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Abstract
Aim Gastric cancer (GC) is one of the most diagnosed cancers worldwide. GC is a heterogeneous disease whose 
pathogenesis has not been entirely understood. Besides, the GC prognosis for patients remains poor. Hence, finding 
reliable biomarkers and therapeutic targets for GC patients is urgently needed.

Methods GSE54129 and GSE26942 datasets were downloaded from Gene Expression Omnibus (GEO) database to 
detect differentially expressed genes (DEGs). Then, gene set enrichment analyses and protein-protein interactions 
were investigated. Afterward, ten hub genes were identified from the constructed network of DEGs. Then, the 
expression of hub genes in GC was validated. Performing survival analysis, the prognostic value of each hub gene 
in GC samples was investigated. Finally, the databases were used to predict microRNAs that could regulate the hub 
genes. Eventually, top miRNAs with more interactions with the list of hub genes were introduced.

Results In total, 203 overlapping DEGs were identified between both datasets. The main enriched KEGG pathway 
was “Protein digestion and absorption.” The most significant identified GO terms included “primary alcohol metabolic 
process,” “basal part of cell,” and “extracellular matrix structural constituent conferring tensile strength.” Identified hub 
modules were COL1A1, COL1A2, TIMP1, SPP1, COL5A2, THBS2, COL4A1, MUC6, CXCL8, and BGN. The overexpression 
of seven hub genes was associated with overall survival. Moreover, among the list of selected miRNAs, hsa-miR-27a-3, 
hsa-miR-941, hsa-miR-129-2-3p, and hsa-miR-1-3p, were introduced as top miRNAs targeting more than five hub 
genes.

Conclusions The present study identified ten genes associated with GC, which may help discover novel prognostic 
and diagnostic biomarkers as well as therapeutic targets for GC. Our results may advance the understanding of GC 
occurrence and progression.
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Introduction
Gastric cancer (GC) has been reported as the fifth most 
diagnosed cancer worldwide, with more than 1  mil-
lion newly diagnosed cases annually. Also, GC is con-
sidered one of the leading causes of death by cancer all 
over the world [1]. Despite all improvements in treat-
ing GC, survival rates for GC patients remain unsatis-
fying and depend on the disease diagnosed stage [1, 2]. 
While the five-year survival rate is about less than 30% in 
most GC cases with advanced stages [3, 4], it decreases 
to less than 5% in patients diagnosed with the distant 
disease [1]. However, since most patients are diagnosed 
at an advanced stage, they lose the chance of the most 
effective surgical intervention, the gold standard for GC 
therapy [5, 6]. Hence, screening, early diagnosis, and tar-
geted therapies are essential to boost the survival rate 
of its patients [5]. The main reason for late diagnosis in 
GC patients is the lack of sensitive and precise predictive 
markers for diagnosis [7, 8]. Since diagnosing GC cases 
relies on invasive approaches such as endoscopy and 
biopsy, finding sufficient non-invasive tests and biomark-
ers for GC screening or diagnosis is necessary [5].

GC is a heterogeneous disease with phenotypic diver-
sity [9]. A variety of genetic and epigenetic alterations 
have been reported associated with gastric precancerous 
lesions and GC [10]. A growing body of literature focused 
on the potential of microRNAs (miRNAs or miRs) as 
novel biomarkers and therapeutic targets for GC patients 
[2, 11, 12]. MiRNAs are a subclass of small non-coding 
RNAs regulating gene expression post-transcriptionally 
[13, 14]. Aberrantly expressed miRNAs are associated 
with the onset and progression of various cancers, like 
GC [15]. Therefore, miRNAs are studied as attractive bio-
marker candidates for diagnosis and prognosis, as well as 
predictors of drug responses.

Nowadays, microarray and sequencing-based technol-
ogies have facilitated the discovery of genes and under-
lying mechanisms of tumors, as well as the exploration 
of biomarkers, prognostic factors, and therapeutic tar-
gets for a variety of cancers [16, 17]. Moreover, in recent 
years, a growing body of literature has focused on inves-
tigating new therapeutic targets and diagnostic markers 
for diseases such as cancers through employing bioinfor-
matics analysis [18, 19]. However, although several stud-
ies have focused on identifying genes, miRNAs, and their 
interactions in GC through bioinformatics methods [20–
23], it is still far from enough to reveal and understand 
the underlying pathogenesis of the disease.

Hence, the present study aims to find the essential 
genes and miRNAs participating in GC by employing bio-
informatics methods and public database resources. In 
this regard, we first identified the differentially expressed 
genes (DEGs) in GC from microarray datasets derived 
from the GEO database. We comprehensively analyzed 

the identified DEGs. First, we performed Gene Ontology 
(GO) annotation and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses. Then, 
after constructing a protein-protein interaction (PPI) 
network, we searched for hub modules among the DEGs. 
Afterward, we explored the expression distribution and 
prognostic significance of the selected hub genes. Even-
tually, after predicting miRNAs targeting the identified 
hub genes, we constructed the network of miRNA-hub 
genes.

