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Abstract 

Deep vein thrombosis (DVT) is the formation of a blood clot in a deep vein. DVT can lead to a venous thromboem‑
bolism (VTE), the combined term for DVT and pulmonary embolism, a leading cause of death and disability world‑
wide. Despite the prevalence and associated morbidity of DVT, the underlying causes are not well understood. Our 
aim was to leverage publicly available genetic summary association statistics to identify causal risk factors for DVT. 
We conducted a Mendelian randomization phenome‑wide association study (MR‑PheWAS) using genetic summary 
association statistics for 973 exposures and DVT (6,767 cases and 330,392 controls in UK Biobank). There was evidence 
for a causal effect of 57 exposures on DVT risk, including previously reported risk factors (e.g. body mass index—BMI 
and height) and novel risk factors (e.g. hyperthyroidism and varicose veins). As the majority of identified risk factors 
were adiposity‑related, we explored the molecular link with DVT by undertaking a two‑sample MR mediation analy‑
sis of BMI‑associated circulating proteins on DVT risk. Our results indicate that circulating neurogenic locus notch 
homolog protein 1 (NOTCH1), inhibin beta C chain (INHBC) and plasminogen activator inhibitor 1 (PAI‑1) influence 
DVT risk, with PAI‑1 mediating the BMI‑DVT relationship. Using a phenome‑wide approach, we provide putative 
causal evidence that hyperthyroidism, varicose veins and BMI enhance the risk of DVT. Furthermore, the circulating 
protein PAI‑1 has a causal role in DVT aetiology and is involved in mediating the BMI‑DVT relationship.
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Introduction
Under normal physiological conditions, platelets and 
fibrin form clots to prevent blood loss at the site of ves-
sel injury [1]. However, when clots (or thromboses) form 
abnormally they can disrupt blood flow [2, 3] and when 
this occurs in the deep veins of the limbs or pelvis this 
is known as deep vein thrombosis (DVT). A complica-
tion of DVT is pulmonary embolism (PE), where a clot 
breaks away from a deep vein wall and becomes lodged in 
a pulmonary blood vessel, obstructing blood flow to the 
lungs and causing respiratory dysfunction. In 2021, there 
were approximately one million incident cases of venous 
thromboembolism (VTE) in the United states alone [4]. 
DVT accounts for approximately two-thirds of VTE 
events and PE is the primary contributor to mortality. 
While VTE was a primary cause for 10,511 deaths in the 
UK in 2020 [5], the actual contribution of VTE to annual 
deaths is estimated to be 2–threefold higher [6].

To prevent acute and chronic complications it is essen-
tial to establish an accurate diagnosis of DVT. The symp-
toms of DVT alone are often not specific or sufficient to 
make a diagnosis, and about half of those suffering DVT 
will have no symptoms [7]. Symptoms are considered 
in conjunction with known risk factors to help estimate 
the likelihood of DVT and determine whether throm-
boprophylaxis is required [3]. Pharmacological throm-
boprophylaxis includes the use of anticoagulants, such 
as intravenous heparin and oral warfarin (a vitamin K 
antagonist), which have been used in combination to 
treat DVT for over 50 years, but require constant mainte-
nance and monitoring [3]. More recently direct oral anti-
coagulants (DOAC), such as dabigatran (which inhibits 
thrombin) or rivaroxaban (which inhibits factor Xa), have 
been employed with reduced economic costs relative to 
traditional treatments [8].

Risk factors for DVT include age, obesity and genetic 
factors (such as deficiencies in the anticoagulation pro-
teins: antithrombin, protein C, protein S and Factor V 
Leiden) [2, 9, 10]. However, the mechanisms through 
which these risk factors act have not been clearly estab-
lished. The identification of novel causal risk factors and 
potential drug targets is required for improved DVT 
prophylaxis [3].

Mendelian randomization (MR) allows us to infer cau-
sality while addressing limitations of observational epi-
demiology such as confounding and reverse causation 
[11–14]. The design of a MR analysis is analogous to that 
of a randomised control trial (RCT), the “gold standard” 
method for evaluating the effectiveness of an interven-
tion (Supplementary Fig.  1) [15]. It is an instrumental 
variable-based method that uses genetic variants as prox-
ies (or instruments) for exposures to permit causal infer-
ence when interpreting relationships between these 

exposures and disease outcomes [16]. Here, we have used 
two-sample MR, which uses data from separate genome-
wide association studies (GWAS) for exposures and out-
comes of interest [17] to consider the effect of multiple 
exposures (phenotypes) on DVT risk.

To advance our understanding of DVT aetiology, we 
undertook a MR phenome-wide association study (MR-
PheWAS). As 24 out of 57 exposures estimated to influ-
ence DVT were adiposity-related, we explored whether 
levels of circulating proteins, known to be altered by adi-
posity, were responsible for this association.

Methods
Study design
With the aim to identify novel risk factors for DVT, we 
performed a MR-PheWAS to estimate the effects of 973 
exposures on DVT risk. As 24 of the 57 exposures esti-
mated to influence DVT were adiposity-related (see 
Table 1), we next decided to investigate potential media-
tors of this mechanistic relationship further. We focussed 
our mechanistic investigations on circulating proteins 
altered by adiposity [18, 19] and performed a two-sam-
ple mediation MR to estimate the effect of BMI on DVT 
with BMI-associated proteins as mediators. An over-
view of the study design is shown in Fig. 1. All analyses 
were conducted using R version 3.6.1. The MR-PheWAS 
was conducted using the TwoSampleMR R package [14]. 
STROBE-MR [20] reporting guidelines were followed 
(Additional file 4).

Data preparation
Deep vein thrombosis GWAS data
Our outcome of interest (DVT) was presented in MR-
Base as “Non-cancer illness code self-reported: deep 
venous thrombosis (dvt)”; these summary results 
describe a GWAS of Europeans (6,767 cases and 330,392 
controls) performed using the PHEnome Scan ANalysis 
Tool (PHESANT), followed by genotypic data selected 
through SNP quality control (QC) [21, 22] (http:// www. 
neale lab. is/ uk- bioba nk).

