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Introduction
Breast cancer (BC) is a condition in which breast epi-
thelial cells proliferate out of control while being sub-
jected to several carcinogenic stimuli. Among women, 
BC accounts for 31% of all new cancer cases and its inci-
dence continues to increase [1]. Although the prognosis 
of many BC patients may be improved after undergoing 
surgery, chemotherapy, radiotherapy, and targeted ther-
apy, as a heterogeneous tumor, BC has different tumor 
morphologies, clinical features, and treatment responses 
[2, 3]. For example, luminal tumors typically have a favor-
able clinical outcome, whereas basal-like tumors and 
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Abstract
Immunotherapy is a promising treatment for breast cancer (BC). However, due to individual differences and 
tumor heterogeneity, immunotherapy is only applicable to some BC patients. Glutamine metabolism plays a 
role in inhibiting immunotherapy, but its role in BC is limitedly studied. Therefore, we aimed to identify different 
BC subgroups based on glutamine metabolism and characterize the features of different subgroups to provide 
guidance for personalized immunotherapy for BC patients. Using unsupervised clustering analysis, we classified BC 
patients in The Cancer Genome Atlas (TCGA) with glutamine metabolism-related genes and obtained low-risk (LR) 
and high-risk (HR) subgroups. Survival analysis revealed that prognosis of LR subgroup was notably better than 
HR subgroup. Through ssGSEA and CIBERSORT methods, we disclosed that infiltration levels of B cells, Mast cells, 
T helper cells, and Th2 cells, and Type II IFN Response immune function were notably higher in LR subgroup than 
in HR subgroup. The Wilcox algorithm comparison denoted that DEPTH of LR subgroup was significantly lower 
than HR subgroup. The TIDE of LR subgroup was significantly higher than HR subgroup. Functional annotation of 
differentially expressed genes revealed that channel activity and the Estrogen signaling pathway may be related to 
BC prognosis. Ten hub genes were selected between the subgroups through the STRING database and Cytoscape, 
and their correlation with drugs was predicted on the CellMiner website. This study analyzed the immune 
characteristics of BC subgroups based on glutamine metabolism and provided reference for prognosis prediction 
and personalized immunotherapy.
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HER2-positive tumors have a poor prognosis [4]. There-
fore, it is necessary to stratify patients to promote per-
sonalized treatment.

Glutamine, the most prevalent and useful amino acid in 
the body, controls the expression of a wide range of genes 
involved in metabolism, signal transduction, cell defense, 
and repair, as well as triggering intracellular signaling 
pathways [5, 6]. High levels of glutamine in the blood 
provide carbon and nitrogen sources for cancer cells, 
driving biosynthesis, energy supplementation, and cel-
lular homeostasis during tumor growth [7]. Studies have 
found that the loss of glutamine function in triple-nega-
tive BC cells causes severe inhibition of tumor growth in 
vitro and in vivo, while knocking down glutamine has no 
impact on the growth and metabolite levels of non-triple-
negative BC cell lines [8]. Therefore, glutamine metabo-
lism differs between different BC molecular subtypes.

Cancer immunotherapy uses anti-tumor immune 
responses to activate the host immune system to recog-
nize and eliminate tumor cells [9]. Immunotherapy may 
be a good treatment option for some BC patients [10, 
11]. However, only a few cancer patients can benefit from 
immunotherapy [12]. Increasing evidence indicates that 
immune infiltration in tumor microenvironment (TME) 
is a decisive factor in predicting BC prognosis and immu-
notherapy response [13]. Late-stage BC patients with 
high levels of T cells have increased response rates to 
immunotherapy [14]. Therefore, a comprehensive evalu-
ation of tumor immune cell infiltration is a reliable and 
effective method to assess BC patients’ sensitivity to 
immunotherapy. Based on glutamine metabolism, clus-
tering analysis of BC patients, and understanding the 
immune characteristics of different patient types can 
promote personalized treatment and increase patients’ 
benefits from immunotherapy.

In this study, we used genomic and transcriptomic 
data from 1,226 BC samples from The Cancer Genome 
Atlas (TCGA) dataset, as well as glutamine metabolism-
related genes, to classify patients. We then analyzed the 
immune landscape of different subgroups of patients 
using the single sample GSEA (ssGSEA) algorithm and 
CIBERSORT algorithm. Finally, we analyzed the biologi-
cal functional differences, hub gene selection, and drug 
sensitivity prediction between different subgroups. Our 
results revealed the potential connection between TME 
and immunotherapy for different BC subgroups based on 
glutamine metabolism-related genes, which can help tai-
lor immunotherapy strategies for BC patients.

