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Abstract 

Background  Osteoporosis is the most common metabolic bone disease in humans. Exploring the expression differ-
ence of iron metabolism-related genes in osteoporosis can provide a new target for diagnosis and treatment.

Methods  First, we used online databases to identify differentially expressed genes (DEGs) related to iron metabolism 
in patients with osteoporosis. The differential genes were comprehensively analyzed by bioinformatics method (GO, 
KEGG, GSEA, immune infiltration analysis, PPI). The expression levels of hub genes and important signaling pathways 
were verified by qRT-PCR and Western blotting.

Results  A total of 23 iron metabolism-related genes with significant differences were identified, which were enriched 
in “regulation of protein dephosphorylation” and “negative regulation of protein dephosphorylation”. The GSEA results, 
heme metabolism and Myc targets v1 were among the top two pathways, both upregulated. The immune infiltra-
tion analysis revealed that the expressions of genes such as ABCA5, D2HGDH, GNAI2, and CTSW were correlated 
with the infiltration degree of significantly different cells. The PPI network contained 12 differentially expressed iron 
metabolism-related genes. Additionally, YWHAE, TGFB1, PPP1R15A, TOP2A, and CALR were mined as hub genes 
using the Cytoscape software. qRT PCR showed that the expression of TGF-β1, YWHAE, TOP2A and CALR increased. 
We also verified the expression of related proteins and genes in the oxidative stress signaling pathway by qRT PCR 
and Western blotting. The results showed that Mob1, YAP and TAZ molecules were highly expressed at the gene 
and protein levels.

Conclusions  These differentially expressed iron metabolism-related genes could provide new potential targets 
for the diagnosis and treatment of osteoporosis.

Keywords  Osteoporosis, Iron metabolism, DEGs, Hub gene, Bioinformatics

Background
Osteoporosis is a chronic and systemic metabolic disease 
induced by multiple causes and mainly characterized by 
osteopenia, microstructural changes, and fractures [1]. 
With the increase in life expectancy across the globe, its 

incidence is expected to increase further. According to 
recent data, 3 million people over 50 suffer from osteo-
porotic fractures of varying degrees in the United States, 
and nearly 25  billion USD have been spent for treating 
this condition [2]. The pathogenesis of osteoporosis is 
still not fully understood.

Previous studies on osteoporosis mainly focused on the 
biological behaviors of vitamin D and calcium-phospho-
rus metabolism. However, an increasing number of stud-
ies have also suggested that abnormal iron metabolism is 
closely associated with the occurrence and development 
of osteoporosis [3, 4]. A study found that iron overload or 
deficiency can affect the proliferation and differentiation 
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of osteoblasts and osteoclasts, resulting in decreased 
bone mass and increased risk of osteoporosis and frac-
ture [5]. In addition, the incidence of osteoporosis caused 
by abnormal iron metabolism has been associated with 
the antioxidant/prooxidant equilibrium of cells [6]. How-
ever, little research has been conducted on iron metabo-
lism and osteoporosis from a genetic and bioinformatics 
perspective.

In this study, we used the bioinformatics method 
to analyze the relevant data on osteoporosis and iron 
metabolism in existing databases, aiming to explore and 
identify differentially expressed iron metabolism-related 
genes in osteoporosis patients and carry out biological 
function analysis and other multi-dimensional analyses 
on the identified DEGs, as well as profoundly study the 
impacts of abnormal iron metabolism on osteoporosis at 
the genetic level.

Methods
Microarray data
Data on osteoporosis with the following data numbers 
were downloaded: GSE152293 [7], GSE35956 [8] and 
GSE35958 [8] and the clinical information of corre-
sponding samples was obtained from the Gene Expres-
sion Omnibus (GEO) database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) [9]; all samples were from Homo sapiens. 
The sequencing platforms were GPL11154, GPL570, and 
GPL570. GSE152293 included six patients, three with 
osteoporosis and three healthy patients; the GSE35956 
included ten patients, five patients with osteoporosis 
and five healthy patients; the GSE35958 included nine 
patients, five patients with osteoporosis and four healthy 
patients. The data in GSE152293 and GSE35956 were 
used for analysis, and GSE35958 was used as a validation 
dataset to validate the obtained results (Fig. 1).

The studies involving human participants were 
reviewed and approved by Ethics Committee of People’s 
Hospital of Xin jiang Uygur Autonomous Region, (the 
license number: KY2022072245). The patients/partici-
pants provided their written informed consent to partici-
pate in this study.

Next, the R package GEOquery (v2.60.0) [10] was used 
to download expression data and the limma package 
(v3.48.3) [11] was used for between-sample normaliza-
tion processing, with box diagrams for visualization. The 
R package FactoMineR (v2.4) [12] was used for Principal 
Component Analysis (PCA) and visualization.

Iron metabolism-related genes were from the ferrop-
tosis phenotype database FerrDb (http://​www.​zhoun​
an.​org/​ferrdb) [13], “iron absorption and transport” 
(R-HSA‐917,937) from the Reactome database (https://​
react​ome.​org/) [14], “intracellular iron homeostasis” 
(GO:0006879) from the AmiGo2 database (http://​amigo.​

geneo​ntolo​gy.​org/​amigo/​landi​ng) and “Iron metabolism” 
as iron metabolism-related genes (IRG) from GeneCards 
database (https://​www.​genec​ards.​org) [15].

