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Abstract 

Background Several genome‑wide association studies (GWAS) have been performed to identify variants related 
to chronic diseases. Somatic variants in cancer tissues are associated with cancer development and prognosis. Expres‑
sion quantitative trait loci (eQTL) and methylation QTL (mQTL) analyses were performed on chronic disease‑related 
variants in TCGA dataset.

Methods MuTect2 calling variants for 33 cancers from TCGA and 296 GWAS variants provided by LocusZoom were 
used. At least one mutation was found in TCGA 22 cancers and LocusZoom 23 studies. Differentially expressed genes 
(DEGs) and differentially methylated regions (DMRs) from the three cancers (TCGA‑COAD, TCGA‑STAD, and TCGA‑
UCEC). Variants were mapped to the world map using population locations of the 1000 Genomes Project (1GP) 
populations. Decision tree analysis was performed on the discovered features and survival analysis was performed 
according to the cluster.

Results Based on the DEGs and DMRs with clinical data, the decision tree model classified seven and three nodes 
in TCGA‑COAD and TCGA‑STAD, respectively. A total of 11 variants were commonly detected from TCGA and Locus‑
Zoom, and eight variants were selected from the 1GP variants, and the distribution patterns were visualized 
on the world map.

Conclusions Variants related to tumors and chronic diseases were selected, and their geological regional 1GP‑based 
proportions are presented. The variant distribution patterns could provide clues for regional clinical trial designs 
and personalized medicine.
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Introduction
Chronic diseases are defined as conditions that last 1 
year or more and require medical intervention, restrict 
activities of daily living, or both. Chronic diseases include 
hypertension, diabetes, hyperlipidemia, and many associ-
ations with cancer have also been known [1–3]. Genome-
wide association studies (GWASes) have been used as 
a research approach to understand chronic diseases. 
GWAS can help to understand the risk of chronic dis-
eases and specific characteristics, such as cancer morbid-
ity in an individual [4, 5]. Until now, GWAS results have 
been open to the public, and optimal secondary applica-
tions have been presented.

Variants indicate alterations in DNA nucleotide 
sequences. There are single-base pair substitutions, inser-
tions or deletions (INDEL), and structural variations. The 
somatic variant refers to every variant in cells, except germ 
cells. Unlike germline variants, somatic variants are not 
inherited, and reflect genomic instability [6, 7]. Next-gen-
eration sequencing (NGS) is widely used to obtain nucle-
otide sequence data from cancer cells. Variants of cancer 
cells enable targeted therapy according to genotype. An 
expression quantitative trait locus (eQTL) is a variant that 
explains differences in gene expression patterns. A methyl-
ation QTL (mQTL) is also a variant related to the different 
beta values of CpG sites in the genome. eQTL and mQTL 
are variants of the GWAS results and are independent var-
iables for gene expression and DNA methylation level as 
dependent variables [8, 9]. Many eQTL and mQTL signals 
have been found in chronic disease samples, and biomark-
ers for prognosis in cancer patients are needed for variants 
related to chronic diseases.

The Cancer Genome Atlas (TCGA) is a project that 
started in 2005 to integrate and accumulate cancer 
genetic variants, gene expression, and DNA methylation 
data using bioinformatics technologies [10]. TCGA data-
base was provided by the National Cancer Institute of the 
United States. TCGA Data Portal provides researchers 
with a platform to search, download, and analyze cancer 
genomic data. TCGA provides clinical data (subtype, sur-
vival, and recurrence) and three types of omics data (var-
iant, expression, and methylation) for 7648 patients and 
33 types of cancers. Therefore, by properly processing 
clinical and omics datasets for the purpose of analysis, it 
is possible to accurately identify the factors that explain 
the traits of cancer [11–14].

The 1000 Genomes Project (1GP) was launched to 
assess human genetic variation by ethnic groups. The 
pilot phase and the “phase 3” were completed as 1092 
and 2504 genomes, respectively. In 1GP Phase 3, 26 pop-
ulations were collected [15]. The 1GP helps explain the 
genetic variants that occur at a population frequency of 
1% or more. It also contributes to the development of 

preventive medicine using genetic variants found in a 
specific ethnic group [16, 17]. The genomic composi-
tion of the population distributed by region was changed 
by the evolutionary process because selective pres-
sure and SNP density differed by ethnic group. Clini-
cal approaches, such as disease susceptibility and drug 
response prediction, are also available in this region [18].

