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Integrative HLA typing of tumor 
and adjacent normal tissue can reveal insights 
into the tumor immune response
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Abstract 

Background The HLA complex is the most polymorphic region of the human genome, and its improved char-
acterization can help us understand the genetics of human disease as well as the interplay between cancer 
and the immune system. The main function of HLA genes is to recognize “non-self” antigens and to present them 
on the cell surface to T cells, which instigate an immune response toward infected or transformed cells. While 
sequence variation in the antigen-binding groove of HLA may modulate the repertoire of immunogenic antigens 
presented to T cells, alterations in HLA expression can significantly influence the immune response to pathogens 
and cancer.

Methods RNA sequencing was used here to accurately genotype the HLA region and quantify and compare 
the level of allele-specific HLA expression in tumors and patient-matched adjacent normal tissue. The computa-
tional approach utilized in the study types classical and non-classical Class I and Class II HLA alleles from RNA-seq 
while simultaneously quantifying allele-specific or personalized HLA expression. The strategy also uses RNA-seq data 
to infer immune cell infiltration into tumors and the corresponding immune cell composition of matched normal tis-
sue, to reveal potential insights related to T cell and NK cell interactions with tumor HLA alleles.

Results The genotyping method outperforms existing RNA-seq-based HLA typing tools for Class II HLA genotyp-
ing. Further, we demonstrate its potential for studying tumor-immune interactions by applying the method to tumor 
samples from two different subtypes of breast cancer and their matched normal breast tissue controls.

Conclusions The integrative RNA-seq-based HLA typing approach described in the study, coupled with HLA expres-
sion analysis, neoantigen prediction and immune cell infiltration, may help increase our understanding of the inter-
play between a patient’s tumor and immune system; and provide further insights into the immune mechanisms 
that determine a positive or negative outcome following treatment with immunotherapy such as checkpoint 
blockade.

Keywords HLA typing, Breast cancer, Immune cell infiltration, RNA-seq analysis

Introduction
The Major Histocompatibility Complex (MHC) is a dense 
gene cluster found in vertebrates. It plays a crucial role in 
the immune response by presenting foreign or aberrated 
antigens to T cells [1]. The MHC complex in humans is 
known as the Human Leukocyte Antigen (HLA) com-
plex. Its molecules are encoded by genes located on the 
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short arm of chromosome 6 (6p21.3) [2]. The classical 
HLA Class I molecules (HLA-A, -B, and -C) are found on 
the surface of all nucleated cells and present endogenous 
antigens originating from the cytoplasm to cytotoxic T 
cells. Classical HLA Class II molecules (HLA-DP, -DQ, 
and -DR) are mainly found on antigen-presenting cells 
such as macrophages, dendritic cells, and B cells, and 
present exogenous antigens extracellularly from foreign 
bodies such as pathogens to helper T cells [3]. The HLA 
region plays an important role in infectious diseases and 
autoimmunity [4–6], tumor development [7–9], organ 
transplantation [10], and drug hypersensitivity [11]. The 
complex also contains non-classical HLA genes, includ-
ing Class I HLA-E, HLA-F and HLA-G, and Class II HLA-
DOA, HLA-DOB and HLA-DM. These non-classical 
alleles have a broad range of functions in the antigen-pre-
senting pathway and their alteration has been previously 
shown to provide tumor cells with different mechanisms 
for evasion from host immune surveillance resulting in 
tumor growth [12].

The HLA complex is the most polymorphic gene 
region in the human genome [13]. Its high sequence 
diversity can be explained by the need to successfully dis-
play a wide range of processed foreign peptides to the T 
cell antigen receptor [14–16]. In fact, it has been shown 
that populations from pathogen-rich geographic regions 
exhibit increased HLA diversity in relation to their aver-
age genomic diversity [14] and heterozygous HLA indi-
viduals display enhanced pathogen resistance compared 
to HLA homozygotes [17], as well as increased efficacy 
toward cancer immunotherapies [18]. Currently, over 
26,000 Class I and 11,000 Class II alleles have been char-
acterized and reported in the IPD-IMGT/HLA database 
(DB) – a specialist DB for sequences of the HLA complex 
(IPD-IMGT/HLA release 3.54; October 2023) [19]. This 
large number of alleles has led to the development of spe-
cial nomenclature whereby each HLA allele has a unique 
name corresponding to up to four sets of digits separated 
by colons (e.g., HLA-A*01:01:01:01). The first set of digits 
corresponds to the serological antigen carried by an allo-
type; the second to the protein type; followed by the third 
set of digits corresponding to synonymous changes in 
coding regions; and the last to the changes in non-coding 
regions [20].

