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Abstract 

Background  Type 2 diabetes mellitus (T2DM) is an established risk factor for acute ischemic stroke (AIS). Although 
there are reports on the correlation of diabetes and stroke, data on its pathogenesis is limited. This study aimed 
to explore the underlying biological mechanisms and promising intervention targets of diabetes-related stroke.

Methods  Diabetes-related datasets (GSE38642 and GSE44035) and stroke-related datasets (GSE16561 and GSE22255) 
were obtained from the Gene Expression omnibus (GEO) database. The key modules for stroke and diabetes were 
identified by weight gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes Genomes (KEGG) analyses were employed in the key module. Genes in stroke- and diabetes-related key 
modules were intersected to obtain common genes for T2DM-related stroke. In order to discover the key genes 
in T2DM-related stroke, the Cytoscape and protein–protein interaction (PPI) network were constructed. The key genes 
were functionally annotated in the Reactome database.

Results  By intersecting the diabetes- and stroke-related crucial modules, 24 common genes for T2DM-related stroke 
were identified. Metascape showed that neutrophil extracellular trap formation was primarily enriched. The hub gene 
was granulin precursor (GRN), which had the highest connectivity among the common genes. In addition, functional 
enrichment analysis indicated that GRN was involved in neutrophil degranulation, thus regulating neutrophil extracel-
lular trap formation.

Conclusions  This study firstly revealed that neutrophil extracellular trap formation may represent the common bio-
logical processes of diabetes and stroke, and GRN may be potential intervention targets for T2DM-related stroke.
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Introduction
Stroke is the second leading cause of death and disability 
worldwide, accounting for 17% of total deaths [1]. Type 
2 diabetes (T2D) and ischemic stroke (IS) are common 
disorders that often arise together. Patients with diabe-
tes have more than double risk of IS, relative to individu-
als without diabetes [2]. Despite significantly increased 
risk, there is a paucity of available treatments that spe-
cifically target the risk of stroke in subjects with diabe-
tes [3]. Instead, current strategies for managing diabetes 
related stroke focus on the control of multiple risk fac-
tors, such as lipid profiles, blood pressure, smoking ces-
sation, weight control, and glycemic management using 
lifestyle or drug interventions [3, 4]. Studying mecha-
nism and downstream signaling of neuronal injury allows 
development of better stroke treatments. The effects of 
hyperglycaemia on the risk of cardiovascular disease are 
largely tissue-specific and pathway-specific. Impaired 
endothelial function, low-grade inflammation, AGEs, 
thrombosis, fibrinolysis and modifications of lipoprotein 
particles increase the risk of cardiovascular events [5]. 
The pathophysiology of diabetes-related stroke involves 
abnormalities in the endothelial, vascular smooth muscle 
cell, and platelet function [6]. Diabetes alters the struc-
ture and function of blood vessels, modulates immune 
function, and increases production of several prothrom-
botic factors. Over time, capillaries, arterioles, and arter-
ies become increasingly stiff, tortuous, and narrowed [7]. 
The physiological processes critical to thrombogenesis, 
such as neuroinflammation, neuroplasticity, cerebral vas-
oreactivity, and blood–brain barrier (BBB) permeability, 
are compromised [8]. The molecular biological mecha-
nisms by which diabetes exacerbates brain injury, how-
ever, has not been completely elucidated.

Detection of changes in gene expression about the 
process of diabetes and ischemic stroke using multi-
ple functional genomic approaches can improve our 
understanding of the molecular mechanisms involved in 
T2DM-related stroke. But in the vast majority of cases, 
it focuses more on the effect of individual genes during 
analysis of gene differential expression, while ignoring 
the interaction of genes in complex biological gene net-
works, and fails to establish the relationship between 
illnesses and genes. Currently, the researches about 
WGCNA and diabetes were primarily focused on the 
function of pancreas [9], diabetic kidney [10], diabetic 
nephropathy [11], diabetic cardiomyopathy [12], and 
etc. Genetic factors occupy an irreplaceable role both in 
the pathogenesis of stroke and diabetes mellitus. Hence, 
exploring interactions at the gene level contributes to 
understand the correlation between diabetes and stroke. 
Weight gene co-expression network analysis (WGCNA) 
is an advanced analytical approach for discovering 

genetic network-disease relationship and gene–gene rela-
tionship, with the advantages of high sensitivity and sys-
tem-level insight to genes with small fold change or low 
abundance [13]. The WGCNA approach has provided 
functional interpretation tools in system biology and has 
been increasingly used to construct co-expressed gene 
networks employed in the cardiovascular field [14, 15].