We hope the results of our study provide a theoreti-
cal basis for the discovery of promising biomarkers and 
therapeutic targets to improve the clinical diagnosis and 
treatment of GC.

Materials and methods
Data collection from GEO repository
The GEO is a public repository containing high-through-
put functional genomic data [24]. The GEO database 
(http://www.ncbi.nlm.nih.gov/geo) was investigated to 
find suitable gene expression datasets, employing the fol-
lowing customized criteria: ‘Gastric cancer’ and ‘Healthy 
control’ as keywords, ‘Homo sapiens’ as the organism, 
‘Expression profiling by array’ as the study type, and 
studies with sample count ‘Higher than 20’. Eventually, 
two datasets, GSE54129 and GSE26942, were selected for 
further examinations. Microarray data of GSE54129 was 
obtained from the GPL570 platform ([HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array) and 
collected from 111 gastric cancer tissues and 21 controls, 
comprised of biopsy normal gastric mucosa obtained 
from 21 volunteers underwent gastroscopy for health 
examinations. The GSE26942 data was based on the 
GPL6947 platform (Illumina HumanHT-12 V3.0 expres-
sion beadchip) and came from 206 GC patients and 12 
normal samples.

Screening DEGs in GC
R software version 4.01 was used for screening and find-
ing DEGs in the selected datasets. R packages employed 
to accomplish this purpose were Limma 3.48.3, data.
Table  1.14.2, plyr 1.8.6, BiocGenerics 0.40.0, BioBase 
2.54, and ggplot 3.3.5. Moreover, the “EnhancedVolcano” 
package was utilized to draw volcano plots. Significant 
DEGs were defined as upregulated DEGs with logFC ≥ 1 
and downregulated DEGs with logFC ≤ − 1, with an 
adjusted p-value < 0.001.Then, the overlapping DEGs in 
the selected datasets were identified via a Venn diagram 
created by an online Venn diagram maker available at 
https://bioinformatics.psb.ugent.be/webtools/Venn.

Gene set enrichment analysis
To determine the biological implication of the overlap-
ping DEGs, gene set enrichment analysis was performed 

http://www.ncbi.nlm.nih.gov/geo
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using R software and employing several packages, includ-
ing DOSE 3.20, org.Hs.eg.db 3.14.0, clusterProfiler 4.2.0. 
Results with a p.value < 0.05 were accepted as significant 
data.

Protein-protein interaction analysis
STRING (http://string.embl.de/) is a database designed 
for constructing PPI networks and analyzing the func-
tional interactions among proteins [25, 26]. The PPI 
network of the identified DEGs was obtained from the 
STRING biological database and then visualized through 
Cytoscape software (version 3.7.2 [27]). Furthermore, the 
plugin of the CytoHubba 0.1 of Cytoscape software was 
applied to the obtained results to explore the top hub 
genes in the constructed network of DEGs based on their 
score calculated via the degree method. Eventually, the 
PPI network of top hub modules was constructed.

Validating the expression of the hub genes in GC
GEPIA 2.0 (available at http://gepia2.cancer-pku.cn/) is a 
cancer-specific database designed to analyze data based 
on TCGA and the Genotype-Tissue Expression (GTEx) 
databases [28]. Here, the GEPIA2 database was used to 
examine and validate the expression levels of the identi-
fied hub genes between GC and normal samples through 
the “Expression DIY” page of the database.

UALCAN (available at http://ualcan.path.uab.edu/
analysis.html) is a web portal for conducting in-depth 
analyses of TCGA gene expression data [29, 30]. Here, 
the UALCAN database was employed to explore the dif-
ferences in expression levels of each identified hub gene 
at various GC stages. A P-value < 0.05 were chosen as the 
p-value threshold for significant data.

Survival analysis
The Kaplan–Meier plotter is a web-based tool available 
at (http://kmplot.com/analysis/). This database is suitable 
for investigating the prognostic values of genes in sam-
ples from various tumor types, including GC [31]. The 
Kaplan–Meier plotter was applied to examine the cor-
relation between the effect of the key genes and overall 
survival in GC patients. The database can calculate the 
hazard ratio (HR) with a 95% confidence interval (95% 
CI) and log-rank p.value. In this step, a p.value < 0.05 
were set as a threshold to distinguish statistically signifi-
cant results.

Identifying gene–miRNA interaction
Two online databases, including DIANA-TarBase v8 [32] 
and miRTarBase [33], were used to investigate the miR-
NAs regulating the hub genes. Both databases contain 
the experimentally validated associations between miR-
NAs and mRNAs [32, 33]. The lists of identified gene–
miRNA interactions were merged for each hub gene to 

detect a single list of all valid interactions for the individ-
ual gene. Then, an online Venn diagram maker (https://
bioinformatics.psb.ugent.be/webtools/Venn/) was used 
to find overlapping miRNAs. The miRNAs targeting 
more than four genes of the hub list were selected. Even-
tually, the final gene–miRNA interactions were visualized 
using Cytoscape software.