Identification of metabolism‑related genes
To reveal the differences in gene expressions between 
patients with osteoporosis and healthy patients, we 
analyzed the differential expressions of genes between 
groups with the R package limma [11]; |log2 fold change| 
(|log2FC|) ≥ 1 and P-value < 0.05 were set as the thresh-
old for DEGs. Genes with log2FC > 1 and P-value < 0.05 
were DEGs with upregulated expressions and genes 
with log2FC < -1 and P-value < 0.05 represented DEGs 
with downregulated expressions. The intersection of the 
upregulated genes in GSE152293 and GSE35956 and 

Fig. 1   Study Workflow. IMRG: Iron metabolism-related genes, 
DE IMRG: Differentially expressed iron metabolism-related genes. 
qRT-PCR: quantitative reverse transcription PCR, WB: western blot
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iron metabolism-related genes represented upgraded 
metabolism-related genes, and the intersection of the 
downregulated genes in GSE152293 and GSE35956 and 
iron metabolism-related genes represented downregu-
lated metabolism-related genes. We used the R package 
ggplot2 (v3.3.5) [16] to create volcano plots and the P 
package pheatmap (v1.0.12) [17] to create heat maps for 
visualization.

Gene enrichment analysis
Gene Ontology (GO) analyzes the biological process 
(BP), molecular function (MF), and cellular component 
(CC) [18]. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a widely used database that stores informa-
tion on genomes, biological pathways, diseases, and 
drugs [19]. GO function annotation and KEGG biological 
pathway enrichment analysis were performed using the 
R package clusterProfiler (v4.0.5) [20] to identify signifi-
cantly enriched biological processes and pathways. The 
enrichment results were visualized through the R pack-
age GOplot (v1.0.2) [21], and the significance thresholds 
for enrichment analysis were all set as P < 0.05.

Gene Set Enrichment Analysis (GSEA) is a calculation 
method used to determine whether a pre-defined set of 
genes shows statistically significant differences between 
two biological states. It is typically used for estimat-
ing changes in pathways and biological process activity 
in expression dataset samples [22]. To study the differ-
ences in biological processes between the two groups of 
patients, we downloaded reference gene sets from the 
MSigDB database [23] (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/) based on gene expression profile datasets. 
Then, the GSEA method in the R package clusterProfiler 
(v4.0.5) [20] was used for enrichment analysis and visu-
alization of these datasets. The mean logFC value was 
taken as the logFC value, and a P-value < 0.05 indicated 
statistical significance.

Immune infiltration analysis
To further explore the differences in the immune infil-
tration degree between osteoporosis patients and the 
healthy group, CIBERSORT software [24] was used to 
assess immune cells’ infiltration degree. The content of 
22 types of immune cells in each patient was calculated 
based on the LM22 background gene set provided by the 
CIBERSORT website (https://​ciber​sort.​stanf​ord.​edu/), 
reflecting the infiltration level. The results were displayed 
as box plots and stacked bar charts, the latter being cre-
ated with the R package ggplot2 (v3.3.5) [16]. Addition-
ally, scatter diagrams between significantly different 
immune cell infiltration levels with P-value < 0.05 and dif-
ferentially expressed iron metabolism expression values 

were created using the R package ggExtra (v0.9) [25], and 
correlation curves were also fitted.

Network construction and analysis
A protein-protein interaction (PPI) network was con-
structed using the STRING database [26] (https://​www.​
string-​db.​org), with the above genes as input and the 
default value of 0.4 as the confidence threshold. Next, 
the PPI network was exported and further analyzed 
through the Cytoscape software (v3.8.2) [27]. The net-
work properties of each node were calculated, hub nodes 
were mined using the MCC algorithm of the cytoHubba 
plug-in (v0.1) [28], the nodes were scored and sorted in 
descending order according to the MCC results, and the 
top five nodes were selected as hub nodes. Then, based 
on the miRNet database [29](https://​www.​mirnet.​ca), 
the five hub nodes were further predicted at the miRNA 
and transcription factor levels. The target information of 
small-molecule drugs was downloaded from DrugBank 
[30] (https://​go.​drugb​ank.​com/​drugs), and small-mol-
ecule drugs bound to these hub nodes were predicted 
accordingly. After exporting the prediction results, 
Cytoscape (v3.8.2) [31] was used for processing and 
drawing diagrams.

Validation
GSE35958 was used as a dataset to validate the above 
results. Differential expression analysis was per-
formed using the same steps adopted for the datasets 
of GSE152293 and GSE25958. Then, GSE152293 and 
GSE25958 were intersected to identify differentially 
expressed iron metabolism-related genes, followed by 
GO and KEGG enrichment analysis. Next, the logFC 
value of GSE35958 was averaged with the logFC val-
ues of GSE152293 and GSE152293 for GSEA analysis. 
Finally, immune infiltration and network analysis were 
performed.