GWAS data for exposures
Genetic data for exposures were obtained from the MR-
Base platform of harmonised GWAS summary data 
[14]. The MR-Base platform permits the hypothesis-
free analysis of all catalogued exposures to DVT. The 
exposures encompassed lifestyle, disease and biological 
traits. Non-European (N = 88) and duplicate (N = 138) 
studies were excluded. In the case of duplicate studies, 
those with the highest sample size were retained. VTE 
(DVT and PE) and VTE-related (e.g. phlebitis and throm-
bophlebitis) traits were removed (N = 9). The genetic 
instruments used for the analysis were single-nucleotide 

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
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Table 1 Traits passing the PhenoSpD significance threshold (5.43E‑5) in the MR‑PheWAS of all traits in UK Biobank on DVT risk with the 
Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1). Exposures highlighted in orange are referred to as "adiposity‑related" in 
the main text

Exposure No. SNP MR method Log Risk Ratio* CI (95%) SE P-value PHet (ML) PPlt

Treatment/medication code: warfarin 7 IVW 4.29 3.09 5.49 0.61 1.40E‑09 5.66E‑40 0.4260

Mania/bipolar disorder/manic depression 1 WR 3.95 2.60 5.30 0.69 5.18E‑06 NA NA

Chronic obstructive airways disease/copd 1 WR 3.72 1.39 4.37 0.76 9.21E‑07 NA NA

Treatment/medication code: carbimazole 9 IVW 3.60 2.70 4.50 0.46 2.41E‑12 5.21E‑01 0.1048

Varicose veins 2 IVW 3.40 2.31 4.49 0.56 5.13E‑07 4.42E‑01 NA

Hyperthyroidism/thyrotoxicosis 6 IVW 2.39 1.88 2.90 0.26 8.69E‑18 6.69E‑01 0.3874

Varicose veins of lower extremities 16 IVW 1.90 1.30 2.50 0.31 2.36E‑07 1.91E‑01 0.5039

Lysine 1 WR 1.50 0.61 1.96 0.34 1.25E‑05 NA NA

Prospective memory result 2 IVW 1.46 1.02 1.90 0.23 5.33E‑08 4.61E‑01 NA

Long-standing illness disability or infirmity 14 IVW 1.25 0.87 1.63 0.20 8.13E‑08 2.17E‑01 0.4463

Taking other prescription medications 10 IVW 1.17 0.79 1.55 0.20 1.36E‑06 4.83E‑01 0.4399

Eicosapentaenoate (EPA; 20:5n3) 1 WR 1.10 0.75 1.45 0.18 3.14E‑07 NA NA

Stearidonate (18:4n3) 1 WR 1.09 0.73 1.45 0.18 1.22E‑06 NA NA

Docosapentaenoate (n3 DPA; 22:5n3) 1 WR 1.08 0.47 1.46 0.25 2.01E‑05 NA NA

Adrenate (22:4n6) 1 WR 1.01 0.55 1.32 0.20 3.48E‑07 NA NA

X-14473 1 WR 1.01 0.48 1.35 0.22 5.14E‑06 NA NA

Qualifications: None of the above 64 IVW 0.99 0.72 1.26 0.14 2.03E‑10 6.18E‑01 0.0335

Arachidonate (20:4n6) 1 WR 0.91 0.61 1.22 0.16 2.08E‑06 NA NA

Overall health rating 54 IVW 0.80 0.61 0.99 0.10 4.40E‑14 5.14E‑01 0.6398

Leg fat percentage (right) 246 IVW 0.59 0.47 0.71 0.06 3.32E‑18 2.87E‑03 0.2399

Comparative body size at age 10 157 IVW 0.57 0.46 0.68 0.06 3.98E‑22 5.18E‑01 0.1954