In this study, eQTL and mQTL studies were combined 
with GWAS to identify genes associated with cancer 
prognosis, and variants related to cancer were found in 
TCGA. Relevance to the 1GP for merged variants was 
confirmed. The relationship between cancer and chronic 
diseases was confirmed, and regional differences were 
visualized using 1GP data.

Methods
Data acquisition from TCGA and LocusZoom
The 33 omics and clinical data of this study were down-
loaded from TCGA dataset. Downloads and data pro-
cessing were performed using the “GDCquery” function 
of the R package “TCGAbiolinks” [19]. All analyses were 
performed using R package version 4.1.1. GWAS datasets 
were downloaded from LocusZoom (https:// my. locus 
zoom. org/) [20] and each study name was identified as the 
URL number. This study was approved by the Institutional 
Review Board (IRB) of Korea University (approval num-
ber: KUIRB-2020-0191-01) and was performed in accord-
ance with the Declaration of Helsinki. All processes of this 
study are presented as a flowchart (Fig. 1).

DEG and DMR selection
TCGA RNA-seq data revealed the expression lev-
els of 56,457 genes. Analysis with the Illumina 450 k 
chip in TCGA identified approximately 450,000 CpG 
sites. Differentially expressed genes (DEGs) and dif-
ferentially methylated regions (DMRs) were selected 
between the patients with and without variants. The 
fold change and p-value of the selected DEGs and 
DMRs are presented as volcano plots, and the expres-
sion level and DNA methylation level of genes above a 
certain threshold are presented as heatmaps. Expres-
sion and DNA methylation levels are presented as box-
plots for each genotype.

Visualization of variant data
A variant heatmap was presented using the “Heatmap” 
function of the “ComplexHeatmap” package, and a water-
fall plot for variants was presented using the “oncoPrint” 
function [21]. The heatmap for DEG and DMR utilized 
the “pheatmap” package. In the case of the volcano plot, 
an in-house source was coded using “plot,” the default 
function of R.

https://my.locuszoom.org/
https://my.locuszoom.org/


Page 3 of 15Jeon et al. BMC Medical Genomics          (2023) 16:332  

Validation at the 1000 genomes projects for variants
The 1000 Genomes Project (Phase 3) data were down-
loaded from Google Cloud Life Sciences (https:// cloud. 
google. com/ life- scien ces/ docs/ resou rces/ public- datas ets/ 
1000- genom es). The total data consisted of 84,801,856 vari-
ants of 69,006 dbSNP rs numbers for 2504 individuals [15]. 
The 1000 Genomes Project variants matching the dbSNP rs 
number of TCGA variants were selected using the “filter” 
function of the “dplyr” R package.

A world map was presented using the “map” function 
of the “maps” R library. The “floating.pie” function of 
the “plotrix” R library was used to present the location 
and variant proportion of each population. The global 
positioning system (GPS) information for each popu-
lation was obtained from GitHub (https:// github. com/ 
sinar ueeger/ map- 1000g enomes).

Machine learning approaches of clinical data, DEG, 
and DMR results
Integrative analysis was performed for the selected DEGs 
and DMRs using the clinical data. Decision tree is the 
machine learning approach that used for both classifi-
cation and regression tasks. The decision tree algorithm 
recursively divides the dataset into subsets based on the 
values of different attributes. The aim is to create that 
are as pure as possible with respect to the target vari-
able. Model design and visualization for decision trees 
were performed using “rpart” and “rpart.plot” libraries. 
The models were fitted and tuned for each cancer. The 

decision tree model was presented by selecting the cost 
complexity pruning (cp) value with minimum error.

Results
TCGA variants processing
In 22 cancers out of a total of 33 cancers, at least one 
variant overlapped with the variants found in the 23 
datasets obtained from LocusZoom. Over 20 variants 
overlapped in seven cancers (Fig. 2), and at least one vari-
ant was observed in 10 or more patients in four cancer 
types (TCGA-COAD, TCGA-UCEC, TCGA-SKCM, and 
TCGA-STAD). In TCGA-SKCM samples, only two of the 
103 patients had variants. We excluded TCGA-SKCM 
from the DEG and DMR analyses because t-test was per-
formed using at least three samples per group in DEG 
and DMR analysis (Table 1).

