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Abstract
Background Lung cancer is a highly prevalent malignancy worldwide and is associated with high mortality rates. 
While the involvement of endoplasmic reticulum (ER) stress in the development of lung adenocarcinoma (LUAD) has 
been established, the underlying mechanism remains unclear.

Methods In this study, we utilized data from The Cancer Genome Atlas (TCGA) to identify differentially expressed 
endoplasmic reticulum stress-related genes (ERSRGs) between LUAD and normal tissues. We performed various 
bioinformatics analyses to investigate the biological functions of these ERSRGs. Using LASSO analysis and multivariate 
stepwise regression, we constructed a novel prognostic model based on the ERSRGs. We further validated the 
performance of the model using two independent datasets from the Gene Expression Omnibus (GEO). Additionally, 
we conducted functional enrichment analysis, immune checkpoint analysis, and immune infiltration analysis and 
drug sensitivity analysis of LUAD patients to explore the potential biological function of the model. Furthermore, we 
conducted a battery of experiments to verify the expression of ERSRGs in a real-world cohort.

Results We identified 106 ERSRGs associated with LUAD, which allowed us to classify LUAD patients into two 
subtypes based on gene expression differences. Using six prognostic genes (NUPR1, RHBDD2, VCP, BAK1, EIF2AK3, 
MBTPS2), we constructed a prognostic model that exhibited excellent predictive performance in the training dataset 
and was successfully validated in two independent external datasets. The risk score derived from this model emerged 
as an independent prognostic factor for LUAD. Confirmation of the linkage between this risk model and immune 
infiltration was affirmed through the utilization of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The q-PCR results verified significant 
differences in the expression of prognostic genes between cancer and paracancer tissues. Notably, the protein 
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Introduction
Lung cancer poses a significant worldwide health issue, 
wherein non-small cell lung cancer (NSCLC) com-
prises approximately 80-85% of the reported instances 
[1]. According to global cancer statistics, over 2  million 
new cases of lung cancer are diagnosed each year [2, 3]. 
Among the various subtypes of NSCLC, lung adenocar-
cinoma (LUAD) represented approximately 55-60% of 
cases [4]. Despite significant advancements in immune 
checkpoint inhibitors and anti-angiogenesis therapies 
that have improved survival rates, the 5-year survival rate 
for patients remains around 20% [5–7]. While several 
conventional clinical models have been utilized to predict 
the prognosis of LUAD, the inherent heterogeneity of the 
disease limits their ability to provide accurate results [8]. 
Consequently, there is a need to develop new prognostic 
signatures that can enhance the prognosis assessment for 
LUAD patients.

The endoplasmic reticulum (ER) is a multifunctional 
organelle responsible for protein folding, lipid biosyn-
thesis, and calcium storage [9, 10]. Notably, it serves as 
a central hub for protein quality control, enabling adap-
tation to adverse synthesis, external stimuli, and other 
detrimental events. ER stress has been implicated in the 
development and progression of various human malig-
nancies, as it affects multiple cancer hallmarks [11]. 
External adverse factors can disrupt the integrity of the 
ER, leading to the accumulation of unfolded or mis-
folded proteins within its lumen, a condition known as 
ER stress. This triggers the activation of the unfolded 
protein response (UPR) [12, 13]. In several cancer types, 
overexpression of ER stress indicators has been associ-
ated with poor prognosis and clinical outcomes [14]. 
Wei et al. conducted a study confirming that the activa-
tion of ER stress signals plays a significant role in the ini-
tiation and progression of liver cancer [15]. Furthermore, 
they discovered that suppressing the ER stress response 
enhances cellular susceptibility to cisplatin therapy in 
NSCLC [16]. A recent study demonstrated that ER stress 
induces oral squamous cell cancer cells to secrete exo-
some PD-L1, leading to upregulated PD-L1 expression in 
macrophages and driving the polarization of M2 macro-
phages [17]. However, a comprehensive understanding of 
ER stress in LUAD, including the interplay between ER 

stress regulators and the tumor immune microenviron-
ment (TIME), remains elusive.

To investigate and assess the clinical significance of ER 
stress in LUAD, a comprehensive analysis of endoplasmic 
reticulum stress-related genes (ERSRGs) was conducted 
in this study. Additionally, a predictive model based on 
ERSRGs was constructed to evaluate its prognostic 
value in LUAD patients. Functional enrichment analy-
sis revealed a correlation between ERSRGs and immune 
infiltration. The findings of this study offer insights into 
the potential molecular mechanisms underlying LUAD 
and provide valuable prognostic information for clinical 
management.

Materials and methods
Data collection
The clinical information and RNA sequencing data for 
the bioinformatics analysis were obtained from publicly 
available databases, namely The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/). A total of 453 
samples diagnosed with LUAD were included in the 
training set, ensuring the availability of complete clinical 
information, including survival time, survival status, age, 
and gender. Additionally, to further validate the findings, 
datasets consisting of 352 patients diagnosed with LUAD 
was acquired from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). These 
datasets comprised of two independent cohorts, namely 
GSE31210 (246 samples) and GSE37745 (106 samples), 
from which mRNA expression matrices were extracted. 
Subsequently, these datasets were integrated and defined 
as the validation sets.