Results
Identification of DEGs in GC samples
Two expression profiles (GSE54129 and GSE26942) 
were selected from the GEO database. A total of 317 GC 
tumors and 33 normal samples were obtained in this 
study. Employing the R software determined 3580 and 
340 DEGs from GSE54129, and GSE26942, respectively. 
The Venn diagram identified 203 overlapping DEGs 
between selected datasets (Fig.  1). The lists of DEGs 
were presented in the supplementary file. Also, the vol-
cano plots of the obtained DEGs from each dataset were 
drawn and illustrated in Fig. 2.

GO and pathway analysis of overlapping DEGs
In this step, GO, and KEGG pathway enrichment analy-
ses of the overlapping DEGs were performed through R 
language. Based on the pathway analysis results, DEGs 
were particularly enriched in “Protein digestion and 
absorption” (P.value: 5.45E-07 and Gene count: 10), “Gas-
tric acid secretion” (P.value: 4.28E-06 and Gene count: 
8), “Metabolism of xenobiotics by cytochrome P450” 
(P.value: 5.21E-06 and Gene count: 8). Top identified 
pathways were presented in Table  1; Fig.  3. The results 
of GO enrichment analysis of 203 DEGs determined the 
most significant GO terms in biological process (BP), cel-
lular component (CC), and molecular function (MF) as 
“primary alcohol metabolic process” (P.value: 3.54E-10 
and Gene count: 12), “basal part of cell” (P.value: 2.27E-09 
and Gene count: 17), and “extracellular matrix structural 
constituent conferring tensile strength” (P.value: 7.43E-09 
and Gene count: 8), respectively. Other BP, CC, and MF 
were obtained in this study. The most significant terms 
of CC, BP, and MF were presented in Tables 2, 3 and 4; 
Fig. 3. Other results of GO and KEGG pathway enrich-
ment analyses were presented in the supplementary file.

PPI networks
At this step, we used 203 DEGs to construct a PPI net-
work utilizing the STRING database and Cytoscape. 
The obtained network with 150 nodes and 416 edges is 
presented in Fig.  4. Subsequently, using the CytoHubba 
plugin, the ten hub genes, including COL1A1, COL1A2, 
TIMP1, SPP1, COL5A2, THBS2, COL4A1, MUC6, 
CXCL8, and BGN, were identified. A network of hub 
genes was built with 52 nodes and 220 edges (Fig.  5; 
Table 5).

http://string.embl.de/
http://gepia2.cancer-pku.cn/
http://ualcan.path.uab.edu/analysis.html
http://ualcan.path.uab.edu/analysis.html
http://kmplot.com/analysis/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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Validation of the gene expression
In this step, GEPIA was employed to investigate the 
expression levels of selected key genes in GC patients 
and healthy samples. The GEPIA results confirmed our 
data and reflected that all the selected hub genes except 
MUC6 were over-expressed in GC samples compared to 
normal samples. MUC6 was expressed at lower levels in 
GC compared with normal gastric tissues. All obtained 
results were significant (P < 0.05; Fig. 6).

Furthermore, the UALCAN results discerned that the 
expression pattern of the hub genes, including COL1A1, 
COL1A2, TIMP1, SPP1, COL5A2, THBS2, COL4A1, 
CXCL8, and BGN, were significantly higher in GC stages 
I–IV than normal samples, whereas MUC6 was signifi-
cantly downregulated in different stages of GC (Fig.  7). 
The obtained results were consistent with the finding 
of the selected microarray datasets, indicating that the 
expression of all hub genes except MUC6 was increased 
in GC.

Survival analysis of the hub genes
Overall survival curves were drawn to investigate the prog-
nostic values of the identified hub genes in 875 GC patients 
by using the Kaplan-Meier plotter. Based on the median 
expression of the candidate genes, patients were divided 
into two groups [1] those with a high expression level of the 
desired gene and [2] others with a low expression level of 
it. The analysis determined that eight of ten key genes were 
significantly associated with the prognosis of GC patients. 

Among them, high expressions of COL1A1 (P.value: 8.9E-5), 
COL1A2 (P.value: 0.0015), TIMP1 (P.value: 1.5E-10), THBS2 
(P.value: 1.2E-6), COL4A1 (P.value: 5.5E-7), MUC6 (P.value: 
0.0151), and BGN (P.value: 1.5E-10) were significantly corre-
lated with poor overall survival probability for GC patients 
(Fig.  8). High expression of CXCL8 (aka MDNCF) was 
detected to be associated with favorable overall survival 
(P.value: 1.5E-5). However, COL5A2 (P.value: 0.1769) and 
SPP1 (P.value: 0.2713) had nonsignificant log-rank p val-
ues and were independent of the prognosis of GC patients 
(Fig. 8).

