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Abstract 

Background X-linked nephrogenic diabetes insipidus (NDI) is a rare genetic renal disease caused by pathogenic 
variants in the AVPR2 gene. Single nucleotide variants and small insertions/deletions in AVPR2 are reliably detected 
by routine clinical sequencing. Nevertheless, structural variants involving AVPR2 are challenging to identify accurately 
by conventional genetic testing. Here, we report a novel deletion of AVPR2 in a Czech family identified for the first 
time by targeted long-read sequencing (T-LRS).

Methods A male proband with X-linked NDI underwent clinical sequencing of the AVPR2 gene that failed and thus 
indicated possible whole-gene deletion. Therefore, PCR mapping and subsequent targeted long-read sequencing 
(T-LRS) using a Pacific Biosciences sequencer were applied to search for the suspected deletion. To validate the dele-
tion breakpoints and prove variant segregation in the family with X-linked NDI, Sanger sequencing of the deletion 
junction was performed. Quantitative real-time PCR was further carried out to confirm the carrier status of heterozy-
gous females.

Results By T-LRS, a novel 7.5 kb deletion of AVPR2 causing X-linked NDI in the proband was precisely identi-
fied. Sanger sequencing of the deletion junction confirmed the variant breakpoints and detected the deletion 
in the probands´ mother, maternal aunt, and maternal cousin with X-linked NDI. The carrier status in heterozygous 
females was further validated by quantitative real-time PCR.

Conclusions Identifying the 7.5 kb deletion gave a precise molecular diagnosis for the proband, enabled genetic 
counselling and genetic testing for the family, and further expanded the spectrum of structural variants causing 
X-linked NDI. Our results also show that T-LRS has significant potential for accurately identifying putative structural 
variants.
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Background
X-linked nephrogenic diabetes insipidus (X-linked 
NDI, MIM: 300538) is a rare X-linked recessive disease 
characterized by the inability of the kidney to concen-
trate urine in response to the antidiuretic hormone 
arginine-vasopressin (AVP). The main clinical mani-
festation is polyuria with polydipsia, failure to thrive, 
feeding difficulty, and repeated vomiting. Nevertheless, 
without proper treatment, severe clinical symptoms 
may develop, such as intellectual disability [1, 2].

X-linked NDI is caused by pathogenic variants in the 
AVPR2 gene, which encodes the arginine-vasopressin 
V2 receptor [3]. AVPR2 is a G-protein coupled recep-
tor that in response to AVP redistributes aquaporin-2 
water channel (AQP2) in the renal collecting tubules 
to make the membrane permeable to water, thereby 
concentrating the urine [1, 2]. X-linked NDI accounts 
for approximately 90% of cases with congenital NDI. 
The remaining 10% of cases are caused by pathogenic 
variants in the AQP2 gene with autosomal recessive or 
dominant inheritance [1, 2] Most pathogenic variants in 
AVPR2 are single nucleotide variants [4, 5]. Therefore, 
the recommended first-tier genetic diagnostic test for 
individuals with suspected X-linked NDI is sequencing 
analysis of AVPR2 [1]. However, non-recurrent dele-
tions of the entire AVPR2 causing X-linked NDI have 
also been observed [6]. The reported deletions varied 
in length but in most cases included not only AVPR2 
but also a neighbouring gene of unknown clinical sig-
nificance, ARHGAP4 [6]. Since these deletions, as well 
as other small structural variants (SVs), are challenging 
to identify by other clinical testing methods, such as 
chromosomal microarray or short-read sequencing [7], 
the next recommended step for patients with suspected 
large deletions is to perform gene-targeted deletion 
analysis of AVPR2 [1].