ROC analysis
To further analyze the differences in differentially 
expressed iron metabolism-related genes between 
patients with osteoporosis and the healthy group, we 
used the pROC package (v1.18.0) [29] to calculate the 
ROC curves for these genes and groups and the area 
under the curve (AUC). Next, validation was performed 
on the validation dataset GSE35958 to further confirm 
the robustness of model prediction. Meanwhile, ROC 
curves were created, and the AUC was calculated to 
assess the performance of the models.

qRT‑PCR and western blotting
In order to verify the results of bioinformatics analy-
sis, we collected bone tissue samples from 3 patients 

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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https://www.mirnet.ca
https://go.drugbank.com/drugs
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with osteoporosis (OP group) and 3 normal contrast 
patients (NC group) who came to our hospital for treat-
ments. The bone tissue samples were all derived from 
the femoral head tissues of patients with femoral neck 
fractures treated in our hospital who received a total hip 
replacement in our hospital. All the subjects underwent 
scanning of the total lumbar spine (L1–L4), total hip, 
and femoral neck by dual X-ray absorptiometry (DXA). 
According to the WHO diagnostic classification, osteo-
porosis was defined by BMD at the hip or lumbar spine 
T-score≤ -2.5 SD. The BMD diagnosis of normal was 
based on the T-score of the lumbar spine or hip at -1.0 
SD and above. The qRT-PCR and Western blotting meth-
ods were used to verify the hub genes analyzed using 
bioinformatics.

Statistical analysis
All data calculation and statistical analysis were per-
formed in the R language (v4.1.0). The group differences 
between independent variables were compared using 
a t-test. Two-sided P < 0.05 was considered statistically 
significant.

Results
Differentially expressed genes (DEGs)
Regarding the datasets of GSE152293 and GSE35956, we 
first examined the distribution differences between sam-
ples (Fig. 2A, B) and adopted the PCA approach to assess 
gene expression profiles (Fig.  2C, D). Gene expression 
profiles were uniformly distributed among patients, and 
individual differences were corrected, which was more 
conducive to downstream analysis. In addition, the PCA 
reduced-dimension results showed that normalized gene 
expression profiles exhibited a stronger ability to distin-
guish patient types.

To reveal the biological differences between osteopo-
rosis patients and healthy controls from the transcrip-
tome perspective, the DEGs were first analyzed. A total 
of 23 expressed iron metabolism-related genes (Fig. 2E-
H; Table 1) were found, including 17 upregulated and 6 
downregulated genes.

Gene functional enrichment analysis
To further reveal the biological functions and processes 
affected by differentially expressed iron metabolism-
related genes, GO and KEGG enrichment analysis was 
performed based on the expression profiles of these 
genes, and visualization in various forms was carried 
out. GO enrichment results showed that the top five BP 
were regulation of protein dephosphorylation, nega-
tive regulation of protein dephosphorylation, positive 
regulation of production of miRNAs involved in gene 
silencing by miRNA, regulation of dephosphorylation, 
and dendritic cell antigen processing and presentation 
(Fig. 3A; Table 2). The top five CC were focal adhesion, 
cell-substrate junction, late endosome, an integral com-
ponent of the lumenal side of the endoplasmic reticulum 
membrane, and lumenal side of endoplasmic reticulum 
membrane (Fig. 3B; Table 2). At the MF level, genes were 
enriched in MHC class II protein complex binding, MHC 
protein complex binding, protein heterodimerization 
activity, and protein folding chaperone (Fig. 3C; Table 2). 
Notably, the most significantly enriched GO terms were 
upregulated compared with the early stage, suggesting 
that the iron metabolism-related genes in patients with 
osteoporosis were more active. The enriched KEGG 
pathways included inflammatory bowel disease, gap junc-
tion, human T-cell leukemia virus 1 infection, Chagas 
disease, and toxoplasmosis, all of which were related to 
immune functions (Fig. 3D-E; Table 2).

Based on the KEGG background gene set, enrichment 
analysis was performed on all DEGs using the GSEA 
method to further confirm the conclusion of this study’s 
enrichment analysis. Our results showed that the most 
significant top five enrichment pathways (all upregulated 
pathways) were heme metabolism, Myc targets v1, allo-
graft rejection, oxidative phosphorylation, and P53 path-
way (Fig. 4; Table 3).

Immune infiltration analysis
To compare the differences in the infiltration level of 
immune cells and further explore the differences in 
the infiltration level of immune cells between patients 
with osteoporosis and healthy controls, immune cell 

Fig. 2   Data Pre-processing and Differential Expression Analysis. A-B Box plot of expression distribution between GSE152293 (A) and GSE35956 (B) 
samples. The x-axis represents samples, and the y-axis represents gene expression values. C-D PCA reduced-dimension diagrams of GSE152293 (C) 
and GSE35956 (D). The x-axis and y-axis represent the two reduced dimensions, and the dots in the diagrams represent samples. Healthy samples 
are shown in green, and osteoporosis samples are shown in yellow. E-F Volcano plots of differentially expressed iron metabolism-related genes 
for GSE152293 (E) and GSE35956 (F). The x-axis represents log2 (fold change), and the y-axis represents -log10 (P-value). Each dot represents a gene. 
Blue are downregulated iron metabolism-related genes; red are upregulated iron metabolism-related genes; gray are genes with no significant 
change in expressions or genes unrelated to iron metabolism. G-H Heatmaps of differentially expressed iron metabolism-related genes 
for GSE152293 (G) and GSE35956 (H). The color bars at the top represent the two groups of patients. Yellow means osteoporosis samples, and green 
means healthy samples. The blue blocks in the diagram represent low expressions, and the red blocks represent high expressions

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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infiltration scores were calculated for all samples based 
on the background gene set of 22 types of immune cells 
in the CIBERSORT software. As shown in Fig.  5A, B, 
in the GSE152293 dataset, 3 cell types significantly dif-
fered between the two groups of patients, including naïve 
CD4 + T cells, activated dendritic cells, and neutrophils, 
which showed an infiltration level of almost zero in the 
group of patients with osteoporosis and high infiltration 
level in the group of healthy controls. However, there 
was no significant difference in the immune infiltration 
degree between the groups in the GSE35956 dataset 
(Fig. 5C-D).