Gene–miRNA interaction network
DIANA-TarBase v8 and miRTarBase were investigated for 
the miRNAs regulating the hub genes. A total of 101, 109, 
32, 30, 58, 134, 117, 15, 75, and 33 miRNA-gene interactions 
were found for COL1A1, COL1A2, TIMP1, SPP1, COL5A2, 
THBS2, COL4A1, MUC6, CXCL8, and BGN, respectively. 
After merging the lists of identified gene–miRNA interac-
tions, a single list containing ten miRNAs targeting more 
than four hub genes was chosen, including hsa-miR-27a-3, 
hsa-miR-941, hsa-miR-129-2-3p, hsa-miR-1-3p, hsa-miR-
145-5p, hsa-let-7b-5p, hsa-miR-29a-3p, hsa-miR-124-3p, 
hsa-miR-16-5p, and hsa-miR-7-5p (Table 6) (supplementary 
file). Four miRNAs, including hsa-miR-27a-3, hsa-miR-941, 
hsa-miR-129-2-3p, and hsa-miR-1-3p, were selected as top 
miRNAs since they interact with more than half of the iden-
tified hub genes. Moreover, Cytoscape was employed to 

Fig. 1 Venn diagram of the overlapping DEGs 203 common DEGs were detected between the two datasets (GSE54129 and GSE26942) using Venn dia-
gram software (http://bioinformatics.psb.ugent.be/webtools/Venn/). DEGs = Differentially Expressed Genes

 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 2 Volcano plots of DEGs in each GC dataset. Volcano Plot depicting DEGs between GC and control samples from GSE54129 and GSE26942 discrimi-
nated based on p-value and log2 fold-change. Colored dots represented genes with significant expression differences based on p-value (blue dots), only 
logFC (green dots), both p-value and log2 FC (red dots), or not significant in both terms (grey dots)
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Table 1 The most significant KEGG pathways based on P-value*
ID Description Count P-value geneID
hsa04974 Protein digestion and absorption 10 5.45E-07 COL18A1, SLC7A8, CPA2, COL10A1, COL8A1, COL6A3, COL5A2, 

COL4A1, COL1A2, COL1A1
hsa04971 Gastric acid secretion 8 4.28E-06 KCNE2, SST, KCNJ16, CHRM3, CCKBR, CA2, ATP4B, ATP4A
hsa00980 Metabolism of xenobiotics by cyto-

chrome P450
8 5.21E-06 SULT2A1, GSTA1, CYP3A5, ALDH3A1, ADH7, ADH1C, ADH1A, 

AKR7A3
hsa04512 ECM-receptor interaction 8 1.29E-05 THBS4, THBS2, SPP1, ITGA5, COL6A3, COL4A1, COL1A2, COL1A1
hsa00982 Drug metabolism - cytochrome P450 7 2.97E-05 MAOA, GSTA1, CYP3A5, ALDH3A1, ADH7, ADH1C, ADH1A
hsa00350 Tyrosine metabolism 5 7.73E-05 MAOA, ALDH3A1, ADH7, ADH1C, ADH1A
hsa00010 Glycolysis 6 0.003719 FBP2, ALDOB, ALDH3A1, ADH7, ADH1C, ADH1A
hsa00830 Retinol metabolism 6 0.000194 CYP3A5, CYP2C18, ALDH1A1, ADH7, ADH1C, ADH1A
hsa05204 Chemical carcinogenesis - DNA adducts 6 0.000211 SULT2A1, PTGS2, GSTA1, AKR1C2, CYP3A5, CYP2C18
hsa04972 Pancreatic secretion 6 0.001697 SLC12A2, RAB27B, PLA2G2A, CPA2, CHRM3, CA2
hsa04510 Focal adhesion 8 003609401 THBS4, THBS2, SPP1, ITGA5, COL6A3, COL4A1, COL1A2, COL1A1
*P-value < 0.05 was considered significant

Fig. 3 Gene Ontology and Pathway Analysis of overlapping DEGs. The most significant terms of BP, CC, MF, and KEGG pathways for overlapping DEGs 
were discovered and visualized using R software. The terms with a p.value and adjusted p.value < 0.05 were considered significant
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visualize the miRNA-gene interactions in a network with 27 
nodes and 56 edges (Fig. 9).

Discussion
In spite of a gradual decrease in the incidence and mortality 
rate, GC is still considered a leading cause of cancer mortal-
ity worldwide [1]. Besides, the early diagnosis and survival 
rate are still unfavorable for this cancer [34]. Therefore, it is 
critical to understand the underlying mechanisms and to 
determine biomarkers for developing strategies for screen-
ing, early diagnosis, and novel therapies for GC [35]. Hence, 
finding novel prognostic factors and/or biomarkers for early 
detection is required to improve patient outcomes.