Materials and methods
Data source
mRNA expression data for BC was available for download 
at TCGA (https://portal.gdc.cancer.gov/), involving 113 
normal and 1113 BC samples, along with corresponding 

clinical data. The samples included Luminal A, Luminal 
B, HER-2 overexpressing, Basal-like, and Normal-like 
subtypes. GSE21653 was downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) as a vali-
dation set, and the dataset comprised gene expression 
profile data from 266 BC patients. A total of 79 glutamine 
metabolism-related genes were obtained from MSigDB 
(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). 
These genes were involved in biological processes such as 
glutamine synthesis, degradation, transport, and regula-
tion (Table S1).

Unsupervised clustering based on glutamine metabolism-
related genes
Unsupervised clustering analysis is a common data min-
ing technique that uses hierarchical consensus clustering 
to analyze patient clustering with expression of gluta-
mine metabolism-related genes. The optimal number of 
clusters was determined using consensus clustering algo-
rithms, and to ensure stability of results, original data 
was subjected to 1000 random resampling and cluster-
ing analyses to obtain a stable clustering result. R pack-
age “ConsensusClusterPlus” [15] was utilized to conduct 
above steps. R package “survival” (https://github.com/
therneau/survival) was utilized to study the differences in 
survival status between BC subgroups.

TME landscape analysis
To assess the tumor microenvironment of each sample 
in the subgroups, the R package “estimate” [16] was uti-
lized. This package employed single-sample gene set 
enrichment analysis (ssGSEA) to compute stromal score, 
immune score, ESTIMATE score, and tumor purity. Wil-
coxon test was then used for comparisons, and these 
comparative results were visually represented more effec-
tively through violin plots. R package “pheatmap” [17] 
was utilized to visualize anti-tumor immune enrichment 
status of the two subgroups. The CIBERSORT method 
was utilized to reveal immune infiltration levels and Wil-
cox test was used to compare between two subgroups. 
Box plots were used to make the results clearer and easier 
to understand.

Intra-tumor heterogeneity (ITH) and Tumor immune 
dysfunction and exclusion (TIDE) analysis
ITH refers to the differences between tumor cells and is 
closely linked with tumor progression, dismal prognosis, 
immune suppression, genomic instability, and treatment 
resistance. Therefore, evaluating ITH levels is important 
for tumor prognosis and the success of immunotherapy, 
and is one of the current hotspots in tumor research [18]. 
To accurately evaluate ITH levels, many methods and 
algorithms have been proposed in recent years. Among 
them, Deviating Gene Expression Profiling Tumor 
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Heterogeneity (DEPTH) algorithm based on mRNA lev-
els has been widely used to evaluate ITH levels. Wilcox 
test was utilized to analyze differences in DEPTH scores 
between subgroups. Violin plots were generated. TIDE 
algorithm was employed to score the high-risk (HR) and 
low-risk (LR) groups, evaluating the potential responsive-
ness to immunotherapy. Wilcoxon test was conducted on 
the TIDE scores of the two subgroups to determine if 
there was a significant difference in TIDE scores.

Tumor mutation analysis between subgroups
SNV mutation data for BC was collected, and the top 30 
most frequent mutation genes were selected from each 
subgroup and compiled. Mutation data of top 30 genes in 
two subgroups was statistically analyzed and organized. 
The selected mutated genes were organized and ana-
lyzed, including calculation of their mutation frequen-
cies and the distribution of different mutation types. We 
conducted a literature validation for the chosen top 30 
most frequent mutated genes to ensure their relevance 
in BC research and excluded genes unrelated to the study 
objectives. The R package “GenVisR” [19] was down-
loaded and installed, and the waterfall plot was generated 
using the functions in the “GenVisR” package to display 
the frequency and type of these mutation genes more 
clearly.

Functional enrichment analysis of differentially expressed 
genes (DEGs) between subgroups
The “edgeR” package [20] in R was used to perform dif-
ferential analysis between the two subgroups, and 
DEGs were selected according to criteria of FDR < 0.05 
and|logFC|>1.Gene Ontology(GO)enrichment analysis 
is employed to detect the enrichment patterns of genes 
in biological processes, molecular functions, and cellu-
lar components [21]. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a comprehensive genomic data-
base that combines genomic information with biologi-
cal processes such as biochemical reactions, metabolic 
pathways, and cellular signaling, providing researchers 
with a comprehensive genomic research platform [22, 
23]. The “clusterprofiler” package was utilized for GO 
and KEGG enrichment analyses of selected genes, with 
P < 0.05 meant statistically significant. This step can pro-
vide important clues for biological research by gaining 
a deeper understanding of the functional and biological 
process differences between the two subgroups [24].