To elucidate the relationship between the expressions 
of differentially expressed iron metabolism-related genes 
and the immune cell infiltration levels, scatter diagrams 
were created based on the expression values of the three 
significant differential immune cells and the differentially 
expressed iron metabolism-related genes, with corre-
lation curves being fitted at the same time. The results 
showed that the expressions of genes, including ABCA5 
and D2HGDH, were positively correlated with the infil-
tration degree of the three types of significantly different 
cells (Fig. 6), CTSW was negatively correlated with den-
dritic cells activated, and GNAI2 was negatively corre-
lated with the three types of significantly different cells.

Interaction network analysis
To further determine the relationship among differen-
tially expressed iron metabolism-related genes and ana-
lyze the hub genes with important regulatory functions, 
a PPI network was constructed. The network contained 
12 differentially expressed iron metabolism-related 
genes and 10 edges representing 10 pairs of interactions. 
All nodes were colored according to the size of degrees 
to more visually identify the hub genes in the network 
(Fig.  7A), after which the hub genes were mined using 
the cytoHubba plug-in in Cytoscape with the MCC algo-
rithm. The nodes were scored and sorted in descending 
order according to the MCC results, and the top five 
nodes were selected as the hub nodes (Fig.  7B). These 
genes were: YWHAE, TGFB1, PPP1R15A, TOP2A, and 
CALR.

Hub genes often have an important role in biologi-
cal processes, thus being more active in interacting with 
other biomolecules, such as miRNAs and transcription 
factors (TFs). In addition, they also have great potential 
as targets for small-molecule drugs. As a result, we pre-
dicted miRNAs and TFs to be associated with the five 
hub genes through the miRNet database, identified the 
small-molecule drugs interacting with the hub genes 
through the DrugBank database, and generated relevant 
sub-networks using the Cytoscape software. The hub-
miRNA sub-network contained 705 interaction pairs 
and 489 miRNAs (Fig. 7C); the hub-TF sub-network con-
tained 16 interaction pairs and 16 TFs (Fig. 7D); the hub-
drug sub-network contained 45 interaction pairs and 45 
small-molecule drugs (Fig. 7E).

Validation
The above analyses were validated using the validation 
dataset GSE35958. Data pre-processing is shown in detail 
in Part 1 of Supplementary Materials. After intersect-
ing the two datasets of GSE152293 and GSE35956 with 
GSE35958, 14 differentially expressed iron metabolism-
related genes were obtained, including 11 upregulated 
and 3 downregulated genes. Similarly, the GO analysis 
results showed that genes were enriched in pathways, 
such as regulation of protein dephosphorylation, nega-
tive regulation of protein dephosphorylation, and posi-
tive regulation of production of miRNAs involved in 
gene silencing by miRNA and regulation of dephospho-
rylation (Fig. 8A). The KEGG analysis showed that genes 
were enriched in pathways such as inflammatory bowel 
disease and toxoplasmosis (Fig.  8B). The GSEA results 
showed that genes were enriched in pathways such as 
heme metabolism, Myc targets v1, allograft rejection, 
oxidative phosphorylation, and p53 pathway (see Part 2 
and Supplementary Fig.  2 of Supplementary Materials 

Table 1  Differentially expressed iron metabolism-related genes

Gene Avg_logFC avg_P.Value Up_or_DN

PARVB 2.895533215 1.70E-04 UP

YWHAE 2.842901205 2.59E-04 UP

MAP2K2 2.237647914 3.84E-04 UP

TGFB1 2.319244929 5.24E-04 UP

HLA-DRA 2.758934647 1.44E-03 UP

RHOG 2.157490117 1.79E-03 UP

GNAI2 2.229553685 2.82E-03 UP

TPM4 2.724697241 3.91E-03 UP

CALR 2.017945594 4.67E-03 UP

IGF2BP2 1.754430584 5.40E-03 UP

CD68 2.459075994 8.16E-03 UP

FKBP8 2.346877436 8.61E-03 UP

PPP1R15A 1.604244872 1.31E-02 UP

GYPA 1.593697937 1.71E-02 UP

STAT4 1.759895514 2.44E-02 UP

PDGFA 1.509119696 3.03E-02 UP

CTSW 1.845857025 3.18E-02 UP

D2HGDH -2.74501111 4.49E-04 DN

HELLS -2.598041476 1.19E-03 DN

DMRT1 -1.848009625 2.76E-03 DN

ABCA5 -1.987037236 7.65E-03 DN

TOP2A -1.663967712 2.77E-02 DN

SFXN2 -1.483849159 4.34E-02 DN
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for the GSEA of the validation dataset GSE35958). The 
immune infiltration results showed that only regulatory 
T cells (Tregs) were significantly different (Fig. 8C-F). The 
hub nodes of the PPI network included GNAI2, RHOG, 
HLA-DRA, TGFB1, and MAP2K2. Figure 8G-I represent 
the hub-miRNA, hub-drug, and hub-TF sub-networks.