The most commonly used targeted methods to accu-
rately detect causal large deletions involving AVPR2 are 
polymerase chain reaction mapping and Sanger sequenc-
ing [6, 8–10]. This approach is labour-intensive [8] and 
not always applicable. Large deletions and other SVs tend 
to occur in repetitive genomic regions that are challeng-
ing for Sanger and short-read sequencing [11]. However, 
it has been shown that such difficulties can be overcome 
by long-read sequencing (LRS) [12–15]. LRS on Pacific 
Biosciences (PacBio) platforms generates highly accurate 
long reads (HiFi reads) that can span SVs breakpoints 
and confidently identify SVs even in difficult-to-sequence 
regions [11]. Although targeted long-read sequencing 
(T-LRS) on the PacBio sequencer represents an effective 
way to accurately detect suspected SV [14], more clini-
cal evidence is needed to confirm the clinical utility of 
T-LRS.

In this study, we report the first successful applica-
tion of T-LRS on the PacBio sequencer to identify and 
fine-map a candidate causal structural variant in a male 
proband with X-linked NDI. In the proband diagnosed 
with X-linked NDI based on the clinical manifesta-
tions and the family history, genetic cause after clinical 
sequencing remained unknown, yet suspected. There-
fore, we applied further genetic testing to search for sus-
pected whole-gene deletion. Consequently, we precisely 
detected a novel 7.5 kb deletion of AVPR2 by T-LRS in 
the proband, and thus we were able to determine the 
genetic status of available at-risk relatives in the family 
and offer genetic testing for other family members that 
may prevent the birth of affected children or prevent pri-
mary manifestation. Our results further demonstrate the 
utility of T-LRS for accurately discriminating putative 
causal structural variants.

Materials and methods
Clinical description
The proband was born after an uncomplicated preg-
nancy at 39 + 1 weeks with a birth weight of 3660 g and 
birth length of 50 cm. Due to significant weight loss, early 
enteral intake was initiated. At the age of 23 hours, he 
developed hypernatremic dehydration (the maximum 
sodium level was 160 mmol/l), which was corrected by 
intravenous fluid administration (D5%W). The require-
ment for fluid was high, with a maximum of 300 ml/kg 
per day. At this time, Hydrochlorothiazide was admin-
istered temporarily. The child tolerated oral intake well 
and clinical symptoms were significantly reduced after 
targeted therapy. Thus, at 11 days of age, parenteral 
intake could be ended, and Hydrochlorothiazide was dis-
continued. Ultrasound showed a congenital duplex left 
kidney and normal sonography of the heart, liver, gall-
bladder, pancreas, and spleen. At the age of 19 days, the 
patient was readmitted to the Neonatology Department 
for hypernatremic dehydration and Hydrochlorothi-
azide therapy was restarted. Main symptoms at clinical 
manifestation were fever, irritability, polyuria, poor feed-
ing and failure to thrive. The analysis of family history 
revealed the probands maternal uncle was clinically 
diagnosed with NDI after birth, and two more distant 
maternal male relatives were monitored and treated by 
a pediatric nephrologist during childhood and had dis-
continued treatment in adulthood. Based on the clinical 
manifestations in the male proband and pedigree analy-
sis a diagnosis of the X-linked NDI was suspected. Other 
syndromes with polyuria such as Bartter syndrome were 
contemplated in the process of differential diagnosis, but 
their type of inheritance was not consistent with the ped-
igree analysis. The patient was referred for a nephrologi-
cal follow-up.
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Further treatment was based on free water intake, 
and low salt diet, a thiazide diuretic was given to lower 
urine output, as needed. The proband stayed in the 
care of the Department of Pediatrics, University Hos-
pital Pilsen, Czech Republic, until referred to genetic 
testing by a pediatric nephrologist. Currently, at 
8 years of age, the proband is treated with Hydrochlo-
rothiazide, Verospiron, and KCl. His daily fluid intake 
is 4000–5000 ml.

DNA isolation
Genomic DNA was isolated from peripheral blood of 
the proband and his available family members using the 
Gentra Puregene Blood Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s protocol. The concen-
tration and purity of the DNA were assessed using a 
spectrophotometer DeNovix DS-11 FX (DeNovix, Wilm-
ington, DE).

