.15 ± 3.40 4.71 ± 3.77 0.330
Urinary creatinine (µmol/L) 10712.75 ± 6879.51 6726.25 ± 4451.13 0.190 7408.81 ± 4108.92 7770.75 ± 4797.89 0.619
Urinary microalbumin (µg/mL) 152.25 ± 382.83 136.05 ± 331.71 0.929 198.42 ± 697.97 64.01 ± 152.52 0.095
Urinary protein (g/L) 2.92 ± 3.49 0.21 ± 0.12 0.025
GFR (ml/min) 86.70 ± 24.97 62.86 ± 19.38 0.091 73.81 ± 18.67 75.00 ± 16.43 0.721
TC (mmol/L) 4.95 ± 1.40 5.02 ± 0.99 0.906 5.03 ± 1.35 4.93 ± 1.11 0.576
TG (mmol/L) 2.54 ± 1.72 1.41 ± 0.53 0.062 1.92 ± 1.81 1.94 ± 1.27 0.939
HDL (mmol/L) 1.11 ± 0.20 1.10 ± 0.21 0.914 1.12 ± 0.27 1.10 ± 0.29 0.587
LDL (mmol/L) 2.48 ± 0.87 3.12 ± 0.73 0.091 2.97 ± 1.02 2.93 ± 0.97 0.784
ALT (U/L) 25.70 ± 8.57 21.70 ± 10.57 0.365 29.73 ± 28.43 37.33 ± 102.37 0.490
Blood creatinine (µmol/L) 63.30 ± 11.75 61.30 ± 11.03 0.699 75.11 ± 47.57 73.48 ± 39.31 0.794
Blood uric acid (µmol/L) 364.3 ± 135.95 337.7 ± 72.23 0.592 372.09 ± 119.21 373.12 ± 122.23 0.953
hsCRP (mg/L) 4.45 ± 1.76 5.93 ± 5.19 0.734 7.95 ± 14.37 24.94 ± 59.14 0.221
Comorbidities
Hypertension, n (%) 5 (50.00) 6 (66.67) 0.463 60 (60.00) 67 (67.00) 0.304
Hyperlipemia, n (%) 2 (20.00) 5 (50.00) 0.160 36 (36.00) 39 (39.00) 0.661
Carotid atherosclerosis, n (%) 9 (90.00) 10 (100.00) 66 (70.21) 84 (91.30) < 0.001
Reduced left ventricular diastolic function, 
n (%)

6 (66.67) 7 (87.50) 0.312 62 (70.45) 67 (81.71) 0.087

Peripheral neuropathy, n (%) 2 (25.00) 2 (28.57) 0.876 10 (14.93) 14 (28.00) 0.083
Continuous variables are presented as mean ± standard deviation, and categorical variables are presented as cases (percentage)

Abbreviation: HbA1c: glycated hemoglobin |glycosylated hemoglobin; GFR: Glomerular filtration rate; TC: total cholesterol; TG: Triglycerides; HDL: High-density 
lipoprotein; LDL: Low-density lipoprotein; ALT: Alanine aminotransferase; hs-CRP: hypersensitive C-reactive protein
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fast blood-glucose, carotid atherosclerosis, occupation, 
education attainment, high sensitivity c-reactive protein 
(hsCRP), and hypertension) with Mean Decrease Accu-
racy value > 0.5 were included in the prediction model, 
and the AUC was 69.2% (Fig.  3). When further adding 
the DMRs with the top 4 importance ranking (includ-
ing DMR for LMF1 and SOX8, DMR for TNIP1, and 
DMR for FZD5) to the model, the prediction perfor-
mance of the model was improved substantially, and its 
AUC reached 88.6% (Fig. 4). Further, when the top four 
methylation sites (including methylation sites of MIR675, 
ARSG, TNIP1, and KDM6A) were added to the model, 
the prediction performance of the model was signifi-
cantly improved (AUC = 94.2%). (Fig. 5)