Arm fat percentage (right) 234 IVW 0.55 0.42 0.68 0.07 8.48E‑14 8.47E‑17 0.6940

Arm fat percentage (left) 253 IVW 0.55 0.41 0.68 0.07 1.61E‑12 1.32E‑24 0.6983

Leg fat percentage (left) 248 IVW 0.54 0.40 0.67 0.07 1.76E‑12 7.00E‑04 0.7261

Leg fat mass (right) 282 IVW 0.53 0.44 0.62 0.05 4.23E‑28 9.07E‑03 0.4978

Leg predicted mass (right) 361 IVW 0.52 0.43 0.60 0.04 8.79E‑29 1.34E‑02 0.6652

Leg predicted mass (left) 356 IVW 0.52 0.43 0.60 0.05 2.99E‑27 5.18E‑03 0.8052

Body fat percentage 253 IVW 0.51 0.41 0.61 0.05 1.48E‑20 4.79E‑02 0.6346

Leg fat-free mass (left) 361 IVW 0.51 0.42 0.60 0.05 6.10E‑27 4.73E‑03 0.8069

Leg fat-free mass (right) 363 IVW 0.50 0.41 0.59 0.05 1.11E‑25 5.05E‑03 0.5560

Waist circumference 227 IVW 0.50 0.40 0.59 0.05 1.74E‑22 1.65E‑02 0.5222

Leg fat mass (left) 281 IVW 0.50 0.40 0.59 0.05 1.85E‑23 3.71E‑02 0.5530

Weight 337 IVW 0.46 0.38 0.54 0.04 1.93E‑28 1.33E‑03 0.8573

Arm fat mass (right) 270 IVW 0.45 0.38 0.52 0.04 1.06E‑30 3.60E‑01 0.2818

Arm fat mass (left) 268 IVW 0.45 0.38 0.53 0.04 4.98E‑29 1.93E‑01 0.1348

Basal metabolic rate 377 IVW 0.45 0.36 0.54 0.05 2.62E‑20 3.71E‑03 0.7064

Arm predicted mass (left) 349 IVW 0.45 0.34 0.55 0.05 3.37E‑14 1.53E‑05 0.2577

Trunk fat percentage 237 IVW 0.44 0.35 0.54 0.05 2.91E‑16 2.43E‑03 0.6180

Whole body fat mass 280 IVW 0.44 0.36 0.51 0.04 4.65E‑27 1.75E‑01 0.1772

Arm fat-free mass (right) 350 IVW 0.44 0.33 0.54 0.05 1.66E‑13 2.95E‑04 0.2180

Arm predicted mass (right) 364 IVW 0.43 0.32 0.54 0.05 6.96E‑13 9.35E‑05 0.2660

Trunk fat mass 283 IVW 0.43 0.35 0.51 0.04 1.73E‑23 2.90E‑03 0.6360

Arm fat-free mass (left) 355 IVW 0.42 0.32 0.53 0.05 1.84E‑12 3.14E‑05 0.1920

Whole body water mass 405 IVW 0.42 0.32 0.51 0.05 7.67E‑15 1.32E‑04 0.3436

Whole body fat-free mass 405 IVW 0.41 0.31 0.50 0.05 3.90E‑14 2.06E‑04 0.3422

Body mass index (BMI) 305 IVW 0.40 0.32 0.47 0.04 1.60E‑22 6.81E‑02 0.5286

Trunk fat-free mass 406 IVW 0.39 0.29 0.48 0.05 2.32E‑11 2.46E‑06 0.0575

Trunk predicted mass 406 IVW 0.38 0.28 0.48 0.05 4.10E‑11 9.09E‑06 0.0513



Page 4 of 16Constantinescu et al. BMC Medical Genomics          (2023) 16:284 

polymorphisms (SNPs) associated with each of the expo-
sures at a genome-wide level of significance (P < 5e-8). 
As genetic confounding may bias MR estimates if 
SNPs are correlated [23], linkage disequilibrium (LD) 
clumping in PLINK [24] was conducted to ensure the 
SNPs used to instrument exposures were independent 
(radius = 10,000  kb; r2 = 0.001) using the 1000 Genomes 
European reference panel [25]. We also used the 1000 
Genomes European dataset [25] to identify potential SNP 
proxies (with which the initial SNP is in LD with, r2 > 0.8) 
for those SNPs not present in the DVT summary statis-
tics. Where not specified in Supplementary Table 2, the 
reported effect size for a given SNP was expressed along 
with the standard error (SE) in standard deviation units 
of the level of the risk factor for a continuous exposure, 
or as a unit change in the exposure on the log-odds scale 
for a binary trait.

Protein quantitative trait locus data
We aimed to determine whether BMI-associated pro-
teins were mediating the relationship between adiposity 
and DVT. A list of BMI-associated proteins was obtained 
from two previous MR studies investigating the effect 
of BMI on the circulating proteome [18, 19]. We used 
protein quantitative trait loci (pQTL) data [26, 27] to 
identify SNPs associated with circulating protein levels 
at a genome wide level of significance (P ≤ 5e-08). Pro-
tein detection platforms for the pQTL data included the 
SOMAScan® by SomaLogic and Olink (ProSeek CVD 
array I) [28–31]. Twenty-five proteins were identified using 
these criteria (Supplementary Table  1). PLINK clumping 
(radius = 10,000  kb; r2 = 0.001) was performed to ensure 
the genetic variants used to instrument protein levels were 
independent. Proxy SNPs for those SNPs that were not 

present in the DVT data were identified through the 1000 
Genomes European dataset [25].

Data harmonisation
The majority of GWAS present the effects of a SNP on a 
trait in relation to the allele on the forward strand. How-
ever, the allele present on the forward strand can change 
as reference panels get updated. This requires correc-
tion (harmonisation) so that both exposure and outcome 
data reference the same strand [32]. For exposure and 
outcome data harmonisation, incorrect but unambigu-
ous alleles were corrected, while ambiguous alleles were 
removed. In the case of palindromic SNPs (A/T or C/G), 
allele frequencies were used to solve ambiguities. Har-
monisation was not possible for 483 exposures (variants 
were not present in the DVT GWAS), resulting in a final 
list of 973 exposures to include in the MR-PheWAS (Sup-
plementary Table 2). For our pQTL analysis, 21 out of 25 
proteins had genetic variants (including proxies) available 
in the DVT GWAS, and only 15 proteins had valid SNPs 
after harmonization (Supplementary Table  3). Finally, 
PhenoSpD was used for multiple testing correction in 
the MR-PheWAS analysis (P = 5.43e-5), while Bonferroni 
correction was used in the pQTL MR (P = 0.003) (Supple-
mentary Methods).

MR‑PheWAS
A hypothesis-free MR-PheWAS was conducted using 
the TwoSampleMR R package [33]. The effect of a given 
exposure on DVT was estimated using the inverse-var-
iance weighted (IVW) method for exposures with more 
than one SNP [34]. Wald ratios (WRs) were derived for 
exposures with a single SNP [35]. A full description of all 
MR analyses referenced in this study is available in the 

* Methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1)
* LogRiskRatio is the logged value of the beta coefficient of the MR analysis into risk ratios. It can be read as an increase in the LogRisk of DVT per unit increase in trait
* PHET ML is the P-value of the Maximum Likelihood analysis looking at heterogeneity between genetic variants used to instrument a trait. H0 is that there is no 
heterogeneity present
* PPlt is the P-value of the MR-Egger analysis looking at the presence of horizontal pleiotropy. H0 is that there is no pleiotropy present

Table 1 (continued)

Exposure No. SNP MR method Log Risk Ratio* CI (95%) SE P-value PHet (ML) PPlt

Hip circumference 282 IVW 0.36 0.28 0.45 0.04 2.22E‑13 2.92E‑04 0.0876

Comparative height size at age 10 364 IVW 0.30 0.20 0.40 0.05 1.93E‑06 1.56E‑05 0.1080

Overweight 14 IVW 0.28 0.18 0.38 0.05 3.07E‑05 3.44E‑01 0.1711

Obesity class 1 17 IVW 0.18 0.11 0.25 0.03 1.34E‑07 7.33E‑01 0.2392

Standing height 591 IVW 0.17 0.09 0.24 0.04 4.61E‑06 3.14E‑05 0.1018

Obesity class 2 11 IVW 0.17 0.11 0.22 0.03 2.79E‑06 5.45E‑01 0.6859

Height 367 IVW 0.15 0.08 0.21 0.03 5.92E‑06 1.58E‑03 0.3372

Impedance of leg (right) 319 IVW ‑0.55 ‑0.80 ‑0.35 0.12 2.21E‑06 4.23E‑06 0.0003

Impedance of leg (left) 323 IVW ‑0.69 ‑1.05 ‑0.43 0.16 1.00E‑05 9.96E‑21 0.0072
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Supplementary Methods, while SNPs used in the MR 
analysis are available in Supplementary Table 5.

Conditional analysis
We performed a conditional analysis for each single-SNP 
trait using the GCTA-COJO software [36] to identify 
any potential shared secondary signals in a 1 MB region 
[37], with the aim of performing an additional colocali-
zation analysis on those secondary signals if the primary 
colocalization analysis did not find a shared causal sig-
nal. We downloaded summary statistics for these traits 

from OpenGWAS (https:// gwas. mrcieu. ac. uk/) [38] and 
used genotypic data from the Avon Longitudinal Study 
of Parents and Children (ALSPAC) as a reference panel. 
Further details of the cohort are described elsewhere 
[39, 40], in brief: 14,541 pregnancies to women with an 
expected delivery date of April 1, 1991, to December 31, 
1992, were enrolled. We used the genotypic data of 8,890 
mothers to perform our conditional analysis. Ethical 
approval for the study was obtained from the ALSPAC 
Ethics and Law Committee and the Local Research Eth-
ics Committee. The study website contains details of all 

Fig. 1 Overview of the study. First, a MR‑PheWAS analysis to find risk factors for DVT was done using the MR‑Base database and identified many 
of these to be associated with adiposity (N=24/57). This was followed by a two‑sample mediation MR between BMI‑associated pQTL data on DVT 
risk. MR = mendelian randomization; GWAS = genome‑wide association study; VTE = venous thromboembolism; DVT = deep vein thrombosis; SNP 
= single‑nucleotide polymorphism; pQTL = protein quantitative trait loci; PAI‑1 = Plasminogen activator inhibitor‑1; NOTCH1 = Neurogenic locus 
notch homolog protein 1; INHBC = Inhibin Subunit Beta C; S Table = Supplementary Table

https://gwas.mrcieu.ac.uk/
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available data through a fully searchable data dictionary 
and variable search tool (http:// www. brist ol. ac. uk/ alspac/ 
resea rchers/ our- data/).