In this study, we identified 203 DEGs in two GEO datas-
ets of GC, GSE54129 and GSE26942. GO, and KEGG path-
way enrichment analyses determined “Protein digestion 

and absorption,” “primary alcohol metabolic process,” “basal 
part of cell,” and “extracellular matrix structural constituent 
conferring tensile strength” as the most significant cancer-
related pathways, BP, CC, and MF terms in which DEGs 
were enriched. The STRING and Cytoscape were employed 
to construct the PPI network. The plugin of CytoHubba 
introduced the top 10 hub genes, including COL1A1, 
COL1A2, COL5A2, COL4A1, TIMP1, SPP1, THBS2, 
MUC6, CXCL8, and BGN. All identified hub genes, except 
COL5A2 and SPP1, were significantly correlated with the 
overall survival of GC patients. After verifying the expres-
sion of all hub genes in GC, the miRNA-mRNA interactions 
were predicted for them. Among identified miRNAs, hsa-
miR-27a-3, hsa-miR-941, hsa-miR-129-2-3p, and hsa-miR-
1-3p, selected as top miRNAs interacting with more than 
half of the hub gene list.

Table 2 The most significant BP terms based on P-value*
BP terms P-value Count geneID
primary alcohol metabolic process 3.54E-10 12 AKR1B10, AKR1C3, SULT2A1, SCNN1B, AKR1C2, CYP3A5, CYP2C18, AKR1C4, 

ALDH1A1, ADH7, ADH1C, ADH1A
hormone metabolic process 4.95E-10 16 AKR1B10, AKR1C3, SULT2A1, SPP1, SCNN1B, KLK6, FOXA1, AKR1C2, CYP3A5, 

CYP2C18, CTSL, AKR1C4, ALDH1A1, ADH7, ADH1C, ADH1A
tissue homeostasis 1.32E-09 17 VSIG1, CLDN18, SLC28A2, CLDN1, TFF2, TFF1, SPP1, SLC12A2, PTGS2, PIGR, MUC6, 

GCNT2, FOXC1, CLDN3, CDH3, CA2, ALDH1A1
olefinic compound metabolic process 3.77E-09 13 AKR1B10, AKR1C3, SCNN1B, PTGS2, GSTA1, AKR1C2, CYP3A5, CYP2C18, AKR1C4, 

ALDH1A1, ADH7, ADH1C, ADH1A
Digestion 1.08E-08 12 CAPN8, VSIG1, GKN1, CAPN9, TFF2, TFF1, SST, PGC, MUC6, AKR1C2, CHRM3, CCKBR
cellular hormone metabolic process 1.08E-08 12 AKR1B10, AKR1C3, SPP1, SCNN1B, AKR1C2, CYP3A5, CYP2C18, AKR1C4, ALDH1A1, 

ADH7, ADH1C, ADH1A
anatomical structure homeostasis 1.42E-08 17 VSIG1, CLDN18, SLC28A2, CLDN1, TFF2, TFF1, SPP1, SLC12A2, PTGS2, PIGR, MUC6, 

GCNT2, FOXC1, CLDN3, CDH3, CA2, ALDH1A1
retinol metabolic process 2.82E-08 8 AKR1B10, AKR1C3, CYP3A5, CYP2C18, ALDH1A1, ADH7, ADH1C, ADH1A
retinoid metabolic process 9.98E-08 9 AKR1B10, AKR1C3, CYP3A5, CYP2C18, AKR1C4, ALDH1A1, ADH7, ADH1C, ADH1A
diterpenoid metabolic process 1.87E-07 9 AKR1B10, AKR1C3, CYP3A5, CYP2C18, AKR1C4, ALDH1A1, ADH7, ADH1C, ADH1A
*P-value < 0.05 was considered significant

Table 3 The most significant CC terms based on P-value*
CC terms P-value Count geneID
basal part of cell 2.27E-09 17 VSIG1, GKN2, PROM2, SLC7A8, HEPH, CLDN1, SLC12A2, REG1A, LEPR, KCNJ16, HPGD, 

FAP, CHRM3, CEACAM5, CA9, CA2, AQP4
apical part of cell 2.28E-09 21 PROM2, MUC17, SLC26A9, SLC44A4, SLC7A8, CLDN1, SORBS2, THY1, SLC12A2, SCNN1G, 

SCNN1B, SCNN1A, RAB27B, MUC1, MAL, FAP, CTSL, CEACAM5, CA2, ATP4B, ATP4A
apical plasma membrane 4.44E-09 19 PROM2, MUC17, SLC26A9, SLC44A4, SLC7A8, CLDN1, SORBS2, THY1, SLC12A2, SCNN1G, 

SCNN1B, SCNN1A, RAB27B, MUC1, MAL, CTSL, CEACAM5, ATP4B, ATP4A
collagen-containing extracel-
lular matrix