PPI network construction and hub gene selection between 
subgroups
DEGs of BC were input into STRING to build PPI net-
work and further study mechanisms of gene function 
and disease occurrence. In building the PPI network, 
interaction relationships with confidence scores higher 

than 0.9 were selected. After obtaining the PPI network 
data, Cytoscape software was used for visualization and 
analysis. CytoHubba plugin in Cytoscape was utilized to 
calculate hub genes in PPI network, which were crucial 
for maintaining network stability and function between 
subgroups.

Drug sensitivity analysis of hub genes between subgroups
CellMiner (https://discover.nci.nih.gov/cellminer/) [25] 
is a public database that contains genomic, drug sensitiv-
ity, and related data for varying human cancer cell lines. 
We utilized this website to explore relationship between 
genes and drugs and predict targeted drugs suitable for 
different subgroups of patients based on the hub genes.

Results
Assignment of BC patients into LR and HR subgroups 
based on glutamine metabolism-related genes
Unsupervised clustering analysis was performed on 
patients with a survival time greater than 30 days accord-
ing to expression of glutamine metabolism-related genes. 
The optimal number of clusters was determined to be 
2 (k = 2) using consensus clustering algorithms, and 
the samples were divided into two subgroups, with 733 
patient samples in subgroup 1 and 311 patient samples 
in subgroup 2 (Fig. 1A). Survival analysis was completed 
on two subgroups. Survival of subgroup 1 was substan-
tially better than subgroup 2 (Fig.  1B). To further vali-
date the impact of glutamine metabolism-related genes 
on the survival of BC patients, we conducted consen-
sus clustering again in the GEO dataset. The clustering 
results revealed that all samples could be divided into two 
subgroups, and the survival of these two subgroups still 
exhibited significant differences (P < 0.05) (Fig.  1C-D). 
Therefore, we defined Subgroup 1 in the TCGA dataset 
as LR subgroup and Subgroup 2 as HR subgroup. Subse-
quent analyses focused on exploring the characteristics 
of these two subgroups.

TME features in different subgroups
Differential analysis was performed on the stromal cell 
component, immune cell component, and ESTIMATE 
score of BC samples in TCGA dataset. Stromal, immune, 
and ESTIMATE scores of LR subgroup were significantly 
higher than those of HR subgroup (P < 0.05)(Fig.  2A). 
The tumor purity of LR subgroup was significantly lower 
than HR subgroup (P < 0.05) (Fig.  2B). Immune-related 
cell infiltration levels of each BC sample were evaluated 
by ssGSEA, and results showed that infiltration levels of 
B cells, Mast cells, T helper cells, Th2 cells, and Type II 
IFN Response immune function were notably higher in 
LR subgroup than in HR subgroup (P < 0.05) (Fig.  2C-
D). To gain a more accurate understanding of differ-
ences in immune levels between subgroups, we further 
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quantified immune cell infiltration level of tumors by 
CIBERSORT method. Most immune cell infiltration lev-
els were substantially higher in LR subgroup than in HR 
subgroup (P < 0.05) (Fig. 2E). This indicated that LR sub-
group exhibited “hot tumor” features, with higher levels 
of immune cell infiltration, which may assist in immuno-
therapy [26].

Prediction of the response of BC patients to 
immunotherapy
ITH is a marker of tumor development and evolution and 
has potential clinical significance, with lower ITH levels 
indicating greater suitability for immunotherapy [18]. 
To investigate the ITH and TIDE features of the two BC 
subgroups, we calculated the DEPTH and TIDE scores 

Fig. 1 Subgroup identification and survival analysis of BC patients in the TCGA and GEO datasets. (A) The optimal clustering number in the TCGA dataset 
was determined to be K = 2, the greater the distance between two samples, the less similar they are, and the smaller the distance, the more similar they 
are. (B) Survival analysis of BC LR and HR subgroups in the TCGA dataset. The blue curve represents the LR subgroup, the red curve represents the HR sub-
group, the X-axis represents survival time counted in years, and the Y-axis represents the survival probability of the corresponding subgroup. The dotted 
line represents the median survival time and survival probability of the corresponding subtype. (C) The optimal clustering number in the GEO dataset. (D) 
Survival analysis of LR and HR subgroups of BC in the GEO dataset
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of both subgroups and performed Wilcox tests. DEPTH 
score of the LR subgroup was significantly lower than HR 
subgroup (Fig. 3A). TIDE scores of the LR subgroup were 
significantly higher than HR subgroup (P < 0.05) (Fig. 3B). 
This suggested that patients in the HR subgroup of BC 
exhibited higher resistance to immunotherapy and a 
higher likelihood of immune escape. Conversely, patients 
in the LR subgroup may be more suitable candidates for 
immunotherapy.