Colocalization analysis
Only one genetic instrument was available for some of 
the exposures investigated (N = 10). As the Wald ratio 
estimator is susceptible to genetic confounding, we 
performed a colocalization analysis on the un-pruned 
genetic dataset for each single-SNP trait. Genetic con-
founding in this case refers to confounding by LD, where 
the SNP associated with the exposure is in LD with a 
SNP affecting another trait that affects the outcome inde-
pendent of the exposure, which invalidates MR assump-
tions [41]. Colocalization analysis uses Bayesian statistics 
to estimate whether an exposure and outcome share a 
causal signal in a region of the genome [42], which can 
then strengthen the evidence that there is a causal rela-
tionship by providing evidence that the detected effect 
in the MR analysis is not due to confounding by LD. We 
used the R package “coloc” (https:// cran.r- proje ct. org/ 
web/ packa ges/ coloc/) approximate Bayes factor (coloc.
abf ) function with default settings for prior probabilities 
to conduct a colocalization analysis with the following 
hypotheses: H0 (no causal variant), H1 (causal variant for 
trait 1 only), H2 (causal variant for trait 2 only), H3 (two 
distinct causal variants) and H4 (one common causal 
variant) [42]. We then used LocusZoom (https:// locus 
zoom. org/) to provide visual evidence for the presence of 
a shared signal between our exposures and DVT.

Results
MR-PheWAS
Of the 973 exposures investigated, 945 were identified as 
independent using PhenoSpD, setting the P-value thresh-
old for our MR analysis at 5.43e-5. Fifty-seven exposures 
were estimated to influence DVT risk (Fig.  2, Table  1). 
Sensitivity analyses results for all traits using additional 
MR methods are shown in Supplementary Table 4.

We observed strong causal evidence for a number of 
exposures including: “Hyperthyroidism/thyrotoxicosis” 
(IVW Log RR: 2.39, 95% CI: 1.88 to 2.90; P = 8.69e-18); 
“Treatment/medication code: carbimazole” (IVW Log 
RR: 3.60, 95% CI: 2.70 to 4.50, P = 2.41e-12); “Chronic 
obstructive airways disease/chronic obstructive pulmo-
nary disease (COPD)” (WR Log RR: 3.72, 95% CI: 1.39 to 
4.37; P = 9.21e-07); “Varicose veins” (IVW Log RR: 1.90, 
95% CI: 1.30 to 2.50; P = 2.36e-07) and “Varicose veins of 
the lower extremities” (IVW Log RR: 3.40, 95% CI: 2.31 
to 4.49; P = 5.13e-07) (Fig. 2, Table 1).

Adiposity, an established risk factor for DVT [43], and 
its related traits (N = 24, see Table 1 note) were all posi-
tively associated with DVT. These include traits identified 

in previous MR studies, such as “Body Mass Index” (IVW 
Log RR: 0.40, 95% CI: 0.32 to 0.47; P = 1.60e-22), fat mass 
e.g. “Whole body fat mass” (IVW Log RR: 0.44, 95% CI: 
0.36 to 0.51; P = 4.65e-27) and fat-free mass e.g. “Whole 
body fat-free mass” (IVW Log RR: 0.41, 95% CI: 0.31 to 
0.50; P = 3.90e-14) [44] (Fig.  2, Table  1). Another previ-
ously-associated trait is “Height” (IVW Log RR: 0.15, 
95% CI: 0.08 to 0.21; P = 5.92e-06) [45]. Other associated 
height-related traits not previously investigated in an MR 
framework include “Standing height” (IVW Log RR: 0.17, 
95% CI: 0.09 to 0.24; P = 4.61e-06) and “Comparative 
height size at age 10” (IVW Log RR: 0.30, 95% CI: 0.20 to 
0.40; P = 1.93e-06) (Fig. 2, Table 1).

Over 50% of the exposures (N = 31) which passed our 
P-value threshold for multiple testing were found to have 
heterogenous effects between instruments using the 
maximum likelihood method. Of these, most (N = 24) 
were traits related to body size (mass and adiposity). 
The remaining heterogenous traits were: “basal meta-
bolic rate” (PHet: 3.71e-03); “warfarin treatment” (PHet: 
5.66e-40); “Height” (PHet: 1.58e-03); “Standing height” 
(PHet = 4.61e-06); “Comparative height size at age 10” 
(PHet = 1.93e-06); “Impedance of leg (right)” (PHet: 
4.23e-06) and “Impedance of leg (left)” (PHet: 9.96e-21). 
These findings are consistent with our IVW and MR-
Egger heterogeneity analyses (Table 1).

MR-Egger estimates indicated strong evidence of hori-
zontal pleiotropy for “Qualifications: None of the above” 
(intercept = -5.69e-04, P = 3.35e-02), “Impedance of leg 
(right)” (intercept = 2.58e-04, P = 3.22e-04) and “Imped-
ance of leg (left)” (intercept = 2.22e-04, P = 7.24e-03) 
(Table 1). The former trait refers to those who answered 
“None of the above” in the self-report questionnaire on 
education in UK Biobank (“College or University degree”, 
“A levels/AS levels or equivalent”, “O levels/GCSEs or 
equivalent”, “CSEs or equivalent”, “NVQ or HND or HNC 
or equivalent”, “Other professional qualifications eg: nurs-
ing, teaching”). We were unable to assess whether the 
“Prospective memory result” trait was pleiotropic, as this 
exposure was instrumented using only 2 SNPs. In bidi-
rectional MR analyses, DVT was estimated to increase 
warfarin treatment (“Treatment/medication code: war-
farin” (beta = 0.29; SE = 0.02; P = 1.79e-30)), implying 
reverse causation, and therefore violating MR assump-
tions (Table 2).