PCR and Sanger sequencing
The entire coding sequence with the flanking intronic 
regions of the AVPR2 gene (clinical sequencing) and the 
breakpoint junction (breakpoint sequencing) were ampli-
fied and sequenced in the proband using primers listed in 
Table  S1 (Additional  file  1). Breakpoint sequencing was 
also performed on available family members for segre-
gation analysis. Genomic regions were amplified using 
AmpliTaq Gold 360 Master Mix (Thermo Fisher Scien-
tific, Waltham, MA) in a final 10 μl PCR mixture contain-
ing 1 μl of  H2O, 5 μl of AmpliTaq Gold 360 Master Mix, 
2 μl of 10 μM forward and reverse primer mix and 2 μl of 
DNA (35 g/μl) according to the manufacturer’s protocols. 
PCR products were purified using Agencourt AMPure 
XP magnetic beads (Beckman Coulter, Brea, CA) and 
sequencing reactions were performed using the Gerbera 
Sequencing Kit v3.1 (SEQme, Dobříš, Czech Republic) 
according to the manufacturer’s protocols. Sequencing 
products were purified using CleanSEQ (Beckman Coul-
ter, Brea, CA) and separated on the ABI PRISM 3130 
Genetic Analyser (Thermo Fisher Scientific, Waltham, 
MA). Sequencing data were analysed using BioEdit 
sequence alignment editor v.7.0.5.3 [16].

PCR mapping
Several genomic regions flanking the deletion in the 
proband were amplified using AmpliTaq Gold 360 Master 
Mix (Thermo Fisher Scientific, Waltham, MA) in a final 
10 μl PCR mixture containing 1 μl of  H2O, 5 μl of Ampli-
Taq Gold 360 Master Mix, 2 μl of 10 μM forward and 
reverse primer mix and 2 μl of DNA (35 ng/μl) according 
to the manufacturer’s protocols. Primer sequences can be 

found in Table S1 (Additional file 1). PCR products were 
analysed by agarose gel electrophoresis (2%).

Targeted long‑read sequencing and analysis
The selected target region in the proband was ampli-
fied by long-range PCR using the Phusion High-Fidelity 
PCR Kit (Thermo Fisher Scientific, Waltham, MA) in 
a final 50 μl PCR mixture containing 34 μl  H2O, 10 μl 
of 5× Phusoin GC Buffer, 1 μl of 10 μM dNTPs, 2.5 μl 
of 10 μM forward and reverse primer mix, 2 μl of DNA 
(50 ng/μl) and 0.5 μl Phusion DNA Polymerase. Primer 
sequences can be found in Table  S1 (Additional  file  1). 
The PCR protocol was as follows: Initial denaturation 
at 98 °C for 30 s, 30 cycles of 98 °C for 5 s, 63.5 °C for 15 s 
and 72 °C for 35 s and final extension at 72 °C for 10 min. 
The amplified products (~ 3900 bp long) were verified 
by agarose gel electrophoresis (1%) and purified using 
0.5× Agencourt AMPure XP magnetic beads (Beckman 
Coulter, Brea, CA). These amplicons were subjected to 
SMRTbell library preparation and sequenced on a Pacific 
Biosciences Sequel I system (Pacific Biosciences, Menlo 
Park, CA) as recommended by Pacific Biosciences. To 
generate highly accurate long reads (Hifi reads), Circu-
lar Consensus Sequence analysis was performed using 
SMRT Link v.10.1. HiFi reads were aligned to the refer-
ence human genome (hg19) using minimap2 v.2.1 [17] 
with default parameters and visualized in Integrative 
Genomics Viewer v.12.2.3 [18]. The flanking sequences of 
the breakpoints were manually evaluated for the presence 
of microhomology or repetitive elements.