Capturing the specific allelic combinations in individu-
als, or HLA typing, has important implications in diverse 
areas including organ and stem cell transplantation [10, 
21], disease association studies [5], drug safety [22] and 
neoantigen prediction for the development of personal-
ized cancer immunotherapies [23, 24]. HLA typing with 
two fields of resolution (HLA indexed with two sets of 
digits separated by a colon, e.g., HLA-A*01:01) is often 
used for clinical purposes, as it defines the specific HLA 

allele at the protein-coding level. Even a single amino acid 
difference between two HLA proteins of the same antigen 
group (same first set of digits) can result in altered T cell 
recognition specificity and allograft rejection [25]. Mul-
tiple laboratory-based techniques for HLA typing have 
been established including sequence-specific oligonu-
cleotide probe (SSOP), sequence-specific primer (SSP), 
and sequence-based typing (SBT) [26]. These methods 
allow accurate high-resolution HLA typing but remain 
labour intensive and time-consuming, expensive, and low 
throughput [27]. In recent years targeted next-generation 
sequencing (NGS)-based methods have become a new 
gold standard in the HLA typing field as they increase 
throughput while decreasing labour costs [28]. However, 
despite these advantages, targeted NGS techniques have 
some limitations, as they only profile the HLA region and 
consequently may miss useful information that is situated 
in other regions of the genome. Recent advancements in 
NGS technologies have significantly impacted the HLA 
typing process [29]. HLA genotyping from standard 
short-read data is practical as it allows massive, parallel, 
high-resolution HLA typing. However, whole-genome or 
exome sequencing often employs a reduced read length 
and coverage compared to targeted sequencing, which 
makes it challenging to resolve highly homologous alleles 
that may differ by a single nucleotide. Furthermore, HLA 
typing from NGS is complicated by the existence of HLA 
pseudogenes which are very similar to classical HLA 
alleles leading to incorrect mapping of reads [30]. HLA 
typing from RNA sequencing is further complicated by 
post-transcriptional modifications and bias due to ampli-
fication [31]. However, RNA-seq-based HLA typing pre-
sents a distinct advantage over DNA-based methods as it 
allows for the simultaneous HLA expression estimation 
and HLA genotyping from the same patient sample.

Given the wide availability and accessibility of RNA-seq 
and the importance of HLA expression in mediating an 
immune response, developing techniques for HLA typ-
ing from RNA could be of great value. Moreover, since 
RNA-seq is widely used in the precision oncology [32] it 
would be convenient and cost-effective to predict HLA 
haplotypes directly from RNA-seq, potentially avoiding 
the need for additional tests.

While multiple algorithms for HLA typing from RNA-
seq have been developed over the last decade [33–42], 
many deliver ambiguous predictions, while others claim 
to have accuracies that could not be reproduced in other 
studies [43]. In addition, the majority of these methods, 
including OptiType [36], HLAminer [34] and Seq2HLA 
[33], limit their reference sequences to core exons 
responsible for antigen binding affinity (exons 2 and 3 in 
HLA Class I and exon 2 in HLA Class II loci), making it 
difficult or impossible to accurately type/deconvolute 
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certain alleles, or discover novel or uncharacterized 
alleles [44].

Here we present an advance on our previous in-silico 
HLA typing method from DNA data, OncoHLA [45, 
46], which now captures both Class I and II genotypes 
from RNA-seq reads. We evaluated the performance of 
the method on a gold-standard benchmarking RNA-
seq dataset [47] for HLA typing against five previ-
ously published algorithms, including OptiType [36], 
Seq2HLA [33], HLAProfiler [41], HLApers [42] and 
ArcasHLA [39]. We demonstrate here that OncoHLA 
performs on par with the state-of-the-art HLA Class I 
typing tools, and outperforms the state-of-the-art tools 
when considering both Class I and Class II combined 
(using RNA-seq data).