Estimated effects of BMI-driven proteins on DVT risk
Of the 57 traits estimated to increase risk of DVT 
(Table 1, Fig. 2), 24 were adiposity-related. While adipos-
ity is an established risk factor for DVT, the biological 
mechanisms underlying the effect of adiposity on DVT 
are not well understood. We therefore used a two-sam-
ple MR mediation analysis to test whether altered levels 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://cran.r-project.org/web/packages/coloc/
https://cran.r-project.org/web/packages/coloc/
https://locuszoom.org/
https://locuszoom.org/


Page 7 of 16Constantinescu et al. BMC Medical Genomics          (2023) 16:284  

of 15 circulating blood proteins, driven by adiposity, are 
responsible for this association. Two recent MR studies 
have demonstrated that BMI causally affects the levels of 
15 circulating proteins [18, 19]. Three of these proteins 
were estimated to influence DVT risk: Neurogenic locus 
notch homolog protein 1 (NOTCH1; WR Log RR: 0.57, 
95% CI: 0.45 to 0.68; P = 1.12e-23), Plasminogen activator 

inhibitor-1 (PAI-1; WR Log RR: 0.42, 95% CI: 0.30 to 0.54; 
P = 4.27e-12) and Inhibin beta C chain (INHBC; WR Log 
RR: -1.18, 95% CI: -2.18 to -0.69; P = 0.002). Mediation 
analysis was performed for PAI-1 (the only protein where 
BMI-protein and protein-DVT effect estimates were con-
sistent in directionality): the proportion of the BMI-DVT 

Warfarin
Mania/bipolar/manic depression
Chronic obstructive pulmonary disease
Carbimazole
Varicose veins
Hyperthyroidism/thyrotoxicosis
Varicose veins of lower extremities
Lysine
Prospective memory result
Disability or infirmity
Taking other prescription medications
Eicosapentaenoate (EPA; 20:5n3)
Stearidonate (18:4n3)
Docosapentaenoate (n3 DPA; 22:5n3)
Adrenate (22:4n6)
X−14473
Qualifications: None of the above
Arachidonate (20:4n6)
Overall health rating
Leg fat percentage (right)
Comparative body size at age 10
Arm fat percentage (right)
Arm fat percentage (left)
Leg fat percentage (left)
Leg fat mass (right)
Leg predicted mass (right)
Leg predicted mass (left)
Body fat percentage
Leg fat−free mass (left)
Leg fat−free mass (right)
Waist circumference
Leg fat mass (left)
Weight
Arm fat mass (left)
Arm fat mass (right)
Basal metabolic rate
Arm predicted mass (left)
Trunk fat percentage
Whole body fat mass
Arm fat−free mass (right)
Arm predicted mass (right)
Trunk fat mass
Arm fat−free mass (left)
Whole body water mass
Whole body fat−free mass
Body mass index (BMI)
Trunk fat−free mass
Trunk predicted mass
Hip circumference
Comparative height size at age 10
Overweight
Obesity class 1
Standing height
Obesity class 2
Height
Impedance of leg (right)
Impedance of leg (left)

Trait
7
1
1
9
2
6
16
1
2
14
10
1
1
1
1
1
64
1
54
246
157
234
253
248
282
361
356
253
361
363
227
281
337
268
270
377
349
237
280
350
364
283
355
405
405
305
406
406
282
364
14
17
591
11
367
319
323

SNP
2.76e−12
1.02e−08
9.21e−07
4.74e−15
1.01e−09
1.71e−20
4.65e−10
1.25e−05
1.05e−10
1.60e−10
2.68e−09
6.19e−10
2.41e−09
2.01e−05
3.48e−07
5.14e−06
3.99e−13
4.10e−09
8.67e−17
6.53e−21
7.84e−25
1.67e−16
3.16e−15
3.47e−15
8.32e−31
1.73e−31
5.88e−30
2.91e−23
1.20e−29
2.18e−28
3.43e−25
3.65e−26
3.79e−31
9.80e−32
2.09e−33
5.16e−23
6.63e−17
5.73e−19
9.16e−30
3.27e−16
1.37e−15
3.41e−26
3.63e−15
1.51e−17
7.68e−17
3.14e−25
4.56e−14
8.07e−14
4.37e−16
3.79e−09
6.05e−08
1.34e−07
4.61e−06
5.50e−09
5.92e−06
2.21e−06
1e−05

P−val

0 2 4
Log Risk Ratio for DVT per unit increase in trait 

Fig. 2 A many‑to‑one forest plot of the exposures which passed the P‑value threshold following multiple testing correction (5.43e‑5). Each trait 
is accompanied by two additional descriptive columns (No. SNPs and P ‑value), while log risk ratio (RR) is displayed to the right, alongside with the 
confidence intervals. MR methods: Inverse variance weighted (SNP > 1) and Wald ratio (SNP = 1)
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effect mediated by PAI-1 was estimated to be 18.56% 
(Table 3, Fig. 3, Supplementary Table 3).

Conditional and colocalization analyses
Seven of the 57 traits in the MR-PheWAS and 3 proteins 
from the pQTL MR analyses could be instrumented using 
only one genetic variant, and therefore required a condi-
tional and colocalization analysis to provide additional 

Table 2 Reverse MR of traits passing the P‑value threshold from the main analysis in Table 1. Exposures highlighted in orange are 
referred to as "adiposity‑related" in the main text

* Method: Inverse variance weighted (IVW)
* Beta column represents the effect estimate from the MR analysis of DVT on trait risk

Outcome No. SNP MR method* Beta* SE P-value PHet (ML) PPlt

Treatment/medication code: warfarin 9 IVW 0.29 0.02 3.81E‑32 9.63E‑02 5.11E‑01

Stearidonate (18:4n3) 5 IVW 1.35 0.50 6.78E‑03 9.11E‑01 8.41E‑01

Leg predicted mass (left) 9 IVW 0.51 0.23 2.73E‑02 4.19E‑04 6.13E‑01

Leg fat-free mass (left) 9 IVW 0.50 0.23 2.86E‑02 5.20E‑04 6.10E‑01

Leg predicted mass (right) 9 IVW 0.47 0.23 4.12E‑02 3.95E‑04 6.03E‑01

Long-standing illness disability or infirmity 9 IVW 0.19 0.10 4.69E‑02 2.25E‑01 9.50E‑01