Common variant selection of TCGA and LocusZoom
The TCGA single nucleotide variation (SNV) data-
set from 33 cancers and variants satisfying log10 
(p-value) > 5 were selected from 230 GWAS datasets. 
The two datasets were merged as “merge” R default 
function by “rs number.” For the commonly detected “rs 
number,” the number of patients with variants for each 
of 33 cancers was counted. TCGA 22 cancers found in at 
least one of the LocusZoom variants were presented as a 
heatmap (Fig. 2).

Sixty variants found in three cancers of TCGA and 13 
studies of LocusZoom were selected. A waterfall plot 

Fig. 1 Process of this study. Description of the input and output data is shown as light gray, and the data process is shown as dark gray

https://cloud.google.com/life-sciences/docs/resources/public-datasets/1000-genomes
https://cloud.google.com/life-sciences/docs/resources/public-datasets/1000-genomes
https://cloud.google.com/life-sciences/docs/resources/public-datasets/1000-genomes
https://github.com/sinarueeger/map-1000genomes
https://github.com/sinarueeger/map-1000genomes
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Table 1 Descriptions of TCGA dataset

TCGA-COAD TCGA-STAD TCGA-UCEC TCGA-SKCM

RNA‑seq

 Total genes 56,457 56,457 56,457 56,457

 RNA‑seq, no variant group 429 364 504 101

 RNA‑seq, variant group 21 9 33 2

 Total RNA‑seq samples 450 373 537 103

 Threshold PV < 0.01
& |FC| > 0.2

PV <  10−10

& |FC| > 0.3
PV < 0.01
& |FC| > 0.2

(No analysis)

Methylation 450 k

 Total CpG sites 118,342 373,352 379,215 380,110

 Met450, no variant group 269 384 398 103

 Met450, variant group 20 9 27 2

 Total Met450 samples 289 393 425 103

 Threshold PV <  10−12

& |FC| > 0.2
PV <  10−12

& |FC| > 0.2
PV <  10−12

& |FC| > 0.2
(No analysis)

0 0 0 1
1 1 1 1
1 1 1 1
1 1 0 1
1 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 2 0 0
1 0 0 0 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 2 0 2
0 0 0 0 0 0 2
0 0 0 0 0 0 1

2 2 0 0 2
1 1 1 1 1
1 1 1 1 2
1 1 0 1 1
0 0 1 0 0
2 2 0 0 0
1 1 0 0 1
1 1 0 0 1
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2 0 0 0 0 0 1
1 0 0 1 0 1 1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 1 1 1 0
1 0 0 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 2 0 0 0 0 0

6 3 2 2
3 3 1 2
3 1 2 2
2 2 2 2
2 1 2 2

1 2 3 3 3 3 1
2 3 2 2 1 1 0
1 0 1 0 1 1 2
0 0 1 1 1 0 0
1 1 1 1 0 0 0

0 0 2 3 2
2 2 4 1 1
2 1 2 1 0
1 1 2 2 1
3 2 1 1 1

2 0 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
1 1 1 1 1 0 0
1 0 1 0 0 0 0

911109
106 9 7

2 3 1 1 1 3 1
6 5 5 5 4 4 3

6 6 5 5 5
7 8 3 5 3

4 4 3 4 5 3 1
1 1 2 0 0 0 1

4 2 3 1
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Fig. 2 Patterns of common variants between TCGA 22 cancer datasets and LocusZoom 23 datasets. TCGA 22 cancer were divided into three 
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was presented for 21 mutations, with at least 4 mutations 
found in 62 patients from TCGA (Fig. 3). Eleven variants 
were commonly found in at least six mutations in TCGA 
and LocusZoom (Table 2).

The chromosomal locations of common variants 
between TCGA and LocusZoom data are presented in a 
Circos plot (Fig. 4). Among them, we linked the variants 
of UCEC, COAD, and STAD cancers of interest. UCEC 
was most common on chromosome 6, COAD on chro-
mosome 11, and STAD on chromosome 2. The connec-
tion showed a relationship between the other variants 
and the most abundant variant of each cancer species.