In addition to the HLA genotype itself, diversity in 
HLA allelic expression may also influence immune 
responses. Besides HLA typing from RNA-seq, the 
strategy we describe here is adapted to infer personal-
ized (allele-specific) HLA transcript abundance. The 
integrative HLA typing from DNA, RNA, and the sub-
sequent quantification of the typed HLA in tissue may 
be an important guide in clinical studies. This is espe-
cially important in the context of studying the immune 
response to cancer. Tumors can evolve diverse mecha-
nisms to escape T cell recognition [48]. The down-
regulation of HLA expression in tumor cells results in 
decreased presentation of tumor antigens by HLA on the 
cell surface and has been shown to significantly impact 
patient prognosis [9, 49, 50]. Moreover, total HLA Class 
I antigen loss due to the mutation of beta-2 microglobu-
lin (B2M) – a component of HLA Class I molecules, has 
been found in several types of cancer [51–54]. Analysis 
of matched tumor and normal profiles may be crucial to 
improve our understanding of tumor escape mechanisms 
and response (or lack of it) to immunotherapy. However, 
RNA-seq data from tumor tissue is not usually matched 
with RNA-seq data from its normal tissue counterpart, as 
this tissue material is often not accessible or available to 
excise from a biopsy or surgical resection. This practical 
constraint may limit our understanding of the role that 
HLA expression plays in determining tumor immune 
escape and its impact on patient response to therapy, as 
the context of its expression relative to the normal tis-
sue counterpart cannot be considered. Here, to demon-
strate the utility of “integrative HLA typing”, we applied 
our strategy on two independent datasets where primary 
breast cancer and matched adjacent normal breast tis-
sue were available (consisting of triple-negative breast 
cancer (TNBC) and estrogen receptor-positive (ER +)/
HER2-negative (HER2-) tumors). We demonstrate that 
integrative HLA typing that incorporates an investiga-
tion of differential personalized HLA expression between 

tumor and matched normal adjacent tissue can shed light 
on the interaction between the host immune system and 
tumor and provide insights into the anti-tumor immune 
response.

Materials and methods
Database construction / HLA reference sequences
We downloaded a file written in Extensive Markup Lan-
guage (XML) from IPD-IMGT/HLA DB version 3.46.0. 
The XML format combines the data included in the 
sequence alignments with the data available in the indi-
vidual allele reports. OncoHLA’s reference library for 
typing from RNA-seq reads was constructed from all 
exons. However, many alleles in the DB had incomplete 
sequences, containing in many cases only sequences cov-
ering exons encoding for the peptide-binding site as they 
contain most of the polymorphism. In case if some exons 
were not covered in the DB, we reconstructed them by 
taking the sequence from the closest allele containing the 
necessary information. The closest allele is the one that 
has the highest sequence identity with the allele with 
missing sequence information. In cases where multiple 
alleles with the same sequence identity were present, the 
choice was made in favor of confirmed and common, 
well-documented alleles.

Genotyping algorithm
The basis of the algorithm has been described in the 
previous paper for typing from DNAseq reads [45]. The 
method uses integer linear programming algorithm 
(ILP) that searches for the optimal combination of alleles 
from all loci that maximizes the number of reads poten-
tially originated from this selection. The only difference 
in the case of RNA-seq typing is that it uses one-step 
ILP instead of two. In the case of typing from WES and 
WGS, the library includes introns and therefore longer 
sequences which makes it slow to type from all known 
complete sequences at once. First, the algorithm searches 
for the best candidates relying on exons coding for pep-
tide binding domain and flanking introns, and then 
relies on the complete sequences of the alleles to resolve 
ambiguities and choose one or two candidates per locus 
depending on its zygosity status. In the case of typing 
from RNA-seq, the reference sequences do not contain 
introns making the typing less complex computationally, 
and therefore one step can be used for genotyping.

Validation data
To evaluate the performance of OncoHLA on RNA-seq 
data against previously published tools, a publicly avail-
able dataset of RNA sequencing data by the GEUVADIS 
(Genetic European Variation in Health and Disease) 
consortium was used [47]. The data contains 462 human 
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lymphoblastic cell line samples from 5 different popula-
tions: CEU, FIN, GBR, TSI and YRI populations from the 
1000 Genomes sample collection. The dataset has been 
used for benchmarking by several previously published 
tools and is considered to be the gold standard dataset for 
RNA-seq HLA typing evaluation.

The data that passed quality control were downloaded 
in bam format from: http:// www. ebi. ac. uk/ array expre ss/ 
exper iments/ E- GEUV-1/ files/ proce ssed. Reads poten-
tially originating from the HLA region were extracted, 
these include all reads from chromosome 6 that are 
mapped in a proper pair, all pairs where one read is 
mapped to chromosome 6 with an unmapped pair, and 
all pairs where both reads are unmapped.