The qRT-PCR method was used to verify the hub genes 
analyzed using bioinformatics (Fig. 9). The expression of 
TGF-β1, YWHAE, TOP2A and CALR increased while 

the expression of ppp1r15a decreased, which was simi-
lar to the bioinformatics analysis results (Fig. 9A). Many 
signal pathways were enriched by GSEA, with oxidative 
phosphorylation and the p53 pathway as the well-known 
signal pathways this time. Next, the oxidative stress 
pathway was selected to verify the expression of related 
proteins and genes in the pathway by qRT PCR and 
Western blot. The results showed that MOB1, YAP and 
TAZ molecules were highly expressed at the gene and 

Fig. 3   GO/KEGG Enrichment Analysis of Differentially Expressed Iron Metabolism-related Genes. A-C Annular diagrams of GO enrichment 
analysis results at the BP (A), CC (B), and MF (C) levels. The outmost side of the left circle is the GO term ID. The middle ring represents upregulated 
and downregulated genes. Each dot represents one gene that is enriched in this GO term. The color of the innermost circle represents the z-score. 
A gene that is closer to red has a greater upregulation degree. The length of the color bar represents the adjusted P-value. A longer color bar means 
a smaller adjusted p-value. D Bubble chart of KEGG enrichment results. The x-axis represents gene ratio; color represents adjusted p-value; the red 
labels on the y-axis represent the enrichment results of upregulated iron metabolism-related genes, and the blue labels represent the enrichment 
results of downregulated iron metabolism-related genes. The x-axis represents the gene ratio, i.e., the number of genes enriched in the pathway/
the total number of differentially expressed genes. The y-axis represents pathways. The size of the dots represents the number of genes 
enriched in a pathway. The color represents the adjusted p-value. Dark blue represents a smaller adjusted p-value. E KEGG enrichment pathways 
of upregulated iron metabolism-related genes. The dot size represents a number of genes in the pathway. The pink color bar represents fold change 
value of genes. The number of dots represents gene entrez ID.
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Table 2  GO and KEGG enrichment analysis

ONTOLOGY Description p.adjust

BP regulation of protein dephosphorylation 0.027954

BP negative regulation of protein dephosphorylation 0.032084

BP positive regulation of production of miRNAs involved in gene silencing by miRNA 0.032084

BP regulation of dephosphorylation 0.032084

BP dendritic cell antigen processing and presentation 0.033901

BP positive regulation of superoxide anion generation 0.038198

BP peptidyl-serine dephosphorylation 0.038198

BP regulation of superoxide anion generation 0.038198

BP negative regulation of dephosphorylation 0.039042

BP regulation of production of miRNAs involved in gene silencing by miRNA 0.039042

BP regulation of production of small RNA involved in gene silencing by RNA 0.039042

BP platelet degranulation 0.039042

BP ERK1 and ERK2 cascade 0.039042

BP salivary gland morphogenesis 0.039042

BP positive regulation of gene silencing by miRNA 0.039042

BP protein dephosphorylation 0.039042

BP positive regulation of posttranscriptional gene silencing 0.039042

BP salivary gland development 0.039042

BP regulation of meiotic nuclear division 0.039042

BP regulation of superoxide metabolic process 0.039534

BP superoxide anion generation 0.045066

BP macrophage derived foam cell differentiation 0.048508

BP foam cell differentiation 0.048508

CC focal adhesion 0.000446

CC cell-substrate junction 0.000446

CC late endosome 0.011145

CC integral component of lumenal side of endoplasmic reticulum membrane 0.011223

CC lumenal side of endoplasmic reticulum membrane 0.011223

CC late endosome membrane 0.011223

CC integral component of endoplasmic reticulum membrane 0.011223

CC lumenal side of membrane 0.011223

CC integral component of organelle membrane 0.011223

CC intrinsic component of endoplasmic reticulum membrane 0.011223

CC intrinsic component of organelle membrane 0.012656

CC platelet alpha granule lumen 0.028261

CC microvillus 0.04362

CC platelet alpha granule 0.04362

CC secretory granule lumen 0.04362

CC Golgi lumen 0.04362

CC cytoplasmic vesicle lumen 0.04362

CC vesicle lumen 0.04362

MF MHC class II protein complex binding 0.024483

MF MHC protein complex binding 0.026202

MF protein heterodimerization activity 0.026202

MF protein folding chaperone 0.027946

ID Description p .adjust
hsa05321 Inflammatory bowel disease 0.043013

hsa04540 Gap junction 0.043013

hsa05166 Human T-cell leukemia virus 1 infection 0.043013

hsa05142 Chagas disease 0.043013
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protein levels (Fig. 9B, C). At the same time, we verified 
the expression of downstream pathway-related proteins 
of oxidative stress pathway, such as TNF, MAPK, IL-17, 
MAPK p50, MAPK p65, CCL4 and CXCL2 (Fig. 9D).

Discussion
Recent studies have suggested that osteoporosis is closely 
related to iron metabolism, and that disorders of iron 
metabolism affect the dynamic balance of bones [2, 3]. 
Iron overload promotes osteoclast differentiation and 
osteoblast apoptosis and inhibits the proliferation and 
differentiation of osteoblasts. Additionally, iron defi-
ciency affects collagen synthesis and vitamin D metabo-
lism [4]. However, little research has been conducted at 
the genetic level. The development of high-throughput 

sequencing technology has made it possible for us to 
understand and study the mechanism of diseases at the 
genetic level, thus facilitating the identification of new 
biomarkers [32, 33].