Clinical sample collection
For quantitative polymerase chain reaction (Q-PCR) 
experiments, tissue samples were obtained from a cohort 
of eight patients who underwent pulmonary lobectomy 
at the Affiliated Cancer Hospital of Nantong University 
between August 2022 and April 2023. The tissue sam-
ples comprised both LUAD and paired collateral can-
cer specimens. Additionally, six patients diagnosed with 
LUAD were included for immunohistochemistry experi-
ments, and their samples were sourced from Nantong 
Tumor Hospital. Prior to their participation in the study, 
all patients provided written informed consent. The 

expression of NUPR1, as determined by immunohistochemistry (IHC), exhibited an opposite pattern compared to the 
mRNA expression patterns.

Conclusion This study establishes a novel prognostic model for LUAD based on six ER stress-related genes, 
facilitating the prediction of LUAD prognosis. Additionally, NUPR1 was identified as a potential regulator of stress in 
LUAD.
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research protocol was approved by the Ethics Committee 
of the Affiliated Cancer Hospital of Nantong University.

Quantitative polymerase chain reaction
Eight pairs of cancer and adjacent non-cancerous tissues 
were collected for qPCR. Total RNA extraction was con-
ducted utilizing TRIzol reagent (Thermo Fisher SCIEN-
TIFIC, USA), following the manufacturer’s instructions. 
Reverse transcription of mRNA was accomplished using 
the EvoM-MLV reverse transcription kit (Accurate Biol-
ogy, China) [18]. For reverse transcription of mRNA, the 
HiScript III RT SuperMix for qPCR (Vazyme, China) was 
employed. The primers used in this study were procured 
from Sangon Biotech, and their specific sequences are 
provided in Table 1.

Western blot
Besa-2b, A549, H1299, H1975, and PC9 cell cultures 
(MeisenCTCC, China) were collected and underwent 
lysis using phenylmethylsulfonyl fluoride (1:100, Beyo-
time, Shanghai, China) in conjunction with cell lysis 
buffer. The protein was then separated using electropho-
resis and transferred to a polyvinylidene fluoride (PVDF) 
membrane (Invitrogen, USA). Following a 2-hour block-
ing step with 5% skim milk, the PVDF membranes under-
went an incubation period at 4 °C overnight with NUPR1 
antibody (1:400, Proteintech, China). After three wash 
cycles, blots were incubated with horseradish peroxi-
dase-conjugated secondary antibodies (1:1000, Protein-
tech, China). The determination of relative expression 
involved dividing the target protein band density by the 
density of Tubulin.

Immunohistochemistry
The tumor tissue microarray, obtained from the Affili-
ated Tumor Hospital of Nantong University, was utilized 
for the validation of the queue. Immunohistochemis-
try (IHC) was performed following previously estab-
lished protocols [19]. In brief, the tissue sections were 

incubated with a primary Anti-NUPR1 antibody (dilu-
tion 1:100; catalog number 15056-1-AP, Proteintech, 
China) and subsequently processed using the appropriate 
detection system. A scanning microscope (Nikon, Japan) 
was employed for capturing high-resolution images of 
the stained sections. The evaluation of NUPR1 staining 
was conducted by two independent pathologists, who 
were blinded to the corresponding clinical information. 
They assessed the staining intensity, distribution, and cel-
lular localization of NUPR1 in a semi-quantitative man-
ner using established scoring criteria. Any discrepancies 
between the two pathologists were resolved through con-
sensus discussion.

Differentially expressed genes associated with ER stress
Differential gene expression analysis was performed on 
the TCGA-LUAD dataset using the R-package “limma” 
to identify genes that were differentially expressed 
between LUAD and healthy samples. The criteria for dif-
ferential expression were set as |log2FoldChange| > 1 and 
adj. p < 0.05. The resulting gene set was then intersected 
with the ERSRGs, leading to the identification of 106 ER 
stress-related differentially expressed genes (DEGs).

To further identify ER stress-related prognostic genes, 
univariate Cox regression analysis was conducted on 
the TCGA-LUAD dataset. The genes were subjected to 
least absolute shrinkage and selection operator (LASSO) 
regression using the R package “glmnet” to identify genes 
associated with overall survival (OS). Multiple factor 
stepwise regression was then applied, and the small-
est lambda value was considered as the optimal value. 
Risk score: 

∑n
i=1 = Coef (gene) * Expression (gene). A 

nomogram was constructed using the R packages “rms” 
and “survival” to predict the survival of LUAD patients. 
The nomogram included various variables such as age, 
sex, TN staging, histological grading, and risk score. 
The accuracy of the nomogram was verified by plotting 
calibration curves at 1-year, 3-year, and 5-year intervals 
using the R package “rms”.