The purpose of this research was to reveal the biologi-
cal processes of T2DM-related stroke by identifying the 
shared biological processes in stroke and diabetes co-
expression networks. We identified key genes from the 
common genes of diabetes and stroke to pinpoint prom-
ising therapeutic targets for T2DM-related stroke.

Materials and methods
Dataset download
A flow chart for the present research is shown in Fig. 1. 
We used the term “ischemic stroke” and “diabetes” to 
search for ischemic stroke and diabetes’ gene expres-
sion profiles in GEO database (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/). The obtained mRNA microarray data-
sets were screened by the following criteria. First, these 
datasets must provide raw data that can be further ana-
lyzed. Second, profile information should include both 
case and control groups. Two stroke-related datasets 
(GSE38642 and GSE44035) and two diabetes-related 
datasets (GSE16561 and GSE22255) were chosen for next 
research (Table  1). The GSE38642 dataset comprised 
54 non-diabetic controls and 9 diabetic patients and is 
based on the GPL6244 platform (Affymetrix Human 
Gene 1.0 ST Array). The GSE44035 dataset, which is also 
based on the GPL6244, comprised 9 non-diabetes con-
trols and 1 patient with diabetes. In dataset GSE16561, 
which was produced on the GPL6883 platform (Illumina 
HumanRef-8 v3.0 expression beadchip), peripheral blood 
from 39 ischemic stroke patients and 24 healthy control 
subjects. Finally, the GSE22255 dataset was based on 
GPL570 platform (Affymetrix Human Genome U133 
Plus 2.0 Array) and comprised 20 patients with ischemic 
stroke and 20 healthy controls.

Data preprocessing
Batch effects were removed with a time specific algo-
rithm within LIMBR, based on Surrogate Variable Anal-
ysis (SVA) [16]. The results of batch effect elimination 
were presented through a PCA graph and box plot. Probe 
identifications (IDs) in the gene expression matrix were 
reannotated as gene symbols. Changes in gene expression 
levels were reported as log2 values. Subsequently, the 
stroke datasets were combined and a new gene expres-
sion profile for all samples was formed. The two stroke 
datasets were combined together into one new gene 
expression profile for all samples. Finally, we annotated 

http://www.ncbi.nlm.nih.gov/geo/
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the gene symbols of gene expression matrix as Entrez 
IDs by utilizing the org.Hs.eg.db package for subsequent 
analysis.

Differential gene expression analysis
The limma package was applied to identify differentially 
expressed genes (DEGs) between case and control groups 
in diabetes and stroke with the following selection cri-
teria: P-value of < 0.05, thresholds of |log FC|≥ 0.4. The 
hierarchical clustering analysis and volcano plot were 
represented by the R packages “pheatmap” and “ggplot2”, 
respectively.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA), based on func-
tional categories, has been proved to be one of the 
most powerful and popular tools for analyzing gene 

enrichment pathway [17]. We used GSEA to compare 
the biological pathways between case and control groups. 
KEGG gene sets as Gene Symbols were chosen as the 
gene set database. The settings for the GSEA run include: 
(1) number of gene set permutations were set to 1000 and 
(2) collapse dataset to gene symbols = TRUE.

Weight gene co‑expression network analysis
Correlation networks are increasingly being used in 
bioinformatics applications. WGCNA is known as an 
algorithm in R-studio software for discovering the co-
expressed gene modules, summarizing such clusters 
using an intramodular hub gene or the modules eigen-
gene, relating modules to external sample traits, and 
calculating module membership measures. Correlated 
network based on gene screening methods can be used 
to identify candidate biomarkers [18]. In this research, we 
used WGCNA to create the co-expressed gene networks 
of diabetes and stroke. Firstly, we performed sample clus-
tering to detect outliers. The “pickSoftThreshold” algo-
rithm was used to select an appropriate soft threshold (β) 
and to obtain a biologically significant scale-free network 
(scale independence of > 0.8). Then gene–gene correla-
tion matrix was built to describe the degree of association 
among nodes. The adjacency matrix was converted into 
a topological overlap matrix (TOM) using the “TOM-
similarity” algorithm. In order to identify co-expression 
modules, the gene hierarchical clustering dendrogram 