In this study, 23 differentially expressed iron metab-
olism-related genes, including 17 upregulated and 6 
downregulated genes, were identified by downloading 
online databases, analyzing the DEGs in the osteoporosis 
datasets, and intersecting these genes with iron metab-
olism-related genes. Next, the GO and KEGG enrich-
ment analyses were performed. In the GO enrichment 
analysis, BP results were related to the immune process 
involved by dendritic cells. This indicated that, compared 
with healthy people, patients with osteoporosis have a 
significant correlation with the antigen presentation of 

Table 2  (continued)

KEGG enrichment analysis:

ID Description p .adjust
hsa05321 Inflammatory bowel disease 0.043013

hsa04540 Gap junction 0.043013

hsa05166 Human T-cell leukemia virus 1 infection 0.043013

hsa05142 Chagas disease 0.043013

Fig. 4   GSEA Enrichment Analysis. A-F Top 6 GSEA results based on genes with a mean fold change of GSE155293 and GSE35956: HALLMARK_
HEME_METABOLISM (A), HALLMARK_MYC_TARGETS_V1 (B), HALLMARK_ALLOGRAFT_REJECTION (C), HALLMARK_OXIDATIVE_PHOSPHORYLATION 
(D), HALLMARK_P53_PATHWAY (E), and HALLMARK_APOPTOSIS (F). The x-axis represents the rank of genes in the differentially expressed gene list. 
The upper y-axis represents the enrichment scores, and the lower y-axis represents the logFC value. Red represents up-regulation, which indicates 
logFC > 0, and blue represents down-regulation, which indicates logFC < 0. The vertex of the curve on the left represents the pathway mainly 
enriched by upregulated genes
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dendritic cells, which is related to iron metabolism [34]. 
It is worth mentioning that most of the most significantly 
enriched GO terms were upregulated compared with 
the early stage, thus indicating that the iron metabolism-
related genes in osteoporosis patients were more active, 
which is also in line with existing literature [35]. In addi-
tion, many pathways in the KEGG enrichment analysis 
were associated with immune function. In particular, 
under oxidative stress conditions, the gap junction path-
way has a critical role in bone remodeling, mechanical 
transduction, and osteocyte survival and is closely associ-
ated with disuse osteoporosis [36–38].

The top five significant pathways found in this study 
were heme metabolism, Myc targets v1, allograft rejec-
tion, oxidative phosphorylation, and p53 pathway, all 
being upregulated pathways. It has been reported that 
heme can inhibit cell death via HO-1 and caspase-3 
mediation, and HO-1 induction can be used to treat 
glucocorticoid-related osteonecrosis and osteoporosis 
[39]; this process is closely associated with the heme 

metabolism pathway. Oxidative phosphorylation is 
closely related to osteoporosis, and it has been shown 
that its main biological behavior in the formation of 
osteoporosis is to promote bone loss [40, 41]. It is gen-
erally known that the p53 pathway is an important sig-
nal pathway for osteoblast differentiation [42], and the 
stability regulation by p53 is important in osteoblast 
differentiation [43]. Meanwhile, the downregulated 
expression of p53 may be a potential marker for drug 
therapy for osteoporosis [44, 45].

The immune system is intricately involved in bone 
physiology as well as pathologies. The immune micro-
environment is a loaded, integrated system that 
consists of immune cells, inflammatory cells, fibro-
blasts, interstitial tissues, and various cytokines and 
chemokines. The infiltration analysis of immune cells 
in the tissue has an important directive function in 
disease research, treatment, and prognosis prediction 
[46]. Therefore, the immune system’s role in skeletal 
pathophysiology is becoming increasingly significant. 
In fact, a new research field called bone immunology 
has emerged. Imbalance between regulatory T cells 
and T helper 17 cells cause immune cells and fibro-
blasts to interact, which can aggravate inflammation, 
promote the occurrence of bone destruction [47]. 
Immune cells, such as t lymphocyte subsets (Th17), 
trigger immune disorders that produce inflammation 
that adversely affects bone integrity [48]. Immune 
cells also contribute to osteoporosis by producing pro-
inflammatory mediators and modulating the RANK/
RANKL/OPG axis [49].

In this study, we found that three types of immune 
cells in the GSE152293 dataset, including naïve 
CD4 + T cells, activated dendritic cells, and neutro-
phils significantly differed between the two groups of 
patients. T cells have a central role in the interaction 
pathway of osteoclast formation, osteoclast forma-
tion, and bone remodeling [50]. Activated dendritic 
cells contribute to inflammation-mediated osteoclas-
togenesis and take part in inflammatory bone disease, 
which can activate T-cells by acting as APCs. Also, 
activated T-cells produce cytokines and soluble factors 
that drive bone remodeling [51], while neutrophils are 
involved in the pathophysiology of various diseases, 
including inflammation-mediated bone loss. Moreo-
ver, neutrophils can produce chemokines to recruit 
pro-osteoporotic cells such as Th17 [52]. Unfortu-
nately, the same result was not found in the data-
set GSE35956, which may be due to the differences 
between samples in different datasets.