Based on the median risk score, patients were divided 
into high-risk and low-risk subgroups. Kaplan-Meier 
(K-M) curves, time-dependent receiver operating char-
acteristic (ROC), and a riskscore plot were generated 
through multivariate Cox regression analysis to illustrate 
the distribution and survival status of LUAD patients in 
the two risk groups.

Consensus clustering analysis
Cluster analysis was performed on a cohort of 106 
patients using the Pearson correlation distance mea-
sure. To ensure robustness, the clustering process was 
repeated 10 times on 80% of the samples. The optimal 
number of clusters was determined by analyzing the 
empirical cumulative distribution function graph.

Table 1 The primer sequence of 6 genes
GENE PRIMER SEQUENCE (5’-3’)
BAK1 Forward atc aac cga cgc tat gac tca gag

Reverse aca ggc tgg tgg caa tct tgg

NUPR1 Forward agg aac aga tgc acg tca gac tac

Reverse gat tag gct gga ctc aag gga agg

VCP Forward tcc tgt tgc ctc acc ctt tgt c

Reverse gcc tag cct tac cgt cca. cat c

RHBDD2 Forward atc ttc gcc atc ttc tcc gct atc

Reverse cga gaa cgg acg gtg gtg ac

MBTPS2 Forward cgg gtc tcc tga cag atc aca ag

Reverse aga tgt cct gag cag cac aag ag

EIF2AK3 Forward tgg atg atg tgg tca agg ttg gag

Reverse gtg tct ggc ata agc tgg cat tg
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Functional enrichment analysis
Gene Ontology (GO) analysis, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis, and Gene Set 
Enrichment Analysis (GSEA) were employed to investi-
gate potential mechanisms and pathways associated with 
the two clusters and riskscore subgroups [20].

Immune infiltration analysis and single cell sequencing 
analysis
The degree of immune cell infiltration and the presence 
of immune checkpoints were compared across different 
riskscore subgroups. The “ESTIMATE” package was uti-
lized to calculate the stromal score, immune score, and 
tumor purity for LUAD patients. To ensure the stability 
of the results, the “TIMER”, “EPIC”, and “MCP-counter” 
tools were employed.

Additionally, single-cell RNA sequencing data from 
the GSE127465 dataset was screened to identify relevant 
information. The TISCH platform, specifically its built-in 
tSNE algorithm available at http://tisch1.comp-genom-
ics.org/, was employed for dimensionality reduction and 
visualization of the identified clusters.

Cell culture
Beas-2b cells, representing a human normal lung epi-
thelial cell line, underwent cultivation in RPMI 1640 
medium supplemented with 10% fetal calf serum (Gibco, 
Grand Island, NY, USA) and 1% Penicillin-Streptomycin 
(NCM Biotech, China). H1299, H1975, and PC9 cells 
were cultured in RPMI 1640 medium with 10% fetal 
bovine serum (FBS) at 37  °C. Similarly, A549 cells were 
nurtured in F-12  K medium (Gibco, Grand Island, NY, 
USA) supplemented with 10% FBS. Cell lines were metic-
ulously maintained in their respective culture media to 
facilitate optimal growth and experimental conditions.

Cell counting Kit-8 assay and transwell
H1299 cells were inoculated in 96-well plates at a den-
sity of 5*103 cells per well. Subsequently, the cells were 
exposed to Trifluoperazine dihydrochloride (MedChem-
Express, China) at a concentration of 20 μmol /mL and 
incubated at 37  °C for 24, 48, and 72  h. Following the 
respective incubation periods, an absorbance reading at 
450 nm was obtained using a microplate reader (Thermo 
Fisher Scientific, Waltham, MA, USA). This measure-
ment was conducted after a 2-hour incubation at 37  °C 
with 10 μL of Cell Counting Kit-8 (CCK-8; Bimake, Hous-
ton, TX, USA) reagent in each well. To standardize the 
concentration of H1299 cells to 1 × 105/mL, serum-free 
RPMI-1640 medium was employed. The upper chamber 
received 200 μL of RPMI-1640 medium containing 10% 
fetal bovine serum, while the lower chamber was supple-
mented with 600 μL of RPMI-1640 medium containing 
10% fetal bovine serum. The cell culture was maintained 

at 37℃ with 5% CO2 for 24  h. After chamber removal, 
the cells in the upper chamber were delicately swabbed 
with a cotton applicator, fixed with 4% paraformaldehyde 
for 15 min, stained with crystal violet at room tempera-
ture for 25 min, and excess staining solution was rinsed 
off with PBS. Observation of cells that traversed the 
membrane was performed under a microscope. For each 
sample, three randomly selected fields of view were pho-
tographed and enumerated, and the average value was 
computed.

Drug sensitivity analysis
The half-maximum inhibitory concentration (IC50) met-
rics for chemotherapeutic agents were acquired from the 
Genomics of Cancer Drug Sensitivity (GDSC) database, 
accessible at https://www.cancerrxgene.org/. Subse-
quently, “PRrophytic” R package was performed to calcu-
late the drug susceptibility between different subgroups 
in R software. The outcomes are visually represented 
through box plots.