Leg fat-free mass (right) 9 IVW 0.47 0.23 4.71E‑02 3.47E‑04 6.09E‑01

Taking other prescription medications 9 IVW 0.16 0.10 8.84E‑02 7.97E‑01 2.34E‑01

Varicose veins 9 IVW 0.02 0.01 9.89E‑02 7.21E‑01 3.19E‑01

Eicosapentaenoate (EPA; 20:5n3) 5 IVW 0.58 0.44 1.87E‑01 5.75E‑01 8.16E‑01

Leg fat percentage (left) 9 IVW ‑0.35 0.27 1.91E‑01 8.77E‑07 9.80E‑01

Qualifications: None of the above 9 IVW ‑0.11 0.09 2.06E‑01 1.02E‑01 8.73E‑01

Varicose veins of lower extremities 9 IVW 0.04 0.03 2.38E‑01 2.08E‑01 5.93E‑01

Weight 9 IVW 0.22 0.25 3.62E‑01 1.95E‑02 5.78E‑01

Leg fat percentage (right) 9 IVW ‑0.25 0.28 3.80E‑01 3.18E‑07 9.90E‑01

Hyperthyroidism/thyrotoxicosis 9 IVW ‑0.01 0.02 3.89E‑01 9.48E‑01 6.27E‑01

Arm fat percentage (left) 9 IVW 0.35 0.42 3.96E‑01 6.65E‑12 8.82E‑01

Arm fat percentage (right) 9 IVW 0.34 0.41 4.15E‑01 1.70E‑11 8.55E‑01

Arm fat mass (left) 9 IVW 0.31 0.39 4.21E‑01 1.84E‑05 7.77E‑01

Arachidonate (20:4n6) 5 IVW 0.24 0.30 4.28E‑01 8.53E‑01 8.94E‑01

Hip circumference 9 IVW 0.22 0.29 4.37E‑01 8.58E‑03 9.32E‑01

Basal metabolic rate 9 IVW 0.21 0.28 4.54E‑01 1.46E‑06 6.68E‑01

Whole body water mass 9 IVW 0.20 0.32 5.31E‑01 1.38E‑09 7.29E‑01

Whole body fat-free mass 9 IVW 0.20 0.32 5.42E‑01 1.22E‑09 7.16E‑01

Waist circumference 9 IVW 0.12 0.25 6.24E‑01 1.70E‑02 9.81E‑01

Obesity class 2 5 IVW 1.20 2.53 6.33E‑01 7.08E‑01 5.15E‑01

Arm predicted mass (right) 9 IVW ‑0.13 0.32 6.91E‑01 1.30E‑10 8.85E‑01

Overweight 5 IVW ‑0.46 1.17 6.95E‑01 6.26E‑01 8.70E‑01

Trunk fat percentage 9 IVW 0.18 0.45 6.98E‑01 3.16E‑09 9.39E‑01

Whole body fat mass 9 IVW 0.13 0.36 7.18E‑01 1.43E‑04 6.77E‑01

Arm fat-free mass (right) 9 IVW ‑0.11 0.33 7.30E‑01 9.99E‑11 7.45E‑01

Arm predicted mass (left) 9 IVW ‑0.11 0.33 7.47E‑01 1.21E‑10 8.46E‑01

Comparative height size at age 10 9 IVW 0.07 0.25 7.70E‑01 2.37E‑04 6.67E‑01

Treatment/medication code: carbimazole 9 IVW 0.00 0.01 7.83E‑01 3.46E‑01 9.43E‑01

Arm fat-free mass (left) 9 IVW ‑0.09 0.32 7.92E‑01 5.50E‑10 8.24E‑01

Mania/bipolar/manic depression 9 IVW 0.00 0.01 8.09E‑01 4.14E‑01 8.69E‑01

Trunk predicted mass 9 IVW 0.07 0.39 8.67E‑01 1.33E‑15 7.36E‑01

Leg fat mass (right) 9 IVW ‑0.04 0.29 8.84E‑01 1.75E‑04 8.88E‑01

Trunk fat-free mass 9 IVW 0.05 0.39 9.03E‑01 1.59E‑15 7.25E‑01

Body fat percentage 9 IVW 0.04 0.37 9.06E‑01 5.73E‑09 8.91E‑01
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evidence of causality. There were no secondary signals 
after conditioning on the top SNP for each exposure-
DVT pair. There was evidence of a shared causal vari-
ant for PAI-1 (PP.S = 97.5%), strengthening the evidence 
that there is a true causal relationship between the levels 
of this protein and DVT (Table  4, Fig.  4). For the other 
traits, this indicated that we couldn’t be certain that the 
effect seen in the MR is not due to confounding by LD, 
which as opposed to the PAI-1 findings, limits the evi-
dence of a causal effect of those traits on DVT.

Discussion
With the aim to identify novel causal risk factors for 
DVT, we performed a hypothesis-free MR-PheWAS of 
945 exposures to DVT, of which 57 passed a conservative 
P-value threshold for evidence of causality. We confirmed 
causality for several previously established risk factors 
for DVT (such as BMI and height) and have identified 
several novel putative causal risk factors (such as hyper-
thyroidism and varicose veins). Of the 57 exposures esti-
mated to influence DVT risk, 24 were adiposity-related 
traits. Therefore, we investigated whether the impact of 

Table 3 Mediation MR analysis of BMI‑associated protein levels on DVT passing the multiple testing P‑value threshold (0.003), with a 
two‑step MR of the indirect effect of BMI on DVT through protein levels and proportion mediated (%) by PAI‑1

* LogRiskRatio is the logged value of the beta coefficient of the MR analysis into risk ratios. It can be read as an increase in the LogRisk of DVT per increase in cirulating 
protein levels
* BMI-Protein MR effect estimates from Goudswaard et al. (https:// doi. org/ 10. 1038/ s41366- 021- 00896-1) and Zaghlool et al. (https:// doi. org/ 10. 1038/ s41467- 021- 
21542-4)

Exposure MR method Log Risk Ratio* CI (95%) P-value Beta coefficient—
BMI to protein*

Proportion (%) 
mediated by 
protein

Neurogenic locus notch homolog protein 1 Wald ratio 0.57 0.45 0.68 1.12E‑23 ‑0.15 Effect not consistent

Plasminogen activator inhibitor 1 Wald ratio 0.42 0.30 0.54 4.27E‑12 0.17 18.56

Inhibin beta C chain Wald ratio ‑1.18 ‑2.18 ‑0.69 1.96E‑03 0.45 Effect not consistent

BMI−>Protein

Protein−>DVT

INHBC

One−sample MR

Two−sample MR

Analysis type

1.08e−05

0.00196

P−val

BMI−>Protein

Protein−>DVT

NOTCH1

One−sample MR

Two−sample MR

Analysis type

5.08e−06

1.12e−23

P−val

BMI−>Protein

Protein−>DVT

SERPINE1

One−sample MR

Two−sample MR

Analysis type

2.84e−08

4.27e−12

P−val

−2 −1 0 1
Log Risk Ratio on DVT per unit increase in trait 

Fig. 3 A many‑to‑one forest plot of the three BMI‑associated proteins which passed the multiple‑testing corrected P‑value threshold (0.003) 
in the MR analysis. Each protein is accompanied by two additional descriptive columns (type of analysis conducted and P‑value), while the effect 
is displayed to the right, alongside with the confidence intervals (Beta coefficient/Log RR ± 95% CI). Effect sizes of BMI on proteins taken 
from Goudswaard et al. [18] and Zaghlool et al. [19]

https://doi.org/10.1038/s41366-021-00896-1
https://doi.org/10.1038/s41467-021-21542-4
https://doi.org/10.1038/s41467-021-21542-4
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adiposity on DVT is mediated by circulating proteins 
known to be altered by BMI [18, 19]. Here, we provide 
novel evidence that the circulating protein, PAI-1 has a 
causal role in DVT aetiology and is involved in mediating 
the BMI-DVT relationship.