Variant distributions from 1000 genomes project data
Eight of the 11 variants were identified from the results of 
the 1000 Genomes Project (Phase 3). A total of 26 popula-
tion variant proportions were identified and are displayed 
on a global map (Fig.  5). In the case of rs141502002, 
located in the PCSK9 gene, it was discovered in patients 
with STAD and UCEC, and was discovered in eight stud-
ies of LocusZoom. Nevertheless, low variant proportions 
were observed overall (Fig.  5a). The rs41288783 vari-
ant located in the APOB gene was also included in two 
studies by LocusZoom, including patients with STAD, 

but showed a low variant proportion overall (Fig.  5b). 
The rs113337987 variant located in the MTTP gene was 
found in COAD patients and LocusZoom 7 studies and 
showed slightly more variant proportions in the Carib-
bean, South America, and Southern Europe (Fig. 5c). The 
rs1060901 variant located in the MYLIP gene was found 
in COAD and LocusZoom 6 studies and was found in 
Europe (Fig.  5d). The rs2075799 variant located in the 
HSPA1L gene was found in Africa and Southeast Asia, 
and was found in COAD and seven LocusZoom studies 
(Fig.  5e). rs41269255, found in Europe, is located in the 
POM121L2 gene and was found in COAD in six stud-
ies (Fig. 5f ). rs3135506 of the APOA5 gene, found in 16 
studies of COAD and LocusZoom, showed low propor-
tions, despite being found in several studies. Significantly 
lower proportions were observed, particularly in East Asia 
(Fig. 5g). In the case of rs12438025 found in COAD and 7 
studies, it was located in the STRC gene and showed the 
highest variant proportions. In particular, it was very high 
in Africa (Fig. 5h).

Selection of DEGs and DMRs in three cancers
From three cancers (TCGA-COAD, TCGA-UCEC, and 
TCGA-STAD), DEGs and DMRs were selected based on 
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whether the patients had variants. The DEGs and DMRs of 
TCGA-STAD were not calculated because of the insufficient 
minimum number of samples in the variant group (n < 3; 
Table 1). DEGs and DMRs in the three cancers were selected 
based on fold changes and p-values. The threshold of fold 
change was |FC| > 0.2 for TCGA-COAD and TCGA-UCEC, 
and |FC| > 0.3 for TCGA-STAD. Thresholds of p-values were 
PV < 0.01 for DEGs in TCGA-COAD and TCGA-UCEC, 
and PV <  10−10 in TCGA-STAD. The thresholds of p-values 
were PV <  10−12 for DMRs in all cases (Table 1).

For TCGA-COAD, 10 DEGs were selected (SELENBP1, 
XKR9, PCP4, TUSC8, PRAC1, RBP4, PGGHG, 
RUBCNL, TLE2, ACVRL1) and eight DMRs were 
selected (cg01785505, cg00014484, cg01440570, PRKCZ, 
SEMA3D, ELF5, cg06506363, MUC6). In the DEG analy-
sis, only one gene was overexpressed in the variant group, 
and in the DMR analysis, there was no CpG site that was 
underexpressed in the variant group. The most overex-
pressed gene in the variant group was XKR9 and the most 
hypermethylated CpG site was cg01440570 (Fig. 6).

For TCGA-STAD, five DEGs (PRSS1, CYP2B6, BMP7, 
BEX2, and SEPRINA5) and five DMRs (WHAMM, 
cg13686615, cg23045594, FOXK1, and PPT2) were 
selected. The most underexpressed gene in the variant 

group was CYP2B6, and the most hypermethylated CpG 
site was located in PPT2 (Fig. 7).

For TCGA-UCEC, four DEGs (ENSG0000213058, 
PHYHD1, TWIST1, and MUC16) and three DMRs 
(TP73, cg02621287, and PHACTR1) were selected. The 
gene with the most statistically significant difference 
between the two groups was TWIST1 in RNA-seq, and 
the CpG site was located in the TP73 gene in the meth-
ylation analysis (Fig. 8).