Tumor mutation burden features in different subgroups
We collected SNV mutation data for both BC subgroups 
and analyzed the top 30 genes with high mutation fre-
quencies in LR and HR subgroups. We generated a water-
fall plot to display distribution of mutation frequencies 
for these genes. In LR subgroup, PIK3CA, TP53, CDH1, 
GATA3, and TTN were found to have higher mutation 
frequencies (Fig. 4A), while in HR subgroup, TP53, TTN, 
PIK3CA, MUC16, and SPTA1 had higher mutation fre-
quencies (Fig. 4B).

Identification and functional annotation of DEGs in LR and 
HR subgroups of BC
Given significant survival differences between LR and 
HR subgroups, we dissected molecular differences at 
molecular level, aiming to explore mechanisms of sur-
vival differences. Analysis of the genes in both subgroups 
revealed that 1755 genes were differentially expressed 
between LR and HR subgroups (Table S2). GO and 
KEGG enrichment analyses were conducted on DEGs 
of both subgroups. GO analysis results showed that 
enrichment of these genes exhibited mainly in biological 
functions such as epidermis development, collagen-con-
taining extracellular matrix, channel activity, and passive 
transmembrane transporter activity (Fig. 5A). The KEGG 
analysis showed enrichment of DEGs in pathways such 
as Cushing syndrome, Estrogen signaling pathway, Cal-
cium signaling pathway, cAMP signaling pathway, and 
Neuroactive ligand-receptor interaction (Fig. 5B). There-
fore, channel activity, passive transmembrane transporter 
activity, and Estrogen signaling pathway may be the key 
factors contributing to the survival differences between 
LR and HR subgroups.

Fig. 2 Characteristics of TME in different subgroups. (A) Immune-related score analysis between BC subgroups. (B) Analysis of tumor purity between 
BC subgroups. (C) Analysis of the correlation between BC subgroups and immune cell components using the ssGSEA method. (D) Analysis of immune-
related cell expression and immune function between BC subgroups using the ssGSEA method. (E) Analysis of immune-related cell expression between 
BC subgroups using the CIBERSORT method. (* means P < 0.05; ** means P < 0.01; *** means P < 0.001)
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Screening of hub genes in LR and HR subgroups of BC
DEGs between subgroups were utilized to construct a 
PPI network, and selecting high-confidence interaction 
relationships could improve the reliability and accuracy 
of the network. Therefore, we selected interaction rela-
tionships with confidence scores higher than 0.9 from 
STRING to build PPI network, which had 1,716 nodes 
and 919 edges with an average node degree of 1.07. This 
PPI network was used to reveal interactions between 
DEGs (Fig.  6A). We input network data into Cytoscape 
and implemented CytoHubba plugin to screen the top 10 
hub genes in the network, which were CASP14, LCE3D, 
LCE1D, LCE5A, LCE1F, LCE1A, LCE3A, LCE1B, LCE1E, 

and LCE2B. The positions and interaction patterns of 
these genes in PPI network may be key in distinguishing 
biological processes and functions between different sub-
groups (Fig. 6B).

Drug sensitivity prediction of hub genes between 
subgroups of BC
We utilized CellMiner database to predict correlation of 
hub genes with drug sensitivity and found that LCE1E 
was positively correlated with the IC50 values of Isotreti-
noin, Fluphenazine, and Megestrol acetate (Cor > 0.4, 
P < 0.001) and negatively correlated with IC50 value of 
Irofulven (Cor > 0.4, P < 0.001). LCE2B was positively 

Fig. 4 Gene mutation results of BC LR and HR subgroups. (A) Mutation status of the top 30 genes with the highest mutation frequency in the LR 
subgroup. (B) Mutation status of the top 30 genes with the highest mutation frequency in the HR subgroup. The mutation frequency of each gene is 
displayed by the bar chart on the left, and the number of mutation loads is displayed in the bar chart above the legend. Different colors in the legend 
correspond to different mutation types

 

Fig. 3 Analysis of ITH and TIDE between BC subgroups. (A) DEPTH score analysis between BC subgroups. (B) TIDE score analysis between BC subgroups
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correlated with the IC50 values of Bendamustine and 
XK-469 (Cor > 0.4, P < 0.001), LCE5A was positively cor-
related with IC50 values of Elesclomol and Imiquimod 
(Cor > 0.4, P < 0.001), and LCE1A was negatively cor-
related with IC50 value of SCH-1,473,759 (Cor > 0.4, 
P < 0.001) (Fig. 7).