Statistical analysis
Statistical analyses and data visualization were conducted 
using R software version 4.1.0 and GraphPad Prism ver-
sion 9.5.1. Both univariate and multivariate Cox regres-
sion analyses were employed to examine the impact of 
various factors on the prognosis of LUAD. Statistical sig-
nificance was defined as p-values < 0.05.

Results
The screening and characterization of ERSRGs in LUAD
The study flow-chart is shown in Fig.  1. Differential 
expression analysis between the LUAD and control 
groups (TCGA cohort) was conducted using the limma 
package in R, leading to the identification of 20,724 
DEGs. Among these DEGs, 14,019 were up-regulated, 
while 6,705 were down-regulated (Fig. 2A). To investigate 
the potential involvement of ER stress in LUAD, a Venn 
analysis was performed to identify the overlap between 
the LUAD-related DEGs and ER stress genes (Fig.  2B). 
The interaction network among the 106 genes is visual-
ized in Fig. 2C, and the intersecting genes were function-
ally annotated using GO and KEGG analyses. As depicted 
in Fig. 2D, these genes are enriched in various biological 
processes, such as response to ER stress, response to 
topologically incorrect protein, ER-associated Degra-
dation (ERAD) pathway, cell components including ER 
protein-containing complex, integral component of ER 
membrane, ER ubiquitin ligase complex, and molecular 
functions such as ubiquitin-like protein ligase binding, 
ubiquitin ligase binding and ubiquitin protease binding. 
The critical functions of the ERSRGs include ubiquitin 
mediated proteolysis, protein processing in ER, B cell 
receptor signaling pathway and so on (Fig. 2E).

http://tisch1.comp-genomics.org/
http://tisch1.comp-genomics.org/
https://www.cancerrxgene.org/
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Consensus clustering analysis of ERSRGs in LUAD
Based on the identified set of 106 genes, the cohort of 
LUAD patients from the training queue (TCGA cohort) 
was subjected to Cluster Analysis to classify them into 
two subgroups. Optimal stability was observed when 
K = 2, resulting in the classification of 232 patients into 
cluster 1 and 221 patients into cluster 2 (Fig. 3A-C). Prin-
cipal component analysis demonstrated a distinct separa-
tion of samples into two clusters (Fig. 3D). Notably, the 
OS rate of patients in cluster 2 was significantly higher 
than that of cluster 1 (P = 0.03; Fig.  3E). These findings 
supported the subdivision of LUAD patients into two 
distinct molecular subtypes associated with differing 
survival outcomes. Furthermore, a volcano plot depict-
ing the logFC and FDR values of 620 upregulated genes 
and 321 downregulated genes across the two clusters was 
generated (Fig.  3F). Subsequent GO enrichment analy-
sis revealed that these genes were significantly enriched 
in specific molecular processes, such as mitotic sister 
chromatid segregation, humoral immune response, regu-
lation of humoral immune response, condensed chromo-
some, centromeric region, and others (Fig. 3G; Table 2). 
Additionally, GSEA revealed that the enriched pathways 
were predominantly associated with immune infiltration 

(Fig.  3H). Consequently, it is reasonable to hypothesize 
that the influence of risk scores may impact the prognosis 
of LUAD by modulating the immune microenvironment.

Prognostic signature was constructed and validation based 
on ERSRGs in LUAD
The initial step in developing a prognostic model 
involved the identification of candidate prognostic 
ERSRGs through univariate Cox regression analysis. As 
depicted in Fig. 4A, the OS of LUAD patients exhibited 
a significant correlation with 18 ERSRGs. Subsequently, 
LASSO analysis was employed to detect and screen 15 
DEGs associated with ER stress (Fig.  4B). Furthermore, 
a multiple factor stepwise regression analysis was per-
formed, resulting in the selection of 6 genes for con-
structing the prognostic model (Fig. 4C). The risk scoring 
model was established using the following formula: 
Riskscore = (-0.894871321) × EIF2AK3 + (0.268950582) 
× BAK1 + (-0.127961954) × NUPR1 + (0.255795681) × 
VCP + (0.393370303) × MBTPS2 + (-0.292131004) × 
RHBDD2. Based on the median risk score, patients from 
the TCGA-LUAD cohort were stratified into a high-risk 
subgroup (n = 220) and a low-risk subgroup (n = 220) to 
facilitate further investigations. Subsequent K-M analysis 

Fig. 1 Flow Chart of this Research
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and risk survival status plot revealed that the high-risk 
subgroup exhibited a worse prognosis, whereas the low-
risk subgroup demonstrated prolonged survival (Fig. 4D 
and F). The prognostic models were assessed by calcu-
lating the area under the curve (AUC) for 1-year, 3-year, 
and 5-year survival, yielding values of 0.68, 0.69, and 0.70, 
respectively (Fig. 4E).