Fig. 1  The research flowchart of data preparation and analysis. SVA: surrogate variable analysis; WGCNA: weighted gene co-expression network 
analysis; GSEA: Gene set enrichment analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein–protein 
interaction

Table 1  Data collection

Condition Tissue GEO dataset Platform Number 
of 
samples

Diabetes Islets GSE38642 GPL6244 63

Diabetes Islets GSE44035 GPL6244 10

Ischemic stroke Peripheral blood GSE16561 GPL6883 63

Ischemic stroke Peripheral blood GSE22255 GPL570 40
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was obtained. The module eigengene (ME), as well as the 
correlation between clinical traits and ME were then cal-
culated by spearman correlation analysis and hierarchical 
clustering to identify clinical-related modules.

GO and KEGG enrichment analyses of genes 
in disease‑related key modules
Gene ontology (GO) describes the overrepresented bio-
logical functions. Three independent ontologies acces-
sible are being constructed: molecular function, cellular 
component, and biological process [19]. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment 
analyses is a reference knowledge base for biological 
interpretation of large-scale molecular datasets, such as 
metagenome and genome sequences [20–23]. GO and 
KEGG analyses for diabetes and stroke related key mod-
ules were performed using the R clusterProfiler package.

Detection of shared and key genes in T2DM‑related stroke
The common genes of T2DM-related stroke were dis-
covered by intersecting diabetes-related crucial mod-
ules with stroke-related crucial modules. Furthermore, 
the STRING website (https://​string-​db.​org/) was used 
to build the protein–protein interaction (PPI) rela-
tionships. STRING (version 11.5) covers 67,592,464 
proteins from 14094 organisms and 20,052,394,042 
interactions. We selected the gene symbol as input of 
website https://​cn.​string-​db.​org/, then chose multiple 
proteins, used gene symbol as list of names, and select 
homo sapiens as organism. The cytoHubba plug-in in 

Cytoscape (version 3.9.1) was employed to obtain the 
hub genes of T2DM-related stroke.

Enriched biological processes of common and crucial 
genes in T2DM‑related stroke
The GO vocabularies, which include biological processes 
(BPs), molecular functions (MFs), and cellular components 
(CCs), were performed using Metascape (http://​metas​cape.​
Org/​gp/) to find significantly enriched terms (P value ≤ 0.01) 
[24]. The biological pathways associated with hub genes 
were annotated and visualized using Reactome Database 
(https://​react​ome.​org), which is an open-access, open-
source, peer-reviewed, and manually curated database [25]. 
The R code is available in Supplementary material.

Results
Integrated screening for genes and GSEA analysis 
in diabetes and stroke
Four GEO datasets were used for the identification 
of diabetes and stroke-associated genes (Table  1). As 
shown in Figs. 2 and 3, batch effects have been removed 
by sva package in all samples from the stroke and diabe-
tes datasets. We then used “limma” R package to iden-
tified differentially expressed genes (DEGs) between 
case and control group in diabetes and stroke. In total, 
81 upregulated genes and 153 downregulated genes 
were included in patients with diabetes (Fig.  4A and 
B). 158 upregulated genes and 29 downregulated genes 
were included in IS patients (Fig.  4C and D) based on 
the criteria p < 0.05 and |logFC|≥ 0.4. GSEA was used to 

Fig. 2  Batch effects considered in analysis. A, B the distribution of stroke samples before elimination of batch effect. C, D the distribution of stroke 
samples after eliminating the batch effect

https://string-db.org/
https://cn.string-db.org/
http://metascape.Org/gp/
http://metascape.Org/gp/
https://reactome.org
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reveal the potential molecular mechanisms of diabetes 
and stroke based on all gene information in the gene 
expression matrix. The most highly enriched pathways 
by enrichment score in diabetes related datasets were 
related to oxidative phosphorylation, ribosome bio-
genesis in eukaryotes, hematopoietic cell lineage, and 
cytokine-cytokine receptor interaction (Fig.  4E and 
G). The enrichment analysis of gene sets about stroke 
revealed that compared to control samples, TNF sign-
aling pathway, neutrophil extracellular trap formation, 
IL-17 signaling pathway, lipid and atherosclerosis, ribo-
some biogenesis in eukaryotes, and primary immuno-
deficiency (Fig. 4F and H). According to GSEA analysis, 
ribosome biogenesis in eukaryotes was the common 
biological pathway relevant to the pathogenesis of dia-
betes and stroke.