Pathway analysis and GO enrichment analysis
The genes corresponding to the validated DMRs were 
analyzed by GO and KEGG enrichment, and yielded sig-
nificant (FDR < 0.05) enrichment of 22 KEGG and 17 GO 
pathways (Fig. 6, Table S10 and S11 in Supplementary 
File 2). These pathways are involved in CV comorbidi-
ties (such as Type II diabetes mellitus, Alzheimer’s dis-
ease, Cushing syndrome, and Dilated cardiomyopathy), 
cancers (such as gastric cancer, breast cancer, hepatocel-
lular carcinoma), and the inflammatory pathway (such as 
signaling pathways regulating pluripotency of stem cells, 
mTOR signaling pathway, hippo signaling pathway, pi3k-
Akt signaling pathway, and cAMP signaling pathway). 
Further, there were 25 genes located in the 23 DMRs used 
for PPI enrichment analysis. (Table S9 in Supplementary 
File 2). The proteins in this network were related to some 

signaling pathways, such as mTOR signaling pathway, 
cellular senescence, hippo signaling pathway, and type 2 
diabetes mellitus. (Fig. 7)

Discussion
DNA methylation plays a critical role in the development 
of CV disease. It is well-known that patients with T2D 
are at higher risk for CV disease than those without, but 
the role of DNA methylation in T2D patients with CV 
is under-studied. In this study, we identified 23 DMRs 
mapped to 25 genes associated with CV disease in T2D 
patients, of them, 4 genes (ARSG, PNPLA6, NEFL, and 
CRYGEP) for the first time were reported. DNA methyla-
tion testing may help identify a high CV-risk population 
in T2D patients.

Most identified genes in our study were associated with 
CV disease and T2D. Studies have shown that the LMF1 
gene is involved in the regulation of lipase activity and 
metformin increased LMF1 expression in the heart, sug-
gesting that stimulation of LMF1 may play a part in its 
TG-lowering action. [26, 27] Consistently, we found that 
the methylation level of the LMF1 gene promoter signifi-
cantly increased in T2D patients with CV disease. It is 
reported that SOX8 proteins were markedly increased in 
patients with heart failure. [28] In line with our results, 
SOX8 gene body methylation was hypermethylated. The 
methylation of the FZD5 gene promoter was increased 
in T2D patients with CV disease, which corroborates 
the findings of another study showing the involvement 
of FZD5 in regulating diabetic vasculopathy. [29] Gene 
polymorphism of TNIP1 was associated with coronary 

Fig. 1 The distribution of differentially methylated sites (DMRs) using reduced representation bisulfite sequencing (RRBS) in the discovery cohort A: The 
heatmap of DMRs B: The location of DMRS position
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heart disease in the Chinese Han population, [30] and we 
observed a decrease in TNIP1 gene body methylation in 
T2D patients with CV disease. The methylation levels of 
NEFL gene promoter in T2D patient with CV disease was 
elevated. Similarly, the study by Yadi et al. showed that 
the NEFL gene is involved in the process of the protective 
effect of cardiac insufficiency. [31] However, the relation-
ship between NEFL and CV disease is still unclear and 
further studies are needed.

We, for the first time, identified 4 novel DMRs with 4 
genes (ARSG, PNPLA6, NEFL, and CRYGEP) in T2D 
patients. Inflammation plays a critical role in the gen-
esis, progression, and the manifestation of CV disease. 
[32, 33] NEFL (neurofilament light chain) is a neuronal 
cytoplasmic protein highly expressed in large calibre 
myelinated axons. [34] NEFL is considered as a poten-
tial biomarker for diverse neurological diseases, such as 
Alzheimer’s disease and frontotemporal dementia. [35, 
36] NEFL was reported to activate the mTOR signaling 

Fig. 2  A total of 23 validated differentially methylated sites (DMRs) A: 23 DMR in the discovery cohort B: 23 DMR in the validation cohort

 



Page 7 of 11He et al. BMC Medical Genomics          (2023) 16:242 

pathway. [34, 37] Many studies showed that mammalian 
target of rapamycin (mTOR) signaling plays an impor-
tant role in the general and inflammation-driven mech-
anisms that are related to the CV disease. [38, 39] The 
CRYGEP gene is considered to be a pseudogene with 
no evidence of expression in humans. Nevertheless, the 
gene remains largely intact and is at least potentially 
involved in gene conversion and even reactivation of the 
active gene. [40] It was suggested that the CRYGEP gene 
methylation level may affect the magnitude of Bacillus 