Height has been previously associated with increased 
DVT risk [46] and our results align with this finding. 
With increased height, a greater volume of blood is 
required which can increase the stress on blood vessels, 
disrupting haemostasis [46]. Fat-free mass was also esti-
mated to increase risk of DVT in our study. While coun-
terintuitive, this effect could be mediated through height, 
as taller people usually have more fat-free mass [44, 45]. 
As expected, many body size related traits showed evi-
dence of heterogeneity, likely due to the large number 
of SNPs used to instrument these traits and the many 
underlying biological pathways explaining variation in 
adiposity.

Venous blood stasis caused by immobility is also a 
known risk factor for DVT [3]. Here, we report evidence 
that long standing illness, disability, or infirmity increases 
DVT risk. A proposed mechanism is stasis of blood flow 
in the veins which can be either due to a particular neu-
rological condition or due to the paralysis of the lower 
limbs [47].

Our study also provides evidence for novel DVT risk 
factors. Hyperthyroidism has previously been proposed 
to contribute to DVT, as indicated by a recent system-
atic review and meta-analysis of cohort studies showing 
association with DVT (RR: 1.33, 95% CI: 1.28 to 1.39; 
 I2 = 14%) [48]. In the present study, we provide novel evi-
dence for a causal effect of hyperthyroidism/thyrotoxico-
sis on DVT risk (IVW RR: 10.91, 95% CI: 3.97 to 18.17; 

P = 3.14e-25). The underlying mechanism is not fully 
understood but may involve thyroid hormones (THs) 
promoting a hypercoagulable state and venous thrombi 
formation, by increasing plasma concentration of fac-
tor VIII, fibrinogen, PAI-1 and vWF [49]. TH T4 may 
also directly enhance platelet function through integrin 
αvβ3 [50]. In addition, THs enhance basal metabolic rate 
(BMR) and thermogenesis, both of which affect body 
weight. Indeed, we found that an increase in basal meta-
bolic rate is associated with DVT. While a higher BMR 
should lead to lower BMI and thus lower DVT risk, it is 
likely that our results may be explained by the hyperthy-
roidism-associated mechanisms outlined above.

Our MR estimates also support evidence of a causal 
association between varicose veins and increased risk 
of DVT. Varicose veins can result in the inability of the 
blood to fully return to the heart, leading to the enlarge-
ment of the veins, and in time, potentially an increased 
risk of DVT due to stasis [51]. Varicose veins have been 
outlined as a possible risk factor in general practice 
patients in Germany [52], as well as in a Chinese retro-
spective study of over 100 K people [51].

COPD was also associated with an increased risk of 
DVT. COPD is a severe chronic respiratory disease, 
having been studied extensively for its role in PE [53]. 
Indeed, both PE and DVT are more prevalent and under-
diagnosed in people with COPD [54]. Our colocalization 
analysis did not provide evidence that would support our 
MR estimates. Moreover, as the SNP used to proxy for 
COPD (rs9579496) is intergenic i.e. in-between genes, 
we were unable to compare our results with any locus-
specific experimental studies.

Table 4 Colocalization analysis results for exposures instrumented through only one SNP

Posterior probabilities for: H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one 
common causal variant)
* nr SNPs are the number of SNPs in the 500 kb genomic window used to run the colocalization analysis

Analysis type Exposure nr SNP* PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

BMI‑associated proteins Plasminogen activator inhibitor 1 2604 3.0254E‑13 1.9614E‑06 3.9637E‑09 0.02472248 0.97527556

Neurogenic locus notch homolog protein 1 3856 1.0694E‑79 4.778E‑73 2.2382E‑07 0.99999972 6.0801E‑08

Inhibin beta C chain 4079 1.1109E‑29 2.6137E‑23 4.2502E‑07 0.99999948 9.3591E‑08

MR‑PheWAS Lysine 547 2.4588E‑11 0.98338278 3.2772E‑13 0.01310352 0.0035137

Bipolar disorder / mania 3533 0.47264348 0.43702738 0.03965284 0.03665077 0.01402554

Chronic obstructive pulmonary disorder 4229 0.0766326 0.83975957 0.00333097 0.03645779 0.04381907

X-14473 655 6.292E‑07 0.83967623 6.959E‑08 0.09280245 0.06752062

Docosapentaenoate 614 1.9077E‑08 0.62830917 1.1181E‑09 0.03649044 0.33520037

Adrenate 626 1.8886E‑18 0.5838098 1.1167E‑19 0.03413747 0.38205274

Stearidonate 674 5.34E‑11 0.50441818 3.2335E‑12 0.03007888 0.46550294

Eicosapentanoate 633 2.8064E‑17 0.22721212 1.6606E‑18 0.01268473 0.76010315

Arachidonate 626 4.9721E‑77 0.17796851 2.9399E‑78 0.00971061 0.81232088
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Finally, as adiposity is an established risk factor for 
DVT, the estimates we observe between adiposity-
related traits and DVT most likely reflect true causal 
relationships. The estimate we report here for BMI (RR: 
1.49, 95% CI: 1.38 to 1.60; P = 3.14e-25) is consistent with 
a previous MR study conducted in individuals of Danish 
descent (OR: 1.57, 95% CI: 1.08 to 1.97; P = 3e-03) [10]. 
In addition, our results are in agreement with the esti-
mated effect of BMI on VTE in the FinnGen consortium 
(MR RR: 1.58, 95% CI: 1.28 to 1.95; P = 2.00e-05) [44]. 
Higher adiposity is associated with dysregulated metab-
olism, which is one factor that can promote a hyperco-
agulable state and impair venous return, increasing the 
chance of thrombi formation [55]. Given that 42% of 
the traits we found to be associated with DVT were adi-
posity-related, and that previously we and others found 
that adiposity is associated with changes to the circulat-
ing proteome [18, 19], we hypothesised that adiposity-
driven changes to the circulating proteome may promote 

DVT. BMI-driven candidates include proteins that can 
modulate coagulation (anti-thrombin III, PAI-1) [56, 57], 
platelet function (adiponectin, IGFBP/IGF) [58] and/or 
thrombosis (galectin-3) [59].