Assessment and external validation for ERSRGs-signature
The risk distribution curve, survival status, and expres-
sion heatmap of the external validation sets (GSE37745 
and GSE30210) demonstrated that patients with low-
risk scores exhibited significantly longer survival times 
compared to those with high-risk scores, thus validat-
ing the findings from the training set (Fig. 5A and B). To 
further consolidate the prognostic model, the clinical 

Fig. 2 The screening and characterization of ERSRGs in LUAD. (A) Volcano plot showing DEGs between LUAD and control samples. (B) Venn diagram 
showing the intersection of DEGs and ER stress-related genes. (C) The PPI network shows the interactions of the ERSRGs in LUAD. (D) GO functional en-
richment analysis of the intersecting genes with the top three of BP, CC and MF terms (E) The KEGG enrichment results are displayed, and the node size 
represents the number of genes enriched
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information and genetic characteristics from TCGA 
were integrated, and a comprehensive multi-factor Cox 
regression model was developed, resulting in the con-
struction of a nomogram (Fig.  5C). Calibration plots 
were employed to assess the predictive accuracy of the 
nomogram, revealing excellent agreement between the 
predicted and observed OS rates at 1, 3, and 5 years 
(Fig. 5D). Moreover, the nomogram model was subjected 
to decision curve analysis (DCA) to evaluate its clinical 
utility and potential benefits (Fig. 5E-G). Collectively, the 

risk score, when combined with the ERSRGs-signature, 
pathological stage, and N-stage, emerged as an indepen-
dent and robust prognostic indicator, providing enhanced 
prognostic value for patients with LUAD.

Exploring immune infiltration patterns and single-cell 
analysis of ERSRGs-signature in LUAD
To unravel the potential functions and pathways associ-
ated with prognostic features, we conducted comprehen-
sive enrichment analyses of Gene Set, GO, and KEGG 

Fig. 3 Clustering analysis of endoplasmic reticulum stress related gene in patients with LUAD. (A, B) When k = 2, the consistent clustering Delta area curve 
shows the best model construction. (C) The cluster diagram of the consistency cluster analysis of ERSRGs in 453 samples in TCGA LUAD. (D) PCA analysis 
of two clusters. (E) KM curve of survival between cluster 1 and cluster 2. (F) Volcano map of differential gene expression between two clusters. (G) The GO 
enrichments in two clusters. (H) GSEA analysis between cluster 1 and cluster 2
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pathways. The results revealed that the genes linked to 
prognostic features were predominantly enriched in path-
ways related to immunoinfiltration. Hence, we proceeded 
to explore the heterogeneity of immune microenviron-
ments among ERSRGs-signature (Fig.  6A-C). Initially, 
we assessed the correlation between gene expression 
and immune infiltration in LUAD and observed signifi-
cant variations in the expression of different genes across 
immune cells (Fig.  6D). Subsequently, we employed the 
TIMER and EPIC algorithms to investigate immune 
infiltration patterns between the low and high-risk sub-
groups. The low-risk subgroup exhibited significantly 
elevated expression of B cells, CD4 T cells, CD8 T cells, 
and macrophage cells compared to the high-risk group 
(Fig. 6E and F). To validate the stability and robustness of 
these findings, we utilized additional algorithms, namely 
MCP-counter and ESTIMATE, which yielded consistent 
results (Fig. 6G and H). Furthermore, we observed sub-
stantial differences in the expression of immune check-
points between the two subgroups (Fig. 6I).

Subsequently, we conducted single-cell sequencing 
analysis of the ERSRGs-signature. Cluster analysis was 
performed, and Fig. 7A depicted the cluster display using 
t-distributed stochastic neighbor embedding (tSNE), 
where each color represented a distinct cell type identi-
fied within the clusters. Each cell was represented by a 
scatter plot, and the numbers in the figure corresponded 
to the cluster numbers. It was evident that there are 25 
distinct cell populations. Figure  7B presented the anno-
tation of clusters based on marker analysis, revealing 
significant differences in gene expression among differ-
ent immune cells. After applying tSNE dimensionality 
reduction, the mRNA distribution of BAK1, EIF2AK3, 
MBTPS2, NUPR1, RHBDD2, and VCP was shown in 
Fig. 7C-H. Finally, we analyzed the differential expression 

of ERSRGs in the various immune cell clusters. Among 
them, BAK1 exhibited the lowest expression in immune 
cells, while VCP demonstrated the highest expression 
(Fig. 7I).

Overall, the riskscore demonstrated an inverse cor-
relation with the level of immune infiltration, providing 
novel insights into the relationship between ERSRGs and 
the immune status of LUAD.

Validation of the expression levels of ERSRGs in LUAD
To further investigate the association between the 
prognostic ERSRGs-signature and LUAD, in vitro 
experiments were conducted using qPCR analysis on 
peritumoral and tumor tissues. The findings revealed a 
significant upregulation of BAK1 and EIF2AK3 expres-
sion in LUAD tissues, whereas NUPR1, RHBDD2, and 
VCP exhibited the opposite trend (Fig.  8A-G). More-
over, the Human Protein Atlas (HPA) database analysis 
showed higher expression levels of BAK1A and EIF2AK3 
in LUAD tissues compared to normal tissues (Fig.  8G). 
However, NUPR1 data was unavailable in the HPA data-
base. Therefore, to explore the protein expression of 
NUPR1 in LUAD patients, IHC analysis was performed 
at Nantong Cancer Hospital. Interestingly, the protein 
expression of NUPR1, as determined by IHC, exhibited 
an opposite pattern compared to the mRNA expression 
patterns (Fig. 9A).