Stroke‑related key module identification
In stroke datasets, the appropriate soft-thresholding 
power was chosen based on the number of samples 
to make the resulting networks conservative (if num-
ber of samples ≥ 40, unsigned and signed hybrid net-
works = 6). Network topology analysis of different soft 
threshold power was shown in Fig.  5A. Each module 
was represented by a different color. Based on spear-
man coefficient, the relationships between modules 
were assessed through a heatmap about module-trait 
relationships (Fig. 5B and C). The heatmaps of the cor-
relation between values of clinical features and module 
eigengene showed that the salmon (r = 0.44, p < 0.05), 

darkgrey (r = 0.3, p = 0.002), red (r = 0.37, p < 0.05), 
and magenta (r = 0.36, p < 0.05) modules were highly 
positively related with stroke (Fig.  5D-F). As a result, 
the four modules were classified as stroke-related cru-
cial modules. GO and KEGG analyses were performed 
on the genes of key modules (Fig. 5G and H). The GO 
analyses demonstrated that these genes were primarily 
related to positive regulation of cytokine production, 
immune response-regulating signaling pathway, regula-
tion of response to biotic stimulus, NF-kappa B sign-
aling, cellular response to biotic stimulus, and myeloid 
leukocyte activation in biological processes. In terms 
of cell components, genes were primarily enriched in 
secretory granule membrane, vacuolar membrane, 
lysosomal membrane, lytic vacuole membrane, and 
ficolin-1-rich granule. Furthermore, molecular func-
tion was primarily enriched in the immune receptor 
activity, hydrolase activity, NAD + nucleosidase activ-
ity, pattern recognition receptor activity, and ATPase-
coupled ion transmembrane transporter activity. Next, 
we performed KEGG analysis on the genes in the four 
modules (Fig.  5H). The findings revealed an associa-
tion between the TNF signaling pathway, NF-kappa 
B signaling pathway, lipid and atherosclerosis, toll-
like receptor signaling pathway, apoptosis, neutrophil 
extracellular trap formation.

Diabetes‑related key module identification
In the stroke and diabetes-related datasets, we found co-
expressed gene modules using WGCNA. As illustrated 

Fig. 3  Batch effects considered in analysis. A, B the distribution of diabetes samples before elimination of batch effect. C, D the distribution 
of diabetes samples after eliminating the batch effect
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Fig. 4  Identification and pathway analyses of differentially expressed genes (DEGs). A Heatmap of DEGs in diabetes related datasets; B Volcano 
plots showing the differential genes in diabetes related dataset. C Heatmap of DEGs in stroke related datasets; D Volcano plots showing 
the differential genes in stroke related dataset. E, F Ridgeline plot showing KEGG pathways enrichment in diabetes (E) and stroke (F). G, H Gene set 
enrichment analysis (GSEA) plots showing the most enriched gene sets of all detected genes in the diabetes (G) and stroke (H) samples



Page 7 of 14He et al. BMC Medical Genomics            (2024) 17:8 	

in Fig. 6A, the scale-free topological index was 0.8 when 
the soft thresholds for diabetes was 6. The derived gene 
dendrograms and corresponding module colors were 

showed in Fig.  6B and C. The correlations between the 
two phenotypes (disease and health states) were cal-
culated by the hierarchical clustering and spearman 