HLA types for 358 of these samples were determined 
using Sanger sequences for all three Class I loci and 2 
Class II loci (HLA-DRB1 and HLA-DQB1) [55]. Only the 
peptide-binding region for each gene was sequenced. The 
typing relied on IPD-IMGT/HLA database from 2009. 
We used the list of ambiguous allele combinations pro-
vided by IPD-IMGT/HLA to evaluate the performance of 
OncoHLA and other tools.

Benchmarking set: choice of previously published tools 
for comparison purpose
To evaluate the performance of the developed method 
and compare it with the existing algorithms we ran 
OncoHLA together with previously published tools 
on GEUVADIS dataset which is publicly available. The 
choice of the tools was mostly based on previously pub-
lished benchmarking results. We have chosen five tools: 
Seq2HLA [33], OptiType [36], HLAPers [42], HLAPro-
filer [41], and ArcasHLA [39] since they outperform 
other tools according to recent publications [39, 43]. All 
the methods have already been run on this dataset before 
in several studies, but the inferred accuracies differ from 
one study to another. Therefore, we have decided to run 
all the tools ourselves using the same input and default 
parameters.

Configuration of the tools from the benchmarking set

• OptiType was downloaded from https:// github. com/ 
FRED-2/ OptiT ype and ran with default parameters 
using the following command:

 OptiType -i [fastq_1] [fastq_2] -r -o [output_dir]

 The reference library used by OptiType was updated 
in 2014 and has not been updated since that time.

• Seq2HLA was downloaded from https:// github. com/ 
TRON- Bioin forma tics/ seq2H LA and ran using the 
command:

 python seq2HLA.py -1 [fastq1] -2 [fastq2] -r [run_
name] -p 10

 The reference library goes together with the tool and 
was updated in 2017.

• HLAProfiler was downloaded from https:// expre 
ssion analy sis. github. io/ HLAPr ofiler/ and ran with 
the default parameters using the command:

 perl HLAProfiler.pl predict -fastq1 [fastq_1] -fastq2 
[fastq_2] -database_name hla_database -database_
dir HLAProfiler-1.0.0-db_only -reference HLAPro-
filer-1.0.0-db_only/hla_database/data/reference/
hla.ref.merged.fa -output_dir [output_dir] -kraken_
path kraken-0.10.5-beta-ea.1 -if -l [sample_name].
HLAProfiler.log

 The database was updated in 2017 and was down-
loaded from:

 https:// github. com/ Expre ssion Analy sis/ HLAPr ofiler/ 
relea ses/ tag/ v1.0. 0- db_ only

• HLApers was downloaded from https:// github. com/ 
genev ol- usp/ HLApe rs and ran with Kallisto [56] 
and the library made from IPD-IMGT/HLA version 
3.48.0 with the following command:

 genotype -i HLApers/index -t HLApers/hladb/tran-
scripts_MHC_HLAsupp.fa -1 [fq_file1] -2 [fq_file2] 
-o [outprefix_name] –kallisto6

• ArcasHLA was downloaded from https:// github. 
com/ Rabad anLab/ arcas HLAand and ran with the 
library made of complete alleles from IPD-IMGT/
HLA version 3.46.0 using the command:

 arcasHLA genotype [fastq_1] [fastq_2] -g 
A,B,C,DRB1,DQB1 -o [output_dir]

All the tools were run using the same fastq files as 
OncoHLA obtained by the procedure described in ‘Vali-
dation data’ paragraph.

Prediction accuracy / performance measure
Predictions were considered accurate if a predicted allele 
matched any allele in the G group of the experimentally 
detected allele. HLA alleles that have identical nucleotide 
sequences across the exons encoding the peptide bind-
ing domains (exon 2 and 3 for HLA class I and exon 2 
only for HLA class II alleles) are part of the same G group 
which is named by the first three fields of the lowest 
numbered allele in the group followed by ‘G’. This list was 
obtained from the IPD-IMGT/HLA DB under the name 
‘hla_nom_g.txt’.