8.63E-09 20 MUC17, CTHRC1, COL18A1, NTN4, SULF1, TIMP1, THBS4, THBS2, SERPINE2, SERPINE1, 
LGALS1, CTSL, COL10A1, COL8A1, COL6A3, COL5A2, COL4A1, COL1A2, COL1A1, BGN

basolateral plasma membrane 7.59E-08 14 VSIG1, PROM2, SLC7A8, HEPH, CLDN1, SLC12A2, LEPR, KCNJ16, HPGD, CHRM3, 
CEACAM5, CA9, CA2, AQP4

collagen trimer 1.95E-07 9 CTHRC1, COL18A1, COL10A1, COL8A1, COL6A3, COL5A2, COL4A1, COL1A2, COL1A1
basal plasma membrane 2.81E-07 14 VSIG1, PROM2, SLC7A8, HEPH, CLDN1, SLC12A2, LEPR, KCNJ16, HPGD, CHRM3, 

CEACAM5, CA9, CA2, AQP41
endoplasmic reticulum lumen 5.41E-07 15 COL18A1, PDIA2, MZB1, TIMP1, SPP1, PTGS2, LGALS1, COL10A1, COL8A1, COL6A3, 

COL5A2, COL4A1, COL1A2, COL1A1, ARSD
complex of collagen trimers 1.59E-06 5 COL8A1, COL5A2, COL4A1, COL1A2, COL1A1
basement membrane 4.66E-05 7 COL18A1, NTN4, TIMP1, THBS4, THBS2, COL8A1, COL4A1
*P-value < 0.05 was considered significant
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Table 4 The most significant MF terms based on P-value*
MF terms P-value Count geneID
extracellular matrix structural constituent conferring tensile 
strength

7.43E-09 8 COL18A1, COL10A1, COL8A1, COL6A3, COL5A2, COL4A1, 
COL1A2, COL1A1

oxidoreductase activity, acting on CH-OH group of donors 1.56E-08 12 AKR1B10, AKR7A3, PTGR1, AKR1C3, LIPF, HPGD, AKR1C2, 
AKR1C4, ALDH3A1, ADH7, ADH1C, ADH1A

extracellular matrix structural constituent 2.52E-08 13 MUC17, CTHRC1, COL18A1, THBS2, MUC6, COL10A1, 
COL8A1, COL6A3, COL5A2, COL4A1, COL1A2, COL1A1, BGN

oxidoreductase activity, acting on the CH-OH group of donors, 
NAD or NADP as acceptor

5.97E-08 11 AKR1B10, AKR7A3, PTGR1, AKR1C3, HPGD, AKR1C2, 
AKR1C4, ALDH3A1, ADH7, ADH1C, ADH1A

oxidoreductase activity, acting on the aldehyde or oxo group of 
donors

2.93E-07 7 AKR1B10, AKR1C3, ALDH6A1, AKR1C4, ALDH3A1, AL-
DH1A1, ADH7

aldo-keto reductase (NADP) activity 4.15E-07 6 AKR1B10, AKR7A3, AKR1C3, AKR1C2, AKR1C4, ALDH3A1
D-threo-aldose 1-dehydrogenase activity 8.19E-07 5 AKR1B10, AKR7A3, AKR1C3, AKR1C2, AKR1C4
oxidoreductase activity, acting on the aldehyde or oxo group of 
donors, NAD or NADP as acceptor

1.90E-06 6 AKR1B10, AKR1C3, ALDH6A1, AKR1C4, ALDH3A1, ALDH1A1

alcohol dehydrogenase (NADP+) activity 2.44E-06 5 AKR1B10, AKR1C, AKR1C2, AKR1C4, ALDH3A1
alditol:NADP + 1-oxidoreductase activity 4.94E-06 4 AKR1B10, AKR1C3, AKR1C2, AKR1C4
*P-value < 0.05 was considered significant

Fig. 4 PPI Network of overlapping DEGs. The PPI network with 150 nodes and 416 edges was constructed via Cytoscape
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Our results revealed the implication of different collagen 
family members, including COL1A1, COL4A1, COL5A2, 
and COL4A1, in GC samples. As critical parts of the ECM 
component, the members of this family are closely related 
to tumor prognosis, proliferation, invasion, and drug resis-
tance [36]. COL1A1 and COL1A2 are overexpressed in 
GC and promote cell proliferation, invasion, and migration 
[37–39]. Li et al. shed light on the potential of COL1A1 
as a monitoring factor for screening early GC. Besides, 
their results revealed a link between the overexpression 
of COL1A1 and COL1A2 with a poor overall survival rate 
of GC [40]. Previously, other studies proposed COL1A1, 
COL1A2, and COL4A1 as candidate diagnostic markers 
for this cancer [41, 42]. COL4A1 has been suggested as a 
potential biomarker and inflammation-related target for 