eQTL and mQTL analysis
The eQTL and mQTL analyses were conducted on the 
genes identified in the DEG and DMR analyses. For a 
total of three cancers, boxplots are presented for genes 
that are presented in heatmaps by variants. For TCGA-
COAD, 10 DEGs (Fig.  9a; 10 genes) and eight DMRs 
(Fig.  9 b; eight CpG sites) were analyzed. For TCGA-
STAD, five DEGs (Fig.  9 c; five genes) and five DMRs 
(Fig.  9 d; five CpG sites) were analyzed. Finally, for 
TCGA-UCEC, four DEGs (Fig. 9 e; four genes) and three 
DMRs (Fig. 9f; three CpG site) were analyzed. All DEGs 
were identified from RNA-seq data, and DMRs were 
obtained from the Illumina 450 k chip. Two groups were 
separated by the presence or absence of variants (Fig. 9).
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Fig. 4 Circos plot of common variants between TCGA cancer and GWAS data. Linked lines of the same color mean the same cancer
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Decision tree for survival prediction
A decision tree was designed to determine survival for 
the three cancer types. The expression or methylation 
of each gene presented in the heatmap and QTL were 

targeted as input features. Two clinical features, sex and 
age, were used as input features. Therefore, two clinical 
features, along with 18 genomic features in TCGA-COAD, 
10 in STAD, and seven features in UCEC, were used to 

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 5 Geological locations and eight variant proportions of 26 populations from the 1000 Genomes Project (phase 3). A Detected in TCGA‑STAD 
and ‑UCEC, rs141502002 in PCSK9 gene. B Detected in TCGA‑STAD, rs41288783 in APOB gene. C Detected in TCGA‑COAD, rs113337987 in MTTP 
gene. D Detected in TCGA‑COAD, rs1060901 in MYLIP gene. E Detected in TCGA‑COAD, rs2075799 in HSPA1L gene. F Detected in TCGA‑COAD, 
rs41269255 in POM121L2 gene. G Detected in TCGA‑COAD, rs3135506 in APOA5 gene. H Detected in TCGA‑COAD, rs12438025 in STRC gene
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distinguish survival. No decision tree has been designed 
for TCGA-UCEC. In TCGA-COAD and TCGA-STAD, 
which are digestive cancers, survival was confirmed with 
seven and three nodes, respectively (Fig. 10).

Discussion
High proportions of variants in the cancer genome are 
derived from somatic variants, whereas most variants from 
chronic diseases are from germline variants. Therefore, 

(A)

(B)

Fig. 6 Volcano plots and heatmaps of DEGs (left) and DMRs (right) by variants in TCGA‑COAD. The VX means a patient who does not have variants 
(n = 429 in DEGs, n = 269 in DMRs) and the VY (n = 21 in DEGs, n = 20 in DMRs) is the opposite. a Volcano plots indicate upregulated (red dots) 
and downregulated (green dots) DEGs and DMRs in TCGA‑COAD RNA‑seq data and Illumina 450 k chip analysis in each. Two axes indicate P‑value 
and fold change between two groups which has variants.Ten DEGs meet criteria |FC| > 0.2 and p‑value < 0.01. Eight DMRs also meet criteria |FC| > 0.2 
and p‑value <  10−12. The dashed green and red lines indicate where |FC| > 0.2, and the dashed blue line means the criteria of p‑values. b Heatmaps 
of DEGs and DMRs representing differences between vital status, gender, and presence of variants. Vital status, gender, and presence of variants are 
indicated as column annotation bars. Other annotation bars indicate fold change and p‑value between the two groups
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(A)

(B)

Fig. 7 Volcano plots and heatmaps of DEGs (left) and DMRs (right) of patients with variants and without variants in TCGA‑STAD. The VX means 
a patient who does not have variants (n = 364 in DEGs, n = 384 in DMRs) and the VY (n = 9 in DEGs, n = 9 in DMRs) is the opposite. In the volcano 
plot, red dots indicate DEGs and DMRs with increased expression or methylation levels in the variants containing (VY) group. The dashed blue line 
represents where P <  10−10 for DEGs and P <  10−12 for DMRs. Patients without variants are denoted as VX and patients with variants are denoted 
as VY. The colored dots were provided as total five DEGs and five DMRs, which were listed as two heatmaps. In heatmap, vital status, gender, 
and variants are indicated as column annotation bars Two row annotation bars indicate P‑value and fold change between two groups
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variants related to chronic diseases and cancers are con-
sidered to have a low relevance. Nevertheless, the relation-
ship between the variants could be an important factor in 
the treatment of cancer and chronic diseases.