Allele‑specific expression quantification
We quantified abundances of HLA transcripts from 
RNA-seq data using Kallisto [56]. To obtain reli-
able expression levels for each sample, we used inferred 
HLA genotypes as a transcriptome index. This requires 
an additional step consisting in removing all HLA 

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/files/processed
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/files/processed
https://github.com/FRED-2/OptiType
https://github.com/FRED-2/OptiType
https://github.com/TRON-Bioinformatics/seq2HLA
https://github.com/TRON-Bioinformatics/seq2HLA
https://expressionanalysis.github.io/HLAProfiler/
https://expressionanalysis.github.io/HLAProfiler/
https://github.com/ExpressionAnalysis/HLAProfiler/releases/tag/v1.0.0-db_only
https://github.com/ExpressionAnalysis/HLAProfiler/releases/tag/v1.0.0-db_only
https://github.com/genevol-usp/HLApers
https://github.com/genevol-usp/HLApers
https://github.com/RabadanLab/arcasHLAand
https://github.com/RabadanLab/arcasHLAand


Page 5 of 14Sverchkova et al. BMC Medical Genomics           (2024) 17:37  

transcripts from human reference transcriptome file and 
adding the sequences of a person’s own HLA alleles. We 
used transcript per million (TPM) as the measurement of 
HLA abundances.

Immune cells fraction quantification
To estimate the fraction of different immune cells, we 
used quanTIseq tool [57]. It quantifies the proportions 
of ten different immune cell types via deconvolution. 
We used the output of Kallisto with personalized HLA 
abundances to calculate the gene TPMs by summing all 
the abundances of the transcripts which constituted the 
gene. The inferred gene TPMs were used as an input to 
quanTIseq.

Breast cancer data
We applied the RNA-seq typing approach on two inde-
pendent RNA-seq datasets. The first dataset is publicly 
available and contains 42 triple negative breast cancer 
(TNBC) and 42 ER + /HER2- primary tumors as well as 
21 uninvolved breast tissue samples that were adjacent 
to TNBC tumors and 30 uninvolved breast tissue sam-
ples that were near ER + breast tumors [58]. The sam-
ples were sequenced on Illumina HiSeq 2000 sequencing 
machine (2 × 50  bp) and are available under accession 
number GSE58135. 17 samples that had most of their 
reads removed after trimming and quality control of 
the sequencing were discarded from the analysis. We 
matched the left tumor–adjacent normal samples using 
HLA genotypes inferred by our method resulting in 20 
ER + -normal pairs and 15 TNBC normal pairs (Supple-
mentary Table  1). The second dataset is in-house and 
cannot be made publicly available because of privacy 
concerns. It consists of 5 ER + /HER2-patients for which 
WES and RNA-seq were available including both primary 
tumor and adjacent normal tissues. Tumor identification 
was made in the operating room via palpation or radio-
guided biopsy markers. The tumor was excised, marked 
for orientation, and sent for immediate pathological tis-
sue handling for the study. A small piece of normal breast 
tissue was obtained from the surgical site, away from the 
tumor area, or from the medial aspect of the sentinel 
lymph node incision. Normal breast tissue samples were 
collected prior to tumor excision to minimize potential 
cross-contamination with the tumor tissue.

The identities of tissues, either breast tumors or adja-
cent normal tissues, were confirmed by a pathologist 
using standard Hematoxylin and Eosin (H&E) staining of 
parallel frozen sections and formaldehyde-fixed paraffin-
embedded (FFPE) tissue blocks. The plane of the tumor 
tissue sample taken for gene sequencing was as close as 
possible to the tumor plane sent for permanent blocks so 

that the H&E slide images would represent the sequenced 
region as closely as possible.

Tissue that was not processed for pathology was dis-
sected to produce approximately 100  mg pieces with 
dimensions less than 0.5  cm. These samples were snap-
frozen in tubes capable of withstanding cryopreservation 
and labeled only with the patient’s unique code for that 
replicate. Tumor tissue samples were collected for DNA 
and RNA analyses, whereas normal tissue samples were 
collected for RNA analysis only.

DNA and RNA were extracted from the respective 
samples using the QIAGEN reagent (QIAzol, QIAGEN, 
Hilden, Germany). Whole-exome sequencing was per-
formed on the tumor and normal tissues. Sequencing 
libraries were generated from the extracted DNA using 
the Agilent SureSelectXT2 Human All Exon V6 Kit 
(Agilent Technologies, Santa Clara, CA, USA). Normal 
and tumor tissue samples were sequenced at 100 × and 
300 × coverage, respectively. RNA sequencing was per-
formed on the tumor and normal breast tissues to pro-
file the transcriptome. Messenger RNA was captured via 
poly-A tails and prepared for sequencing using NEBNext 
Ultra II (New England Biolabs Inc., Ipswich, MA, USA). 
An Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA) 
was used to process samples, report the RNA integ-
rity number (RIN), and visualize the ribosomal ratios. 
All RIN scores from the passing samples were above 
6.0, with most samples scoring above 7.5. Normal sam-
ples were sequenced at 60 million paired-end reads and 
tumor samples were sequenced at 120 million paired-
end reads. NGS was performed on all samples using 
NovaSeq6000 (Illumina, San Diego, CA, USA) with 
paired-end reads of 150 bp.