Table 5 Top 10 hub genes in network Ranked by Degree 
method
Rank Name Ensembl Score
1 COL1A1 ENSG00000108821 25
2 COL1A2 ENSG00000164692 20
3 TIMP1 ENSG00000102265 19
4 SPP1 ENSG00000118785 18
5 COL5A2 ENSG00000204262 17
5 THBS2 ENSG00000186340 17
7 COL4A1 ENSG00000187498 16
7 MUC6 ENSG00000184956 16
7 CXCL8 ENSG00000169429 16
7 BGN ENSG00000182492 16

Fig. 5 PPI Network of top 10 hub genes. The PPI network with 52 nodes and 220 edges was constructed via Cytoscape
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Fig. 7 Correlation between the expression levels of each identified hub gene and various stages of gastric cancer. Box-whisker plots made by UALCAN 
showed the expression of hub genes, including COL1A1, COL1A2, TIMP1, SPP1, COL5A2, THBS2, COL4A1, CXCL8, and BGN, elevated in different stages of 
gastric cancer (stages 1, 2, 3, and 4) in TCGA samples. MUC6 is downregulated in the GC stages

 

Fig. 6 mRNA expression of identified hub genes. Comparison of expression levels of 10 identified hub genes, including COL1A1, COL1A2, TIMP1, SPP1, 
COL5A2, THBS2, COL4A1, MUC6, CXCL8, and BGN, in gastric cancer tissue (red; n = 408) and normal tissues (black; n = 211) using the GEPIA2 database. * 
P value < 0.05
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GC [43]. In silico studies have shed light on the potential 
of COL4A1 in conferring trastuzumab resistance and pro-
moting gastric carcinoma recurrence [44, 45]. Additionally, 
COL4A1 has been implicated in trastuzumab resistance 
in gastric cancer, potentially conferring resistance to this 
targeted therapy [46]. Biglycan (BGN) is another critical 
component of ECM proteins involved in the development 
and aggressiveness of GC [47, 48]. This gene may impli-
cate GC progression and development through the chronic 
activating of tumor angiogenesis [48]. A link was detected 
between BGN overexpression and worse clinical and prog-
nostic parameters of GC [47, 49]. The mechanism of BGN-
induced gastric cancer involves the induction of epithelial to 

Table 6 Top Gene–miRNA Interactions
Gene microRNA
COL1A1, COL1A2, COL5A2, CXCL8, MUC6, SPP1, 
THBS2, TIMP1

hsa-miR-27a-3p

COL1A1, COL1A2, COL5A2, CXCL8, SPP1, THBS2 hsa-miR-941
BGN, COL1A1, COL4A1, CXCL8, SPP1, THBS2 hsa-miR-129-2-3p
BGN, COL1A1, COL4A1, COL5A2, CXCL8, THBS2 hsa-miR-1-3p
COL1A1, COL1A2, COL5A2, SPP1, TIMP1 hsa-miR-145-5p
COL1A1, COL1A2, COL4A1, CXCL8, TIMP1 hsa-let-7b-5p
COL1A1, COL1A2, COL4A1, COL5A2, CXCL8 hsa-miR-29a-3p
COL1A1, COL4A1, CXCL8, SPP1, TIMP1 hsa-miR-124-3p
BGN, COL1A1, COL4A1, CXCL8, SPP1 hsa-miR-16-5p
COL1A2, COL4A1, COL5A2, CXCL8, SPP1 hsa-miR-7-5p

Fig. 9 miRNA-gene interaction network. The miRNA-gene interaction network with 27 nodes and 56 edges was constructed via Cytoscape

 