Calmette–Guérin immune responses. [41] Patatin-like 
phospholipase domain-containing protein 6 (PNPLA6) 
belongs to a family of hydrolases with at least eight mem-
bers in mammals that react with different substrates such 
as phospholipids, triacylglycerols, and retinol esters. [42] 
PNPLA6 preferably hydrolyzes phosphatidylcholine (PC) 
and lysophosphatidylcholine (LPC). [43] LPC could be a 
messenger by signaling through membrane receptors. It 
was expected that PNPLA6 contains domains that are 
predicted to bind cAMP, [44] and the cAMP signaling 

Fig. 4 The predictive model plus using the top 9 ranked important variables and top 4 ranked important DMRs A: The importance ranking of significant 
DMRs using random forest B: ROC curves of the predictive model using the top 9 ranked important variables (postprandial blood glucose, smoking status, 
peripheral neuropathy, fast blood-glucose, carotid atherosclerosis, occupation, education attainment, high sensitivity c-reactive protein, and hyperten-
sion) plus top 4 ranked important DMRs (DMR025, DMR061, DMR040, and DMR074)

 

Fig. 3 The baseline predictive model using the top 9 ranked important variables A: The importance ranking of selected variables using random forest 
B: ROC curves of the predictive model with top 9 ranked important variables (postprandial blood glucose, smoking status, peripheral neuropathy, fast 
blood-glucose, carotid atherosclerosis, occupation, education attainment, high sensitivity c-reactive protein, and hypertension)
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pathway plays a key role in the regulation of cardiac func-
tion. [45] Consistently, our pathway analyses also yielded 
significant enrichment in the mTOR signaling pathway 
and cAMP signaling pathway. These genes have not been 
well-studied but the results provide some clues for future 
research directions.

This is among the first study to investigate the role of 
DNA methylation in T2D patients with CV disease. One 
strength is that a nested case-control design was used 
in the validation cohort. Another strength is that taking 
advantage of RRBS, we specifically analyzed DMRs rather 
than the methylation level of single CpG dinucleotides. 
DMRs can control spatiotemporal gene expression, have 
the most statistical power and by-pass putative effects 

of genetic polymorphisms during epigenome-wide asso-
ciation studies. [14] However, this study has some limita-
tions. First, different tests are used in the discovery and 
validation phases, and not all bisulfite sequencing prim-
ers of identified DMRs were successfully designed for val-
idation, which may miss new sites. Second, the lifestyles 
of T2D patients may have changed after diagnosis. Third, 
the patients in this study come from the Han nationality 
in southern China, so extrapolating the results to other 
populations should be cautious. Fourth, this study is lim-
ited by a small sample size, so future studies will benefit 
from the confirmation of these results in larger sample 
sizes. Finally, blood-based methylation signatures should 
be validated in cardiac tissues to advance our knowledge 

Fig. 6 Pathway enrichment map of validated methylation sites A: Scatter plot of GO enrichment analysis B: Scatter plot of KEGG enrichment analysis

 

Fig. 5 The predictive model plus using the top 9 ranked important variables and top 4 ranked important CpGs A: The importance ranking of significant 
DMRs using random forest B: ROC curves of the predictive model using the top 9 ranked important variables (postprandial blood glucose, smoking status, 
peripheral neuropathy, fast blood-glucose, carotid atherosclerosis, occupation, education attainment, high sensitivity c-reactive protein, and hyperten-
sion) plus top 4 ranked important CpGs located in DMR012, DMR026, DMR061, and DMR089
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about the progression of CV diseases in patients with 
T2D.

Conclusion
In this study, we validated 19 DMRs mapped to 21 genes 
associated with CV disease in T2D patients, more-
over, we identified 4 novel DMRs with 4 genes (ARSG, 
PNPLA6, NEFL, and CRYGEP). Consistently, Pathway 
analyses also found that the related pathways are involved 
in CV comorbidities, T2D, and inflammation. The differ-
entially methylated genes identified in this study may be 
valuable biomarkers for the early detection of CV disease 
and may help improve treatment strategies, drug targets, 
and diagnostic activities to reduce the threat to human 
health from CV disease in T2D. More independent 
cohort studies are required to confirm the prediction 
value of the DNA methylation data for the high CV-risk 
population in T2D patients.
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