Quantitative real‑time PCR
The copy number of the AVPR2 gene in available healthy 
females was determined by quantitative real-time PCR 
on Rotor-Gene Q (Qiagen, Germantown, MD) in a final 
25 μl PCR mixture containing 12.5 μl of ABsolute QPCR 
Mix, no ROX (Thermo Fisher Scientific, Waltham, MA), 
1 μl of 10 μM forward primer and 1 μl of 10 μM reverse 
primer, 1.2 μl 20× EvaGreen Dye (Biotium, Freemont, 
CA), 2.5 μl of DNA (10 ng/μl) and 6.8 μl  H2O. Primer 
sequences can be found in Table  S1 (Additional  file  1). 
Each sample was tested in three technical replicates with 
the following conditions: Initial denaturation at 95 °C for 
15 min, 40 cycles of 95 °C for 15 s and 60 °C for 60 s and 
melting curve analysis at 60–90 °C/step 0.5 °C. qPCR data 
were analysed with double delta Ct analysis, and the copy 
number of AVPR2 was normalized to the copy number 
of the GAPDH reference gene in the same sample. The 
relative copy number of AVPR2 to an unrelated control 
female were compared and shown in the graph for each 
sample.
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Results
Clinical genetic analysis
The proband with the clinical diagnosis of X-linked 
NDI underwent clinical sequence analysis of the AVPR2 
gene. However, PCRs covering coding exons and 
flanking intronic regions of AVPR2 failed to amplify 
(Fig. 1A), which suggested a large deletion covering the 
entire AVPR2.

Identification of deletion
To refine and confirm the suspected deletion, we 
designed several primer pairs to produce amplicons sur-
rounding AVPR2 within the region with previously pub-
lished deletions [6]. Only PCR amplicons 1, 2, 6, and 7 
were successfully produced (Fig.  1A), which indicates a 
deletion covering the entire AVPR2 and the last exon of 
adjacent ARHGAP4. To identify the size and location of 
the deletion at single nucleotide resolution in the region 
containing multiple repetitive elements, we applied 
T-LRS. Targeted amplicons overlapping the deletion were 
obtained by long-range PCR and subsequently sequenced 

on the PacBio sequencer. As a result, generated HiFi reads 
aligned to the human reference hg19 revealed a 7526 bp 
deletion of chrX:153,166,367–153,173,893 (Fig.  1A). 
The 5′ breakpoint was located near a repetitive element 
L1ME1 in the intergenic region between AVPR2 and 
adjacent L1CAM, while the 3′ breakpoint was delineated 
in intron 22 of ARHGAP4 with no repetitive elements. 
The breakpoint regions show no microhomologies.

Confirmation of deletion and segregation analysis
The precise deletion breakpoints in the proband iden-
tified by T-LRS were validated by Sanger sequencing 
with PCR primers amplifying the breakpoint junction 
(Fig.  1B). Additionally, Sanger sequencing of the break-
point junction in available at-risk family members 
(Fig.  2A) detected the identical deletion in a younger 
maternal cousin (III:4) also affected with X-linked NDI 
and in healthy females (II:2 and II:4) (Fig. 2B). To confirm 
the carrier status of the healthy females (II:2 and II:4), we 
performed copy number analysis of AVPR2 using quanti-
tative real-time PCR (qPCR). The relative copy number of 

Fig. 1 Identification of AVPR2 deletion. A Schematic presentation showing (from top to bottom) the position of genes, amplicons for clinical 
sequencing of AVPR2, amplicons for PCR mapping, and repetitive sequences in the RepeatMasker track. Amplified amplicons are coloured 
green, not amplified magenta. PacBio HiFi reads of long-range amplicons aligned to the human genome reference sequence (hg19) showing 
the unambiguous 7526 bp deletion (chrX:153,166,367–153,173,893) are shown at the bottom. Separate alignments from the same read are 
connected by a thin line. B Sanger sequencing of the breakpoint junction confirming the deletion breakpoints. The breakpoint junction is indicated 
by a dashed line
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AVPR2 in all tested females was one copy that correlated 
with the hemizygous control male (Fig.  2C) and thus 
proved the heterozygous status of these females.

Discussion
Timely and accurate diagnosis of X-linked NDI is benefi-
cial for patients because untreated patients can develop 
severe symptoms. The diagnostic steps of X-linked NDI 
reflect the main clinical symptoms of the disease. How-
ever, early diagnosis of X-linked NDI can be clinically 
challenging as symptoms may not be specific [8]. There-
fore, molecular genetic analysis of the AVPR2 gene is 
important to confirm the diagnosis at the molecular 
level. Identification of genetic cause of X-linked NDI in 
the proband also enables genetic testing for other fam-
ily members to achieve the birth of unaffected child or 
to prevent primary manifestation. However, in some 
cases, widespread clinical sequencing of AVPR2 reveals 
difficult-to-confirm structural variants. Hence, there is 
a need to use better tools to provide a precise diagnosis. 