To further identify the relationship among differ-
entially expressed iron metabolism-related genes and 
analyze the few hub genes with important regulatory 

Table 3  GSEA enrichment analysis

ID NES p.adjust

HALLMARK_HEME_METABOLISM 2.428289 2.50E-09

HALLMARK_MYC_TARGETS_V1 2.546225 2.50E-09

HALLMARK_ALLOGRAFT_REJECTION 2.253441 1.15E-08

HALLMARK_OXIDATIVE_PHOSPHORYLATION 1.987409 2.43E-06

HALLMARK_P53_PATHWAY​ 1.975652 4.83E-06

HALLMARK_APOPTOSIS 2.025609 6.61E-06

HALLMARK_COMPLEMENT 1.995983 6.61E-06

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 2.077167 9.99E-06

HALLMARK_DNA_REPAIR 1.984705 9.99E-06

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATH-
WAY​

2.163048 2.18E-05

HALLMARK_UV_RESPONSE_UP 1.983365 4.35E-05

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.81101 6.18E-05

HALLMARK_MTORC1_SIGNALING 1.82795 6.59E-05

HALLMARK_PI3K_AKT_MTOR_SIGNALING 1.933942 0.000101

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.770026 0.000286

HALLMARK_INTERFERON_ALPHA_RESPONSE 1.849241 0.000498

HALLMARK_FATTY_ACID_METABOLISM 1.747021 0.000573

HALLMARK_APICAL_JUNCTION 1.753136 0.000655

HALLMARK_HYPOXIA 1.698106 0.000866

HALLMARK_COAGULATION 1.771877 0.001165

HALLMARK_KRAS_SIGNALING_UP 1.524617 0.011802

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI-
TION

1.479446 0.016772

HALLMARK_TGF_BETA_SIGNALING 1.558825 0.022355

HALLMARK_ANGIOGENESIS 1.669469 0.022669

HALLMARK_ADIPOGENESIS 1.41419 0.024853

HALLMARK_ANDROGEN_RESPONSE 1.473469 0.034077
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Fig. 5   CIBERSORT Immune Filtration Assessment. A and C Stacked histograms of immune infiltration assessment for GSE152293 (A) and GSE35956 
(C. The x-axis represents corresponding samples, and the y-axis represents the proportion of immune cells. Each color represents a type of immune 
cell. The column length represents the proportion of such immune cells in the whole. Green indicates healthy samples (NC), and yellow indicates 
patients with osteoporosis (OP). B and D Box diagrams of immune infiltration scoring for GSE152293 (B) and GSE35956 (D). The x-axis represents 
22 types of immune cells, and the y-axis represents the infiltration level. Each color represents a patient group. The statistical test method is the t-test. 
The symbols above represent the significance level of the difference. * mean p < 0.05, ** means p = 0.01, *** means p = 0.001, **** means p = 0.0001, ns 
or blank means no significant difference

Fig. 6   Correlation Analysis between the Expression Values of Differentially Expressed Iron Metabolism-related Genes and Immune Cells. A 
and B Heatmaps of Pearson correlation between the expression values of differentially expressed iron metabolism-related genes and immune 
cells in GSE152293 (A) and GSE35956 (B). C-E Scatter diagrams of Pearson correlation between ABCA5 and naïve CD4 + T cells (C), neutrophils (D), 
and activated dendritic cells (E). The x-axis represents the mean ABCA5 expression of all samples, and the y-axis represents the infiltration level 
of immune cells. Each dot represents a patient sample, and each color represents a patient group. The straight line in a diagram is the correlation 
fitting curve, the dashed parts are confidence intervals, and the outside part of the diagram is the corresponding expression histograms of samples. 
F-H Scatter diagrams of Pearson correlation between D2HGDH and naïve CD4 + T cells (F), neutrophils (G), and activated dendritic cells (H). The 
x-axis represents the mean D2HGDH expression of all samples, and the y-axis represents the infiltration level of immune cells. Each dot represents 
a patient sample, and each color represents a patient group. The straight line in a diagram is the correlation fitting curve, the dashed parts are 
confidence intervals, and the outside part of the diagram is the corresponding expression histograms of samples

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Fig. 7   Network Analysis of Differentially Expressed Iron Metabolism-related Genes. A Protein-protein interaction (PPI) network of 23 differentially 
expressed iron metabolism-related genes. The size of dots and color represent the node degree of the network. The larger the dot, the darker 
the color, and the greater the node degree. B Top 5 hub genes based on MCC score. The color of the dots indicates MMC scoring, and the score 
increases gradually from yellow to red. The size of the dots means node degree. The larger the dot, the greater the node degree. C The hub-drug 
sub-network. Orange dots represent hub genes, blue triangles represent drugs, and the size of the dots represents node degree. D The hub-TF 
sub-network. Orange dots represent hub nodes, chartreuse squares represent TFs, and the size of dots represents node degree. E The hub-miRNA 
sub-network. Orange dots represent hub genes, green arrows represent miRNAs, and the size of the dots represents node degree
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functions, we constructed a PPI network, carried out 
the secondary treatment, and further analyzed the net-
work properties based on the intuitive, visualized net-
work. The identified hub genes were TGF-β1, YWHAE, 
PPP1R15A, TOP2A, and CALR. Numerous studies 
have reported TGF-β1 to be closely associated with the 
occurrence and development of osteoporosis. TGF-
β1 is a rich protein in the bone matrix that is stored as 
an inactive precursor before bone absorption begins, 
and increased TGF-β1 levels can promote bone forma-
tion and metabolism [53]. Additionally, TGF-β1 can 
downregulate the expressions of NFATc1 by blocking 
the nuclear translocation of NF-κB, thereby regulating 
osteoclast formation induced by human RANKL [54]. 
YWHAE, as a molecular scaffold, participates in many 
biological processes such as cell adhesion, cell cycle 
regulation, signal transduction, and malignant trans-
formation and is closely associated with multiple dis-
eases. Also, existing research shows YWHAE is mostly 
related to tumor diseases [55]; yet, its role in osteopo-
rosis remains unclear. Previous research has confirmed 
that TOP2A has a positive regulatory role in bone for-
mation metabolism [56]. CALR may interact with cal-
cium phosphate to regulate multiple signaling pathways 
to treat OP [57].