Using our MR approach, we were able to estimate the 
effect of 15 BMI-driven circulating proteins on DVT risk. 
Our analyses suggest a causal role for 3 of these proteins 
(NOTCH1, PAI-1 and INHBC). Given the established 
role of some of the circulating proteins in coagulation 
and thrombosis, the lack of evidence for an estimated 
effect is surprising e.g. anti-thrombin III [56]. This could 
represent a true result or our ability to instrument circu-
lating proteins using single SNPs.

PAI-1 was the only protein for which evidence was 
directionally consistent with mediation of the BMI-
DVT relationship (circulating levels of PAI-1 were 
positively associated with BMI and with DVT). A 
study using data from the Million Veterans Program 
to identify novel VTE risk factors has also confirmed 

Fig. 4 LocusZoom plots in a 1Mb region of the SNP used to proxy each PAI‑1 in both exposure (A) and outcome (DVT, B) data. The x‑axis represents 
the position within the chromosome, while the y‑axis is the ‑log10 of the P‑value. Each dot is a SNP, and the colours indicate how much LD there 
is between the reference SNP and the other genetic variants
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colocalization with DVT for the same PAI-1 SNP 
(rs6993770, ZFPM2 locus) used in our analysis [60]. 
Klarin et  al. previously identified in their MR analy-
sis that rs4602861 (ZFPM2 locus) increased the risk 
of VTE (OR: 1.08, CI: 1.03–1.15) [61], which is in LD 
with our PAI-1 SNP used here (R2 = 0.93). In addition 
to replicating this previous finding, we have also shown 
that this locus increases DVT risk through regulat-
ing PAI-1 levels. Moreover, PAI-1 has been associated 
with an increase in VEGF levels [62–64], which was 
found to increase the risk of VTE in a previous MR 
study [65], further adding to the evidence that PAI-1 is 
involved in DVT development. A follow-up analysis in 
a murine model found that PAI-1-overexpressing mice 
had 1.5-fold larger thrombus size compared to PAI-
1−/− mice [60]. Moreover, a recent observational study 
done in inhabitants of Tromsø, Norway (cases = 383, 
controls = 782) found that PAI-1 increased the risk 
of future VTE, and that PAI-1 mediated ~ 15% of the 
obesity-VTE relationship [66], a number comparable to 
our MR estimate (18.6%). These results are consistent 
with the known role for PAI-1 in inhibiting fibrinolysis 
(breakdown of a clot) [67]. In addition, PAI-1 expres-
sion has been previously found to be associated with 
DVT formation in mice [67] and in humans after total 
hip arthroplasty [57]. PAI-1 overexpression is enhanced 
in visceral fat tissue [68], and while waist-to-hip ratio 
(WHR) is highly correlated with visceral fat [69], we did 
not find evidence of an effect of WHR on DVT (Sup-
plementary Table  4). Finally, there has been extensive 
research into PAI-1 drug targets, ranging from syn-
thetic peptides, RNA aptamers to monoclonal anti-
bodies [70]. Rosuvastatin, an HMG-CoA reductase 
inhibitor, has been found to inhibit PAI-1 in vitro [71]. 
Randomised clinical trials using rosuvastatin have 
confirmed that it reduced occurrence of symptomatic 
venous thromboembolism [72] and increased plasma 
fibrinolytic potential [73], supporting a role for statins 
in VTE treatment and prevention, possibly via altered 
PAI-1.

Although we found evidence for a role of INHBC and 
NOTCH1 in DVT risk, estimates were inconsistent with 
mediation of the BMI-DVT relationship. We found that 
circulating INHBC levels were negatively associated with 
DVT, suggesting circulating levels of INHBC may have 
a protective effect. Inhibins are part of the growth and 
differentiation superfamily of transforming growth fac-
tor beta (TGF-β) [74] and play a role in inhibiting the 
levels of follicle-stimulating hormone (FSH) produced 
by the pituitary gland [75]. Although we did not find evi-
dence of causality between FSH and DVT, a recent study 
showed that FSH can enhance thrombin generation [76]. 
This discrepancy could be due to INHBC acting through 

a different pathway compared to FSH. With regards to 
NOTCH1, we found that higher expression was associ-
ated with an increased risk of DVT. NOTCH1 plays a 
role in responses to microenvironmental conditions, vas-
cular development and is a shear stress and flow sensor 
in the vasculature [77]. While NOTCH targeting has not 
been done in relation to VTE, current small molecular 
drugs such as Crenigacestat [78] and targeting antibod-
ies such as Brontictuzumab [79] are being used in clinical 
trials to inhibit NOTCH signalling for the treatment of 
T-cell acute lymphoblastic leukaemia and solid tumours, 
respectively [80]. Nevertheless, the pQTLs for these two 
proteins had a stronger association with DVT, and this 
might indicate reverse causation, horizontal pleiotropy 
or measurement error in the exposure (i.e. protein levels) 
[81, 82]. Therefore, the results for INHBC and NOTCH1 
should be interpreted with caution, as the colocalization 
analysis did not provide evidence for a shared signal for 
the SNPs instrumenting these two proteins and DVT, 
which does make it more likely that these results are due 
to confounding by LD [41].

There are some limitations to our approach. Firstly, 
although the number of traits in MR-Base is large and 
continues to grow, and the approach was undertaken in 
a hypothesis-free manner, we were limited by the traits 
available in the platform at the time of the analysis. In 
addition, the availability of genetic instruments for some 
traits within the platform are limited, meaning a false null 
finding could be reported. While the number of expo-
sures in OpenGWAS/MR-Base allows for a large analy-
sis of aggregated data, this can also come at the cost of 
being limited by the GWAS data present in the database. 
For example, the COPD trait used here had only one 
instrument, while a more recent GWAS of COPD done 
in UKBB had identified 82 associations with COPD [83]. 
Moreover, some of the exposures did not have a SNP or 
proxy present in the outcome (DVT) dataset, making it 
infeasible to perform MR analysis. Finally, we have cho-
sen to investigate risk factors for DVT as opposed to PE 
(which is observed in about 40% of DVT cases [84]  to 
increase our power to detect causal risk factors. Future 
analyses could focus on PE specifically to identify predic-
tive risk factors for this outcome.

In summary, we have confirmed estimates of previously 
identified traits on DVT (e.g. adiposity-related, height), 
and identified novel estimates (e.g. hyperthyroidism and 
varicose veins) with the disease. We also provide evi-
dence that the relationship between adiposity and DVT 
is mediated by dysregulated levels of circulating pro-
teins (PAI-1). These findings improve the understanding 
of DVT aetiology and have notable clinical significance, 
particularly in regard to hyperthyroidism and PAI-1.
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