Discussion
In this study, we divided BC into LR and HR subgroups 
based on glutamine metabolism-related genes. By com-
paring survival rates, immune-related cells, and immune 
function indicators between two subgroups, we disclosed 
that patients in LR subgroup had better prognostic per-
formance and higher immune function levels, while 
patients in HR subgroup had higher DEPTH scores. 
In LR subgroup, the PIK3CA gene had a relatively high 
mutation frequency, while in HR subgroup, TP53 and 
TTN genes had higher mutation frequencies. Path-
way analysis showed that DEGs in both subgroups were 
mainly enriched in channel activity biological func-
tion and Estrogen signaling pathway. We investigated 

correlation of prognostic-related genes with drugs. 
This study provided new subgroup characteristics for 
BC and could predict prognosis and provide personal-
ized immune therapy recommendations based on these 
characteristics.

We disclosed that LR subgroup had better progno-
sis and noticeably higher infiltration levels of various 
immune-related cells compared to the HR subgroup. 
B cells are a pivotal component of immune system and 
can affect tumor development and prognostic outcomes 
through various pathways [27]. You et al. [28] found that 
higher levels of B cells are notably associated with bet-
ter survival rates in BC patients, and tumor-infiltrating B 
cells were a biomarker of good prognosis in BC patients. 
The role of mast cells in cancer is controversial, and 
their beneficial or harmful effects on tumors depend 
on the tumor type and their location within the tumor 
[29]. Some studies have indicated that mast cells may be 
implicated in better prognosis in HR-positive BC patients 
[30]. The number of T helper cells within the tumor is 
positively correlated with advanced tumor stage, tumor 

Fig. 6 Identification of hub genes for BC LR and HR subgroups. (A) PPI network visualization of DEGs between subgroups. (B) The top 10 genes with the 
highest connectivity were selected as hub genes using the MCC method of the cytoHubba plugin

 

Fig. 5 GO and KEGG enrichment analyses of DEGs in BC LR and HR subgroups. (A) GO enrichment analysis results of DEGs. (B) KEGG enrichment analysis 
results of DEGs. Each bubble represents a GO function or KEGG pathway, and the size of the bubble reflects the number of genes enriched in the corre-
sponding function or pathway. The color of the bubble represents the significance of the P value, with red to dark blue representing low to high P values
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volume, and positive tumor metastasis, and is associated 
with dismal prognosis of BC patients [31], which is oppo-
site to the results of this study. However, Matsumoto et 
al. [32] reported that high levels of T helper cells indicate 
good prognosis in triple-negative BC patients, indicat-
ing that T helper cells may have different prognostic out-
comes in different subtypes of BC patients. Th2 cells are 
a subtype of T helper cells that can directly block sponta-
neous BC development by facilitating terminal differen-
tiation of cancer cells [33]. Several studies have suggested 
that M2 macrophages in BC may be associated with the 
malignancy of tumors and adverse prognosis [34, 35]. 
In contrast to other research, this study observed a sig-
nificant increase in M2 macrophages in the LR sub-
group with a favorable prognosis. M2 macrophages are 
typically linked to anti-inflammatory responses and the 
attenuation of host immune reactions [36, 37]. In the 
LR subgroup, the immune system may respond more 
actively, leading to an increased presence of M2 mac-
rophages. Additionally, BC tissues often harbor lesions 

[38], and M2 macrophages play a role in phagocytosing 
and clearing dead cells, cell fragments, and other debris, 
promoting wound healing and maintaining a favorable 
tissue microenvironment [39]. This could be a contrib-
uting factor to the significant increase observed in the 
LR subgroup. Based on the above studies, we found that 
subgroup classification based on glutamine metabolism-
related genes can predict prognoses of BC patients, and 
patients with good prognosis have characteristics of high 
levels of infiltrating B cells and mast cells.