Cancer and germline variants are related [22], and a 
variety of evidences have emerged. For example, genes 
such as BRCA are affected by germline variants. In par-
ticular, germline variants in eQTL and mQTL affect 

(A)

(B)

Fig. 8 Volcano plots and heatmaps of DEGs (left) and DMRs (right) of patients with variants and without variants in TCGA‑UCEC. No variant group 
(n = 504), and variant group (n = 33) patients samples were analyzed for DEGs. No variant group (n = 398), and variant group (n = 27) patients samples 
were analyzed for DMRs. a Four DEGs meet criteria |FC| > 0.2 and p‑value < 0.01. Three DMRs also meet criteria |FC| > 0.2 and p‑value <  10−12. The 
dashed green and red lines indicate where |FC| > 0.3, and the dashed blue line means the criteria of p‑values. b Heatmaps of DEGs and DMRs 
representing differences between vital status, gender, and presence of variants
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Fig. 9 Boxplots of eQTL from RNA‑seq data and mQTL from the Illumina 450 k chip. Two groups were divided by variants, and “VX” and “VY” means 
the absence and presence of variants, respectively. a Total 10 genes of eQTL, and (b) total eight CpG sites of mQTL results in TCGA‑COAD. c Total five 
genes of eQTL, and (d) total five CpG sites of mQTL results in TCGA‑STAD. e Total four genes of eQTL, and (f) total three CpG sites of mQTL results 
in TCGA‑UCEC
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cancer progression and patient survival [23]. In addition, 
GWAS has shown that variants are related to chronic 
diseases and cancer prognosis [1, 2, 4]. Therefore, in this 
study, we aimed to identify cancer-related factors from 
a chronic disease-related variant database (LocusZoom) 
and TCGA.

This study revealed germline variants in three can-
cers related to somatic variants from the clinical data 
of patients with chronic disease using statistical analy-
sis. There were statistically significant variants in the 
three cancer types. SELENBP1, XKR9, PCP4, TUSC8, 
PRAC1, RBP4, PGGHG, RUBCNL, TLE2, and ACVRL1 
were identified as DEG, and cg01785505, cg00014484, 
cg01440570, PRKCZ, SEMA3D, ELF5, cg06506363, and 
MUC6 CpG sites or genes were observed as DMRs of 

COAD. PRSS1, CYP2B6, BMP7, BEX2, and SEPRINA5 
were identified as DEG and WHAMM, cg13686615, 
cg23045594, FOXK1, and PPT2 CpG sites, and genes 
were observed in the DMRs of STAD. ENSG0000213058, 
PHYHD1, TWIST1, and MUC16 genes were identified as 
DEG and   TP73, cg02621287, and PHACTR1 CpG sites 
or genes were observed in the DMRs of UCEC. In QTL 
analysis, the expression or methylation levels of each 
gene are presented as boxplots by variant.

COAD can be classified into four subtypes (CIN, 
EBV, MSI, and GS), and the different subtype propor-
tions and variant patterns were revealed by region 
[24]. Therefore, a world map was presented to pre-
sent the location and proportion of the 11 variants for 
each population. As shown in the results, the variants 

(A)

(B)

Fig. 10 Decision trees for (a) TCGA‑COAD and (b) TCGA‑STAD. Decision trees were performed to discover the optimal classification of survival status 
of tumor patients
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showed different rates in each population. Therefore, 
we can expect ancestral differences to appear in the 
chronic diseases and cancer characteristics associated 
with the selected variants. This hypothesis should be 
further tested with a larger dataset and validated using 
experimental methods from COAD tissues in differ-
ent regions. Eight variants were found in the 1000 
Genomes Project, of which only two variants were 
found in STAD and UCEC. The variants were found 
at a rare rate in a total of 26 populations of the 1000 
Genomes Project. This means that compared to STAD 
and UCEC, mutations related to COAD show relatively 
greater differences depending on the population.

Decision trees were used to classify the survival sta-
tus of the patients with cancer. The decision tree results 
showed that the selected DEGs and DMRs explained 
the survival prediction. We concluded that chronic dis-
ease-related variants were associated with at least two 
cancers. Therefore, the analysis results and methods of 
this study can be used for cancer progression research, 
patient prognosis prediction, and diagnosis [25]. In 
addition, from the perspective of preventive medicine, 
this study could help regional cancer and chronic dis-
ease prevention, and develop diagnosis strategies.
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