Validation of NUPR1 under experiment
In this study, we implemented a comprehensive valida-
tion of NUPR1 within authentic laboratory conditions. 
Initially, IHC analysis was conducted on pathological 
specimens obtained from 6 LUAD patients. The results 
revealed a conspicuous aggregation of NUPR1 within 
cancerous tissue compared to adjacent non-cancerous 
tissues (Fig. 9A and B). Subsequently, both RNA and pro-
tein expression levels of NUPR1 were scrutinized in nor-
mal lung epithelial cells and four distinct LUAD cell lines. 
Surprisingly, NUPR1 RNA exhibited its highest expres-
sion in normal cell lines (Fig.  9C), aligning with our 
bioinformatics analysis outcomes. In contrast, NUPR1 
protein displayed heightened expression levels in LUAD 
cells (Fig. 9D and E, Fig. S2 and S3). We postulated that 
potential post-translational modifications may underlie 
this incongruity. To gain deeper insights into the func-
tional role of NUPR1 in LUAD progression, we procured 
NUPR1 inhibitors and executed cell proliferation and 
transwell experiments. The results starkly indicated that 
upon NUPR1 inhibition, both cell proliferation and inva-
sive capacity were markedly attenuated (Fig.  9F and G). 
This unequivocally underscores the contributory role of 
NUPR1 protein in the advancement of LUAD.

Table 2 GO enrichment analysis of ERSRGs
Term ID Description p.adjust
BP GO: 0140014 mitotic nuclear division 2.78E-18

BP GO: 0006959 humoral immune response 8.98E-09

BP GO: 0002460 adaptive immune response 2.86E-05

BP GO: 0016064 immunoglobulin mediated 
immune response

9.57E-05

BP GO: 0002921 negative regulation of humoral 
immune response

0.009377062

BP GO: 0002683 negative regulation of immune 
system process

0.021809421

BP GO: 0050870 positive regulation of T cell 
activation

0.022529834

CC GO: 0062023 collagen-containing extracel-
lular matrix

4.07E-17

CC GO: 0098687 chromosomal region 3.47-12

MF GO: 0005201 extracellular matrix structural 
constituent

2.43E-09

MF GO: 0023023 MHC protein complex binding 4.78E-07
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Correlation between risk score and IC50 values for 
therapeutic agents
The impact of risk scores on the IC50 values of a set of 
30 distinct drug molecules was systematically assessed 
to discern their therapeutic efficacy. Except for BI-2536 
and WIKI4, all other drugs exhibited higher resistance in 
the high-risk group (Fig. 10 and Fig. S1). This observation 
underscores the potential utility of our prognostic model 
in guiding the use of therapeutic agents.

Discussion
LUAD represents the most prevalent subtype of lung 
cancer, a grave malignancy arising from the accumula-
tion of various genetic mutations. These mutations lead 
to uncontrolled proliferation of lung cells and the sub-
sequent formation of tumors. Upon recognition by the 
immune system, these transformed cancer cells elicit 
an immune response aimed at their elimination [21]. 
Nonetheless, immune escape not only expedites tumor 
progression but also impairs the efficacy of cancer 

Fig. 4 Identification of ERSRGs-signature. Univariate analysis (A), LASSO analysis (B) and stepwise Cox algorithm (C) were used to identified a prognostic 
ER stress-related signature. (D) Kaplan-Meier survival curves between high and low subgroups. (E) For this ERSRGs-signature, the area under the ROC 
curve is 0.69 (1 years), 0.68 (3 years), 0.70 (5 years). (F) Riskscore plot showed the relationship among status, survival time and ERSRGs expression
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immunotherapy [22, 23]. The ER pathway serves as a crit-
ical regulator of ER homeostasis. Disruption of ER func-
tion triggers a phenomenon referred to as “ER stress” 
[24]. In the context of tumorigenesis, the rapid prolifera-
tion rate of cancer cells necessitates heightened activity 
of ER protein folding, assembly, and transport, thereby 
inducing physiological stress within the ER [25]. The ER 
stress response is believed to confer cellular protection 

and is implicated in tumor growth and adaptation to 
challenging environments [26]. Sustained ER stress rep-
resents a novel characteristic of cancer, resulting from 
various metabolic and carcinogenic abnormalities 
that disrupt protein-folding homeostasis in aggressive 
immune cells. Constitutive activation of the ER stress 
response enables malignant cells to adapt to carcinogene-
sis and environmental stressors by coordinating multiple 

Fig. 5 Assessment and external validation for ERSRGs-signature. (A) Riskscore plot of 6 ERSRGs-signature in external testing set, with riskscore and sur-
vival status in GSE37745 and GSE31210. (B) The Kaplan-Meier survival curves of high-risk and low-risk subgroups in external testing set. (C) Nomogram 
equipped with the riskscore and clinical parameters (age, gender, T, N and pathological stage) in TCGA. (D) The calibration curves displayed the accuracy 
of nomogram. (E-G) Decision curve analysis of nomogram (1-, 3-, 5- years)
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immune regulatory mechanisms and promoting malig-
nant progression concurrently [27]. Nonetheless, the 
precise relationship between ER stress and the immune 
microenvironment remains inadequately investigated.