Fig. 8 Kaplan–Meier overall survival analysis for the top 10 hub genes. High expression of COL1A1, COL1A2, TIMP1, THBS2, COL4A1, MUC6, and BGN was 
associated with poor overall survival of GC patients. On the other hand, high expression of CXCL8 (aka MDNCF) was found to be associated with favorable 
overall survival. The expression of COL5A2 and SPP1 was not related to the overall survival of GC patients. GC: gastric cancer
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mesenchymal transition (EMT) and upregulation of chro-
matin reprogramming factors [50]. The tissue inhibitor 
of metalloproteinases 1 (TIMP1) is an important player 
in ECM remodeling [51]. Preoperative TIMP1 expression 
level in peripheral blood may link to the GC stage, suggest-
ing its potential application as a marker for tumor invasion 
and metastasis [52]. Hence, the expression level of TIMP1 
has been suggested as a clinical biomarker for the screening, 
diagnosis, and prognostic of GC [52–54]. An in-silico study 
identified a correlation between overexpression of COL4A1, 
TIMP1, and COL1A2 with worse overall survival in GC 
[55]. Secreted phosphoprotein 1 (SPP1), an acidic glyco-
protein known as osteopontin (OPN), participated in EMT 
and tumor metastasis [56]. Research showed that SPP1 
suppresses the Wnt/β-catenin pathway, thereby enhanc-
ing the radiosensitivity of GAC through inhibition of inva-
sion and acceleration of DNA damage, G2/M phase arrest, 
and apoptosis [57]. Lu et al. using bioinformatics analysis 
identified that SPP1 and FN1 were upregulated in GC than 
normal samples in their selected datasets [58]. Another 
study demonstrated that type I collagen promoted TIC-like 
phenotypes and chemoresistance through ITGB1/YBX1/
SPP1/NF-κB pathway [59]. Thrombospondin 2 (THBS2) 
a member of the thrombospondin family, has been sug-
gested as an early diagnostic marker for patients with GC 
[60]. Wang et al. showed that while SPP1 had no significant 
association with GC overall survival, high expression level 
of THBS2 in GC patients was correlated with shorter sur-
vival time [61] [60].Bioinformatics reanalysis suggested the 
prognostic value of COL1A1, COL1A2, and THBS2 in GC. 
KEGG reanalysis determined that these genes, together 
with COL2A1 and COL11A1, were enriched in the ECM-
receptor interaction pathways [62].MUC6, Musin 6, is a 
marker of gastric foveolar and antral mucous glandular cells 
that shows gastric phenotypes. literatures indicated that the 
expression of MUC6 was regulated by promoter methyla-
tion which lead to the downregulation of MUC6 in GC and 
induce the progression of GC [63]. Zheng et al. reported a 
link between the downregulation of MUC6 with progres-
sion, poor prognosis, and metastasis of GC [64]. Consid-
ering transcriptomics and single-cell sequencing, another 
study suggested BGN and COL5A2 as GC diagnostic and 
prognostic biomarkers applicable for predicting drug sen-
sitivity in GC [49]. Despite controversial evidence regard-
ing the link between the expression level of COL5A2 and 
the survival of GC patients [49, 65–68], Zhang et al. and 
Cao et al. confirmed our results by reporting no significant 
correlation between COL5A2 and the overall survival of 
GC patients [66, 69]. Studies have also demonstrated that 
serum CXCL8 levels can significantly predict GC risk and 
reveal a role of the CXCL8/CXCR2 axis and inflammation 
in the pathogenesis of this malignancy [70]. CXCL8, which 
is primarily secreted by macrophages in gastric cancer, is 
linked to poor clinical outcomes and tumor progression. 

CXCL8 promotes an immunosuppressive environment by 
increasing PD-L1 expression on macrophages, hindering 
CD8 + T-cell function, and limiting infiltration [71]. Several 
studies identified positive impacts of higher levels of CXCL8 
expression on the overall survival of GC patients [72–75].

Several studies highlighted the role of hsa-miR-27a-3p 
as oncomiR upregulated in GC [76–78]. Moreover, miR-
27a-3p/BTG2 axis was proposed as not only a promising 
diagnostic biomarker but also a potential therapeutic tar-
get for GC patients [77]. Previously, the link between over-
expression of miR-27a and significant up-regulation of 
COL1A2 was reported in hepatic stellate cells [79]. An 
inverse correlation between miR-27a-3p and CXCL8 was 
reported [80]. MicroRNA-27a-3p negatively regulates 
SPP1 to inhibit lung and skin fibrosis of systemic sclerosis 
[81]. MiR-129-2-3p regulates cell proliferation in GC cells 
[82]. Gastric juice miR-129-2-3p has been suggested as a 
potential biomarker for the screening GC [83]. MiR-129-5p 
regulates GC invasion through interacting with IL-8 and 
COL1A1 [84, 85]. The interaction between COL1A1 and 
MiR-129-5p has been proposed as a potential therapeutic 
target for GC [86]. MiR-1-3p is another miRNA suppress-
ing proliferation and invasion of GC cells [87]. Although the 
role of miR-941 has been investigated in several cancers, 
such as breast and prostate cancer [88, 89], its association 
has not been reported with GC. Previous studies supported 
our results and revealed the link between selected miRNAs 
and GC. However, at the time of this study, most of the 
miRNA-gene interactions identified in this study have not 
been investigated in GC.

The results of this study provide a more comprehensive 
understanding of the underlying mechanisms of GC and 
suggest novel biomarkers for prognosis and diagnosis, as 
well as therapeutic targets for GC patients. The most impor-
tant limitation of our study is the lack of experimental work 
to validate the results obtained from bioinformatics meth-
ods. Therefore, further studies with larger sample sizes, ani-
mal models, and clinical tissue verification are required to 
confirm our results.

Conclusion
In conclusion, using two datasets obtained from the GEO 
database and integrated bioinformatics analysis, ten GC-
associated hub genes were found. Except for MUC6, the 
expression of other hub genes was revealed to be upregu-
lated in GC. The overexpression of seven hub genes was 
associated with GC’s poor overall survival. Then, the 
miRNA-mRNA interactions were predicted for each hub 
gene. Although more experimental investigations with 
larger sample sizes are required to validate the findings of 
the present study, we hope that our results will assist in the 
discovery of novel biomarkers and therapeutic targets for 
GC and advance the understanding of its pathogenesis.
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