Immunotherapy has revolutionized cancer treatment 
and different types of cancer patients may benefit from 
different treatment modalities [40]. The DEPTH score is 
an indicator for evaluating tumor prognosis and immune 
therapy response. Specifically, a lower DEPTH score gen-
erally indicates better prognosis and a higher response 
to immune therapy [41]. Our study found that DEPTH 
score of LR subgroup was remarkably lower than that 
of HR subgroup. Song et al. [42] found in their study of 
pan-cancer that a high DEPTH2 score is implicated in 

Fig. 7 Predicted results of hub genes in BC LR and HR subgroups in CellMiner (IC50 refers to the drug concentration required to reduce the number of 
surviving cells by half after drug treatment. The lower the IC50, the more sensitive to the drug, and the stronger the inhibitory effect on tumor cells. The 
correlation coefficient Cor between 0.1–0.3 indicates weak correlation, 0.3–0.5 indicates moderate correlation, and 0.5-1.0 indicates strong correlation.)
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poor survival rates in ten cancer types, including BC, 
and that a high DEPTH2 score may reduce the response 
to immune therapy. This further underscores the impor-
tance of the DEPTH score in prognosis and immuno-
therapy response, which is comparable to our findings. 
Patients in LR subgroup of BC may be more suitable for 
receiving immunotherapy. Gene mutations can also serve 
as valuable biomarkers for predicting immunotherapy 
response [43]. PIK3CA has a relatively high mutation 
frequency in LR subgroup, while TP53 and TTN have 
higher mutation frequencies in HR subgroup. PIK3CA 
mutations in BC are highly heterogeneous, and better 
characterization of PIK3CA mutations can help deter-
mine treatment methods [44]. TP53 mutations can pro-
mote immune activity in BC patients, and their mutation 
status may be a biomarker for predicting immunotherapy 
response in BC patients [45]. Pan et al. [46] disclosed that 
TP53/PIK3CA/ATM mutations can predict response to 
immunotherapy in bladder cancer patients. In our study, 
highly mutated PIK3CA and high immune cell infiltra-
tion status may be more favorable for immunotherapy 
response in LR subgroup of BC. Additionally, we con-
ducted hub gene screening for two subgroups. Through 
the prediction of these hub genes, we identified poten-
tial drugs for the treatment of BC, such as Fluphenazine, 
Megestrol acetate, and Bendamustine, aiming to provide 
insights into BC treatment. Previous studies have indi-
cated that Fluphenazine can effectively inhibit tumor 
growth and metastasis in a triple-negative BC mouse 
model [47]. Megestrol acetate, a synthetic progestin used 
in BC treatment, has demonstrated therapeutic effects 
in hormone-sensitive advanced BC patients in clinical 
trials [48, 49]. A clinical trial has shown that the combi-
nation of Bendamustine with Capecitabine is effective 
in treating HER2-negative metastatic BC patients [50]. 
These drugs have shown potential effects in BC treat-
ment in clinical research. Therefore, our research results 
hold promise in providing beneficial clues for personal-
ized treatment and laying the theoretical foundation for 
future in-depth research and drug development.

DEGs were mainly enriched in channel activity biologi-
cal function and Estrogen signaling pathway. Xu et al. [51] 
found that the calcium channel TRPV6 drives BC inva-
sion and metastasis through NFATC2IP and is implicated 
in dismal prognosis in BC. Other studies have found that 
overexpression of the ion channel TRPM7 may be impli-
cated in dismal prognosis in BC patients [52]. Estrogen 
helps regulate the differentiation and proliferation of 
normal mammary epithelial cells, and its overexpression 
is linked with elevated risk of BC [53]. Estrogen mainly 
promotes BC cell growth by activating estrogen recep-
tors, and estrogen is pivotal in progression from primary 
BC to metastatic BC [54]. Zhuang et al. [55] found that 
TRIM3 promotes BC cell migration and proliferation by 

promoting estrogen signaling. We speculated that chan-
nel activity biological function and Estrogen signaling 
pathway may be critical in BC prognosis.

In conclusion, this work assigned BC patients into LR 
and HR subgroups. Compared to patients in HR sub-
group, patients in LR subgroup had good prognosis and 
high immune cell infiltration. This superior immune 
status may help patients in LR subgroup achieve favor-
able therapeutic efficacy after receiving immune therapy, 
and our study results may provide insights into BC clas-
sification and treatment strategies. However, our study 
still has certain limitations, as we only made predictions 
based on databases and lacked experimental and clinical 
data validation.
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