Here, we identified a novel pathogenic 7.5 kb deletion of 
AVPR2 in a family with X-linked NDI using T-LRS on the 
PacBio sequencer.

In our case, clinical sequence analysis of AVPR2 in the 
proband with clinically suspected X-linked NDI indi-
cated a large deletion of the entire AVPR2. In contrast 
to previous studies using even thirty-two primer pairs 
around AVPR2 to characterize the large deletions [8], we 
performed only several PCRs. The approximately defined 
region was subsequently amplified and sequenced on 
the PacBio sequencer. As in previous studies using LRS 
[13, 15], T-LRS generated highly accurate sequence data 
even in the difficult-to-sequence regions (repetitive ele-
ments and homopolymer sequences) and precisely iden-
tified the deletion breakpoints. Detection of the deletion 
breakpoints was crucial for a complete diagnosis of the 
proband and for identifying related asymptomatic het-
erozygous female carriers who might otherwise stay 
undiagnosed, as routine clinical sequencing of AVPR2 
gene would be falsely negative. Using precisely identified 

Fig. 2 Family pedigree and segregation analysis. A Pedigree of the family with X-linked NDI and segregation of the 7.5 kb deletion 
(chrX:153,166,367–153,173,893). Available genotypes are shown below symbols: Del – deletion allele, Wt – wild-type allele. B Sanger sequencing 
of the breakpoint junction in the proband and available family members. The breakpoint junction is indicated by a dashed line. c qPCR data 
showing the relative copy number of AVPR2 in suspected female carriers (II:2 and II:4) and the control male to the copy number in the control 
female
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deletion breakpoints in the proband, we were able to 
design PCR primers to amplify the breakpoint junc-
tion. Sanger sequencing of the breakpoint junction in 
the proband demonstrated the accuracy of HiFi reads 
and segregation of the deletion in other family members 
based on X-linked recessive inheritance.

Since the deletion breakpoints were not mapped to 
be within repetitive elements and no sequence homol-
ogy was found at the junction, proposed mechanisms for 
such deletion are non-homologous end joining or fork 
stalling and template switching [6, 19]. Both breakpoints 
lay in the previously defined regions with more break-
points in which deletion is probably stimulated by the 
local genome architecture [6]. We report the first dele-
tion within these two regions, which can contribute to 
elucidating the mechanisms of non-recurrent deletions 
causing X-linked NDI.

In addition to the entire AVPR2, the 7.5 kb deletion 
encompassed the last exon (exon 22) of the adjacent 
ARHGAP4 gene. This is consistent with previous results 
where all but one [20] of the previously published large 
deletions causing X-linked NDIs included a part or all 
of the ARHGAP4 gene [6, 8–10, 21–30]. Despite lacking 
the part of ARHGAP4, both patients in this family had 
no symptoms other than those associated with NDI [1] 
which supports the results of the majority of previous 
studies [6, 8, 21–24, 26–29]showing that, in such cases, 
disruptions of ARHGAP4 do not lead to a different clini-
cal phenotype.

Conclusions
In summary, the identification of the novel 7.5 kb deletion 
enabled a precise molecular diagnosis for the proband, 
genetic counselling and genetic testing for at-risk fam-
ily members, and further expanded the spectrum of SVs 
causing X-linked NDI. Our results also support a new 
strategic workflow for identifying pathogenic variants in 
rare disease cases [7]. According to this strategy, when 
a single-gene disease is suspected, targeted approaches 
are recommended. If Sanger sequencing data indicate 
the possibility of SV, LRS is then advised. We hope that 
the further application of T-LRS will help to identify and 
confirm the suspected causative SVs also in other genetic 
diseases.
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