Fig. 5  Construction of weighted co-expression network for stroke-related datasets. A Network topology analysis of different soft threshold power. 
B Dendrograms of genes acquired by mean linkage hierarchical clustering. C The relationship between trait and modules. Correlation coefficients 
and corresponding P value are listed for each module. D The genes in the salmon module were significantly correlated with stroke. E Heatmap 
depicts the Topological Overlap Matrix (TOM) of genes selected for weighted co-expression network analysis. F Heatmaps and hierarchical cluster 
dendrograms of clinical traits and module eigengene. G, H The GO and KEGG pathways in key modules
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Fig. 6  Construction of weighted co-expression network for diabetes-related datasets. A The value of scale independence on the left and the value 
of mean connectivity on the right. B The relationship between trait and modules. Correlation coefficients and corresponding P value are 
listed for each module. C The cluster dendrogram of all gene were grouped into different modules. D The genes in the steelblue module were 
significantly correlated with diabetes. E Network heatmap of all genes (a color change from red to yellow indicates a high degree of overlap 
between modules). F Heatmaps and hierarchical cluster dendrograms of clinical traits and module eigengene. G, H The GO and KEGG pathways 
in key modules
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correlation analyses. Three modules “steelblue”, “dark 
red”, and “Grey60” had a highly positive association with 
diabetes, which were chosen as diabetes-related modules 
(steelblue: r = 0.28, p = 0.02; dark red: r = 0.23, p = 0.05; 
Grey60: r = 0.24, p = 0.05) (Fig. 6D-F). We conducted GO 
and KEGG enrichment analysis on the genes included 
diabetes-related key modules, as well as pathway annota-
tion of key diabetes-related genes, to discover the under-
lying molecular biological process of diabetes (Fig.  6G 
and H). The GO terms of biological processes showed 
that they were primarily enriched in membrane lipid 
metabolic process, cellular lipid catabolic process, gly-
colipid metabolic process, and liposaccharide metabolic 
process (Fig.  6G). With regard to cellular components, 
these genes were primarily enriched in lysosomal mem-
brane, lytic vacuole membrane, vacuolar lumen, lysoso-
mal lumen, and primary lysosome. In terms of molecular 
function, these genes were primarily enriched in hydro-
lase activity, hexosaminidase activity, and serine-type 
exopeptidase activity. KEGG enrichment analysis sug-
gested that they were mostly involved in pathways of 
lysosome, glycosaminoglycan degradation, sphingolipid 
metabolism, phagosome, and autophagy (Fig. 6H).

The shared genes and functional enrichment analysis 
in diabetes and stroke
A total of 689 and 476 genes were identified from stroke 
and diabetes-related modules, respectively. 24 genes 
were selected by taking the intersection of stroke and 
diabetes-related genes (Fig.  7A), which were considered 
to be extremely associated with the pathogenesis T2DM-
related stroke. To investigate potential roles of the shared 
genes in diabetes and stroke, we used metascape to 

analyze the enriched pathway. As shown in Fig.  7B, the 
results revealed that these genes were enriched in vari-
ous biological activities including neutrophil degranu-
lation, lysosomal transport, regulation of NF-kappa B 
signaling, and inflammatory response. The most enriched 
ontology clusters belonged to neutrophil degranulation 
(logP = -53.25, log(q-value) = -48.904).

Identification of key genes in DM‑related stroke
In terms of the 24 shared genes obtained by a disease 
module-module intersection, we used the STRING data-
base to construct PPI networks (Fig. 8A). Next, cytoHubba 
in Cytoscape software was used to screen for and visual-
ize the hub genes in the network. As shown in Fig.  8A, 
GRN (granulin precursor), was identified as the hub gene 
in T2DM-related stroke. To further understanding how 
GRN acts in DM-related stroke, the website Reactome was 
used to analyze its regulatory pathways. We used human 
reactome database and found that GRN was involved in 
Toll-like Receptor Cascades, Neutrophil degranulation, 
DDX58/IFIH1-mediated induction of interferon-alpha/
beta, and NLR signaling pathway (Fig. 8B). Notably, GRN 
was involved in exocytosis of azurophil granule lumen 
proteins, which contributed to neutrophil degranulation 
(Fig. 8C). Thus, we believe that GRN might participate in 
inflammatory response and neutrophil extracellular trap 
formation by regulating exocytosis of azurophil granule 
lumen proteins in T2DM-related stroke.

Discussion
We used the WGCNA package to investigate key genes 
and probable biological processes associated with DM-
related stroke in this study. Twenty- four common genes 

Fig. 7  Screening of the common genes between stroke and diabetes. A The common genes screened by intersecting the diabetes and stroke 
related modules. B The co-enriched biological processes by metascape
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were identified to be present in both stroke and diabe-
tes-related crucial modules, indicating that they are the 
most likely to participate in biological function in T2DM-
related stroke. The common genes were enriched highly 
in biological processes of neutrophil degranulation, regu-
lation of response to biotic stimulus, and inflammatory 
response, which was associated with the results of GSEA 
analysis in stroke-related datasets. Most importantly, 
among these common genes, GRN was identified as the 
hub gene of DM-related stroke. Functional annotation 
revealed that GRN acted in T2DM-related stroke by reg-
ulating neutrophil degranulation.