In our study, we initially screened 106 genes associated 
with ER stress to identify differential expression patterns 
between cancer and para-cancer samples. K-Medoids 
clustering was employed for this purpose. The differen-
tial genes in the two resulting clusters were primarily 
enriched in processes related to the adaptive immune 

system, humoral immune response, and regulation of 
humoral immune response. Notably, patients belong-
ing to cluster 1 exhibited a significantly longer survival 
time compared to those in cluster 2. This discrepancy in 
prognosis suggests a potential correlation with immune 
response. Through a series of statistical analyses, includ-
ing univariate regression, LASSO, and logistic stepwise 
regression, we identified 6 key ERSRGs. Subsequently, 
we constructed a novel prognostic risk spectrum based 
on the expression signature of these six genes (referred 

Fig. 6 Immune infiltration analysis of ERSRGs-signature in LUAD. (A) The GSEA enrichment analysis between high riskscore subgroup and low riskscore 
subgroup. Analysis of GO (B) and KEGG (C) in differentially expressed genes. (D) The correlation between ERSRGs-expression and immune infiltrates. The 
TIMER (E), EPIC (F), MCP-Counter (G) and ESTIMATE (H) algorithm between high and low risk subgroups. (I) The expression of immune checkpoints was 
compared between the low vs. high riskscore subgroups. *P < 0.05, **P < 0.01
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to as ERSRGs). This risk spectrum allowed us to classify 
patients with LUAD into distinct risk subgroups, based 
on their respective median risk scores. Importantly, a 
higher risk score was associated with worse prognosis for 
the patients.

The prognostic features of interest encompass 6 
ERSRGs, specifically EIF2AK3, MBTPS2, RHBDD2, VCP, 
NUPR1, and BAK1. Among these, EIF2AK3, NUPR1, and 
RHBDD2 demonstrated protective characteristics, while 

MBTPS2, VCP, and BAK1 were strongly associated with 
poor prognosis. To assess their expression levels, qPCR 
analyses were conducted on cancer and para-cancer sam-
ples from 8 patients diagnosed with LUAD. The results 
revealed significant differential expression of EIF2AK3, 
RHBDD2, VCP, NUPR1, and BAK1, with NUPR1 and 
RHBDD2 exhibiting the most pronounced differences. 
EIF2AK3 has been identified as an immune-related prog-
nostic gene in breast cancer, exerting a role in tumor cell 

Fig. 7 Single cell sequencing analysis of ERSRGs-signature. (A) tSNE clustering colored by groups. (B) The annotation of clusters based on marker analysis. 
mRNA distribution of BAK1 (C), EIF2AK3 (D), MBTPS2 (E), NUPR1 (F), RHBDD2 (G) and VCP (H) after tSNE dimensionality reduction. (I) Differential expression 
of ERSRGs in the different cell clusters

 



Page 13 of 18Liu et al. BMC Medical Genomics           (2024) 17:12 

apoptosis and facilitating sustained protective antitumor 
immunity [28]. MBTPS2, a membrane-embedded zinc 
metalloprotease, activates signaling proteins involved 
in transcriptional control of sterol and the ER stress 
response [29], thus promoting the progression of pros-
tate cancer [30] and colorectal cancer [30]. The RHBDD2 
(Rhomboid domain containing 2) gene is found to be 
overexpressed in advanced stages of colorectal cancer 
(CRC) and potentially modulates the UPR pathway, 

thereby favoring cell migration, adhesion, and prolif-
eration [31]. VCP (valosin-containing protein) is crucial 
for maintaining mitochondrial function, and in prostate 
cancer cells, it employs self-aggregation to inhibit mito-
chondrial activity, thereby evading cell death during 
nutrient deprivation and promoting malignancy [32]. 
In a cohort study, Tao et al. demonstrated that NUPR1 
serves as a protective factor in the survival prognosis 
of LUAD [33], while Li et al. suggested NUPR1 to be a 

Fig. 8 Validation of the expression levels of ERSRGs in LUAD. The mRNA expression of BAK1 (A), EIF2AK3 (B), MBTPS2 (C), NUPR1 (D), RHBDD2 (E) and VCP 
(F) in LUAD patients from Nantong tumor hospital. N = 8, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (G) The protein expression of BAK1, EIFAK3, MBTPS2, 
RHBDD2 and VCP in HPA
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potential risk gene [34]. NUPR1, a nuclear protein, plays 
a critical role in redox reactions [35], and macrophages 
have been implicated as the most relevant immune cells 
associated with NUPR1 expression in bladder cancer 
[36]. Furthermore, the mechanism through which BAK1 

promotes cisplatin resistance in NSCLC is believed to 
involve the inhibition of cell apoptosis [37]. In summary, 
all 6 identified genes contribute to tumor development 
and progression by modulating pathways associated with 