Hub genes often have important roles in biological 
processes, thus being more active in interacting with 
other biomolecules, such as miRNAs and TFs. In addi-
tion, they also have great potential as targets for small-
molecule drugs. As a result, we predicted miRNAs and 
TFs to be associated with the five hub genes through 
the miRNet database and identified the small-molecule 
drugs interacting with the hub genes through the Drug-
Bank database. Calcium citrate, calcium phosphate, 
and calcium phosphate dehydrate are known com-
pounds that are closely related to osteoporosis and are 

widely applied in treating patients with osteoporosis 
[57, 58]. However, further exploration of the function 
of the above drugs or molecular compounds in osteo-
porosis and its complications as potential treatment 
targets is needed.

Bioinformatics analysis is the inferential result 
of various statistical calculations based on chip or 
sequencing data. The obtained results have certain 
reliability but still need experimental verification. 
Firstly, our analysis data were from a public database, 
and failing to merge datasets from the same chip plat-
form may result in batch effects. Secondly, due to the 
limited dataset for this disease, we chose the dataset 
from the different dataset platforms considering fac-
tors such as dataset quality, sample size, organiza-
tional source, species, and similar, which may cause 
deviation to the follow-up analysis. Thirdly, it is best 
to use multiple similar methods (such as xCELL and 
TIMER) for immune infiltration analysis to replicate 
and experimentally verify. These are all areas that need 
improvement in our future research, as this may result 
in higher accuracy.

Conclusion
Collectively, through the comprehensive bioinformatics 
analysis, we identified a group of target genes that might 
be related to the treatment of osteoporosis, as well as bio-
logical pathways that might lead to changes in bone min-
eral density. We identified DEGs of iron metabolism and 
osteoporosis, analyzed the potential regulatory mecha-
nism, and further determined the hub genes. These find-
ings further elucidate the unique role of iron metabolism 
in the occurrence and development of osteoporosis and 
explore potential treatment targets and biomarkers. In 
addition, this study can provide ideas and assumptions 
for subsequent research.

Fig. 8   Results Validation in GSE35958 dataset. A GO enrichment results of differentially expressed iron-metabolism-related genes. The outmost 
side of the left circle is the GO term ID. The middle ring represents upregulated iron-metabolism-related genes. Each dot represents one gene 
that is enriched in this GO term. The color of the innermost circle represents the z-score. A gene that is closer to red has a greater upregulation 
degree. The length of the color bar represents the adjusted P-value. A longer color bar means a smaller adjusted p-value. B KEGG enrichment results 
of differentially expressed iron-metabolism-related genes. The dot size represents a number of genes in the pathway. The pink color bar represents 
fold change value of genes. The number of dots means gene entrez ID. C Heatmap of the Pearson correlation between immune cell infiltration 
levels through CIBERSORT and differentially expressed iron metabolism-related genes. Red represents negative correlation and blue represents 
positive correlation. D Differences in immune infiltration between osteoporosis and healthy group. Y-axis indicates the CIBERSORT immune 
infiltration results, and the x-axis indicates different immune cells. Yellow presents the osteoporosis group (OP), and green presents normal control 
(NC). * means p < 0.05, ** means p = 0.01, *** means p = 0.001, **** means p = 0.0001, ns or blank means no significant difference. E Protein-protein 
interaction (PPI) network of differentially expressed iron metabolism-related genes. The colors changing from yellow to green represent an increase 
in the degree of nodes. F Top five hub genes. The color of the dots represents the MCC score, and the color changing from yellow to red indicates 
a gradually increasing score. The size of the dots indicates the size of the degree. G The hub-drug sub-network. Orange dots represent hub 
nodes, blue triangles represent drugs, and the dots’ size indicates the degree’s size. H The hub-TF network. Orange dots represent hub nodes, 
yellowish-green squares represent TFs, and the dots’ size indicates the degree’s size. I The hub-miRNA sub-network. Orange dots represent hub 
nodes, green arrows represent miRNAs, and the dots’ size represents the degree’s size

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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Data availability statement
Data are available in a public, open access repository. 
Data are available on reasonable request. All data relevant 
to the study are included in the article or uploaded as 
supplemental information. The datasets for this study can 
be found in the GEO (https://​www.​ncbi.​nlm.​nih.​gov/ ; 

Accession numbers: GSE152293, GSE35956, GSE35958), 
ferroptosis phenotype database FerrDb (http://​www.​
zhoun​an.​org/​ferrdb), Reactome database (https://​react​
ome.​org/), AmiGo2 database (http://​amigo.​geneo​ntolo​gy.​
org/​amigo/​landi​ng) and the GeneCards database (https://​
www.​genec​ards.​org).

Fig. 9   qRT-PCR and Western blotting experiment validation. A Hub gene expression levels in bone tissue lines were detected using qRT-PCR. B 
and C qRT-PCR (B) and Western blotting (C) showing the expression of related proteins and genes in the oxidative stress pathway, respectively. 
D The expression of downstream pathway-related proteins of oxidative stress pathway. The symbols above represent the significance level of the 
difference. * means < 0.05, ** means = 0.01, *** means = 0.001, **** means = 0.0001, ns mean no significant difference

https://www.ncbi.nlm.nih.gov/
http://www.zhounan.org/ferrdb
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https://reactome.org/
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