Variations in gene expression signatures provide novel 
insight to the mechanism of DM-related stroke and 
assists in finding intervention targets. Sentinel variants 
at PEAR1 and RGS18 were associated with thrombosis 

risk through a whole genome sequencing, which pro-
vide insights regarding the mechanism by genetics may 
influence cardiovascular disease risk [26]. The mRNA 
expression of platelet activating factor receptor (PAFR) 
was significantly higher in patients with diabetes, which 
might cause macrovascular disease through impaired 
endothelial function [27]. The study analyzing high-
throughput gene expression in blood samples has shown 
that the circulating gene expression makers including 
CREM, PELI1, and ZAK were verified to be up-regulated 
in cardioembolic stroke [28]. In current study, we per-
formed gene co-expression pattern analysis (WGCNA), 
rather than individual gene/protein-focused analytic 
strategy, for evaluating expression similarity among genes 
of T2DM-related stroke. Many of these common genes 
were involved in immune effector process, apoptosis, and 

Fig. 8  Screening the hub genes and the related biological process analysis. A a PPI network of common genes constructed by Cytoscape software. 
B, C the role of hub gene GRN regulatory pathways in inflammatory response (B) and neutrophil degranulation (C). The schematic art pieces were 
provided by the Reactome Database (www.​react​ome.​org) under Creative Commons Attribution 4.0 License

http://www.reactome.org
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necroptosis. Death-associated protein kinase 1 (DAPK1), 
a Ca2 + /calmodulin (CaM)-dependent serine/threonine 
protein kinase, plays important roles in diverse apopto-
sis pathways in neuronal cell death [29]. A quantitative 
proteomic analysis revealed DAPK1 as the most preva-
lent protein recruited to the cytoplasmic tail of gluta-
mate receptor during cerebral ischemia [30]. Targeting 
DAPK1-related pro-death signals could be considered 
as a promising therapeutic approach in salvageable brain 
tissue after ischemic stroke. Sortilin 1 (SORT1) was one 
of CVD-risk loci identified with genome-wide associa-
tion studies (GWAS) over the last decade [31]. Sortilin, 
encoded by SORT1, serving as a key receptor for lipids, 
cytokines, and enzymes and participating in pathologi-
cal cargo loading to and trafficking of extracellular vesi-
cles, is also known for its functional role in metabolic 
disorders and cardiovascular disease [32]. The multiple 
contributions of sortilin to cardiovascular risk suggest 
it as a potential drug target. in addition, other common 
genes identified in our study such as PELI1, LAMP2, and 
PPM1B, were linked to cell death and inflammation [33–
35]. Thus, preventing aberrant cell death and maintaining 
cellular homeostasis is important to aid in the develop-
ment of drugs for T2DM-related stroke. Furthermore, 
we measured correlation between diseases and highly 
co-expressed gene sets. Compared to conventional dif-
ferential expression analysis, it is a more effective tech-
nique for detecting gene expression with low variation 
and abundance, as well as being less prone to information 
loss [36]. Quite a few researches have demonstrated the 
value of WGCNA in systematically identifying critical 
genes and relevant mechanisms about stroke or diabetes 
[36–39].

In our study, we discovered key biological processes in 
the common genes of diabetes and stroke, including neu-
trophil degranulation, regulation of response to biotic 
stimulus, and inflammatory response. Consistently, neu-
trophil extracellular trap formation (NETs) was highly 
enriched in both GSEA analysis and function enrichment 
analysis of stroke-related key modules. This finding indi-
cated that neutrophil extracellular trap formation might 
be a crucial mechanism for DM-related stroke, explaining 
the role of neutrophils in pathogenesis for stroke patients 
with diabetes. Neutrophils, the first line of defense under 
inflammation and infection, can release their decon-
densed chromatin and form large extracellular DNA net-
works [40]. NETs formation mediates the propagation of 
thrombosis and inflammation and, thereby contributes to 
stroke. Several studies have demonstrated that NETs con-
tributed to the composition of ischemic stroke thrombi 
[41, 42] and surrogate markers of NETs in plasma includ-
ing circulating citrullinated histone H3 (H3Cit) and cell-
free DNA (cfDNA) were associated with ischemic stroke 