Fig. 9 Expression analysis of NUPR1 at transcription and translation Levels. Representative images (A) and quantification (B) of NUPR1 in intratumoral 
and peritumoral fractions through immunohistochemistry staining (N = 6). MRNA (C) and protein expression (D&E) of NUPR1 in cell lines (N = 3). (F) Cell 
viability assessed through CCK8 assays between saline and trifluoperazine subgroups (N = 6). (G) Representative images and results of cell counting from 
the Transwell invasion assay (N = 3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

 



Page 15 of 18Liu et al. BMC Medical Genomics           (2024) 17:12 

tumor metabolism, with NUPR1 considered particularly 
significant.

Nuclear Protein 1 (NUPR1) is a small, highly basic 
transcriptional regulator involved in the regulation of 
diverse cellular processes, such as DNA repair, ER stress, 
and oxidative stress response. The cellular localization of 
NUPR1 appears to be associated with pathological condi-
tions. Prominent cytoplasmic staining has been observed 
in large papillary tumors, tumors exhibiting lymph node 
metastasis, and NSCLC [38]. Our IHC analysis corrobo-
rated these findings. However, intriguingly, our real-
world cohort study revealed that, in contrast to mRNA 

expression, NUPR1 accumulates in cancerous tissues, 
contributing to the malignant progression of cancer, 
which necessitates further investigation. Garcia Mon-
tero et al. reported that under various stress conditions, 
NUPR1 mRNA expression was rapidly, strongly, and 
transiently stimulated [39]. Cancer cells endure and adapt 
to various types of stressful environments over prolonged 
periods [40], leading us to speculate that NUPR1 mRNA 
may be consumed more in cancerous tissues compared to 
adjacent tissues. Additionally, interestingly, the protein 
expression of NUPR1 has been shown to positively corre-
late with cell density [41]. Considering that cancer arises 

Fig. 10 (A-P) Therapeutic drugs showed significant IC50 differences in high- and low-risk groups
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from unregulated and excessive cell division and prolifer-
ation, resulting in higher cell density [42], we hypothesize 
that NUPR1 expression is relatively elevated in cancer 
cells characterized by higher cell density compared to 
adjacent cells with relatively fewer cells.

To verify the broad applicability of the risk assessment 
element group, we conducted validation using external 
datasets GSE31210 and GSE37745. The signature exhib-
ited robust predictive performance not only in the inter-
nal dataset but also in the validation sets. Evidence from 
ROC curves and K-M analysis demonstrated the remark-
able predictive effect of the ERSRGs on the prognosis of 
LUAD patients. Importantly, even after stratifying clini-
cal features, this signature remained significantly prog-
nostic in LUAD patients. Therefore, we propose that ER 
stress-related features possess excellent predictive perfor-
mance for OS and could serve as independent prognostic 
indicators for LUAD. To facilitate clinical application, we 
constructed a nomogram model and verified its accuracy 
using calibration diagrams.

Previous research has highlighted the role of ER stress 
in promoting immune escape and facilitating metasta-
sis [43, 44]. Subsequent GSEA, GO, and KEGG analyses 
of the two subgroups revealed enrichment in immune-
related pathways. Notably, tumor purity has been iden-
tified as negatively correlated with immune response, 
suggesting its potential as an indicator of the immune 
response level in the tumor microenvironment [45]. To 
explore this further, we employed four different immune 
scoring algorithms, and all results consistently indicated 
that individuals classified as low-risk exhibited higher 
expression levels of B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and endothelial cells. The 
density of CD8+ T cells and mature dendritic cells has 
been closely associated with the survival rate of lung can-
cers, with higher CD8+ T cell density correlating with 
better 5-year survival rates [46], consistent with our find-
ings. Additionally, we observed decreased expression of 
immune checkpoint genes in the high-risk group, which 
may be attributed to immune cell dysregulation. There-
fore, our new prognostic model holds potential to not 
only assess the survival prognosis of LUAD but also shed 
light on the immune microenvironment.

Several limitations should be acknowledged in this 
study. Firstly, the model primarily relies on data from the 
TCGA database and the Nantong cohort, thus its gener-
alizability to other datasets may be limited. Therefore, a 
prospective multicenter cohort study is necessary to vali-
date the findings and ensure their applicability to diverse 
populations. Secondly, in order to comprehensively eluci-
date the underlying reasons for the discordance between 
NUPR1 mRNA and protein expression levels, further evi-
dence from additional experiments and investigations is 
required.

Overall, this study presents a prognostic model based 
on six genes associated with ER stress. The model exhib-
its utility in predicting the survival outcomes of patients 
with LUAD and offers insights into tumor immune infil-
tration to some extent. Furthermore, the identification 
of key genes provides novel insights into the molecular 
mechanisms underlying LUAD.
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