outcomes [43, 44]. Hyperglycemia is associated with poor 
outcome in acute ischemic stroke patients. Recent stud-
ies have shown that neutrophil extracellular trap forma-
tion in serum of diabetes patients can activate vascular 
endothelial cells and thrombosis. Cell death and neutro-
phil activation are considered to be key factors produc-
ing endothelial injury under the condition of diabetes, 
and NETs formation further accelerated the vascular 
injure [45]. Blocking NET formation has significantly 
reduced brain infarctions and improved outcomes in dia-
betic mice [46]. A prominent characteristic of ischemic 
stroke is platelet activation and immunothrombosis 
stimulated by NETs [47]. Therefore, NETs formation pro-
motes hypercoagulability and induces ischemic stroke 
in patients with diabetes, which is a potential biological 
process of T2DM-related stroke.
GRN (granulin), as a protein coding gene, was 

expressed in immune cells and epithelia and regulated 
biological functions including cell proliferation, inflam-
mation, and wound healing [48]. Interactions between 
inflammation and GRN are complex. Progranulin 
(PGRN) can bind receptors of TNF-α and block the role 
of TNF-α to stimulate neutrophile respiratory burst. 
Therefore, PGRN is considered as anti-inflammatory 
factor [49]. While this anti-inflammatory activity was 
degraded by NE-mediated proteolysis of PGNR to GRN 
peptides [50]. GRN was involved in a pro-inflammatory 
response at the early stages after cerebral ischemia. 
Neutrophiles are infiltrated in brain parenchyma after 
ischemia stroke and the increased activity of neutrophil 
elastase cleaves PGRN into GRN peptide, exacerbat-
ing the inflammation and tissue damage after ischemia 
[51]. GRN has also been detected in neutrophil-rich 
peritoneal exudates, induce the release of neutrophil-
attracting IL-8 from epithelial cells, and may enhance 
inflammation [52]. It can also modulate inflammation 
in neurons by preserving neuronal integrity, axonal 
outgrowth, and neurons survival [53]. In acute injury 
and inflammation, GRN is important in the initiation of 
inflammation by recruiting neutrophils, macrophages, 
and fibroblasts [54]. GRN, at elevated levels, has been 
associated with poor prognosis in infectious diseases. 
Serum GRN levels in sepsis exhibited positively corre-
lation with inflammatory factors including hypersensi-
tive C-reactive protein and procalcitonin [55]. The cell 
counts of neutrophils and macrophages were increased 
in transcutaneous puncture wounds under adminis-
tration of GRN [56]. Elevated PGRN levels may reflect 
increased pro-inflammatory GRN levels because PGRN 
and GRN are indistinguishable from each other in 
ELISA [57]. In addition, several studies have shown that 
PGRN has proinflammatory effects in diabetes and obe-
sity. PGRN played a role as a novel marker for chronic 
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inflammation associated with diabetes in human [58]. 
Consistently, PGRN levels were increased in white adi-
pose tissue of the mice fed with a high-fat-diet (HFD) 
and exerted pro-inflammatory functions [59]. There-
fore, PGRN may have two absonant effects, depending 
on the tissue microenvironment and disease stage.  In 
our study, GRN was shown to be the hub gene for key 
diabetes and stroke-related modules, suggesting that 
GRN plays critical roles in DM-related stroke. Accord-
ing to functional annotation, the participation of GRN 
in the regulation of neutrophil extracellular trap forma-
tion and inflammatory response, GRN plays a role in 
T2DM-related stroke.

Conclusions
A total of 24 common genes may be involved in the 
mechanisms of T2DM-related stroke through their 
involvement in neutrophil degranulation, lysosomal 
transport, regulation of NF-kappa B signaling, and 
inflammatory response. More crucially, GRN partici-
pating in NETs formation may be promising interven-
tion targets for T2DM-related stroke. However, the 
current research had several limitations. First, the sam-
ple size of patients with stroke and diabetes in the GEO 
database is relatively small. Although we have elimi-
nated batch effects to integrate information from dif-
ferent datasets, studies with larger sample sizes are still 
needed in subsequent analysis and validation. Second, 
considering that stroke is a serious complication with 
type 2 diabetes, our study primarily investigates the 
molecular mechanism network between type 2 diabetes 
and stroke, while there is insufficient evidence to sup-
port the molecular mechanism network between type 
1 diabetes and stroke. Third, the findings in this study 
are based on bioinformatics analysis. The relationship 
between GRN and DM-related stroke still needs to 
be verified by more in  vitro and in  vivo experiments. 
Further basic research and clinical research should be 
focused on a better understanding of the pathophysio-
logical mechanism of GRN in T2DM-related stroke and 
may contribute to DM-related stroke therapy.
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