Antigen‑presenting score
The antigen presentation of tumor-specific mutations 
was assessed using the NEC Immune Profiler (NIP) soft-
ware from NEC OncoImmunity, comprising of several 
proprietary machine-learning (ML) prediction algo-
rithms. The algorithm considers the following features 
when predicting the immunogenicity of a candidate:

(1) The binding affinity of the mutated peptide to HLA.
(2) The peptide’s ability to be efficiently processed by 

the antigen processing machinery (APM).
(3) The expression of the candidate neoantigen.
(4) The ability of the somatic mutation’s host protein to 

harbor HLA bound presented peptides.

Class I neoantigen predictions were conducted for 
each of the 5 ER + /HER2- patients for which WES and 
RNA-seq were available including both primary tumor 
and adjacent normal. The publicly available dataset 
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comprised RNA-seq data only and was therefore unsuit-
able for the neoantigen predictions.

Statistical analysis
HLA gene expression and immune cell infiltrations 
comparison between primary tumor and correspond-
ing normal tissue was performed using Student’s t-test. 
Differences were considered statistically significant 
when P-values < 0.05. In addition, Bonferroni correc-
tion for multiple comparisons was also applied and 
adjusted P-values were calculated (Supplementary 
Tables S3 and S4).

Results
Performance and benchmarking with other tools
The GEUVADIS dataset has been used by many RNA-
seq-based HLA typing methods and is considered a 
gold standard dataset for the evaluation of HLA gen-
otyping from RNA-seq reads. The accuracy with two-
field resolution for OncoHLA applied to RNA-seq data, 
and five other RNA-seq HLA typing tools was assessed 
and is shown in the Fig.  1. The performance for each 
locus was measured separately. OncoHLA showed 
an overall accuracy of 98.74% at Class I and 99.23% at 
Class II at high-resolution outperforming Seq2HLA, 
HLAProfiler, HLApers and ArcasHLA in both MHC 
Classes. OptiType showed an accuracy of 99.07% at 
Class I which is 0.33% higher than our method. Opti-
Type uses an old version of IPD-IMGT/HLA DB dated 
to 2014 with a significantly lower number of alleles 
compared to the contemporary versions of the DB 
and considers only those alleles that were reported in 
allelefrequencies.net [59] or dbMHC [60]. Moreover, 
OptiType’s HLA library includes only exons coding 
for the peptide-binding site and flanking exons, bring-
ing it closer to the settings of the experimental typing 
and reducing noise by having a restraining number of 
alleles in its reference HLA library. For Class II, the 

second-best result was obtained by ArcasHLA which 
had an accuracy of 95.04%, which is 4.19% less com-
pared to OncoHLA. We could not reproduce the exact 
performance stated in the original publications of the 
previously published algorithms, except for OptiType.

Buchkovich et al., have re-sequenced and updated the 
ground truth HLA genotype of 34 GEUVADIS samples 
having at least one allele that was discordant between 
Sanger sequencing and either OptiType or HLAProfiler 
[41]. We have also compared the performance of the 
benchmarking set using the updated reference and the 
results are shown in the Supplementary Table 2. Opti-
Type showed an accuracy of 99.7% for Class I, followed 
by OncoHLA which showed an accuracy of 99.2% for 
Class I and 99.8% accuracy for Class II genes. The next 
highest performance on HLA Class II typing of 96.8% 
accuracy was reached by HLApers.

Matching tumor and normal samples
The publicly available dataset containing RNA-seq 
performed on two different subtypes of breast cancer 
(TNBC and ER + /HER2-) and histologically normal 
adjacent tissues was first processed to match tumor 
with normal breast samples as this information was 
not available in the publication. To achieve this, we 
compared all the HLA genotypes obtained with our 
method. Even though all loci were used to perform the 
matching, we noticed that genotypes of classical Class 
I alleles were sufficient to accurately match the tumor-
normal pairs. After this processing step, we obtained 20 
ER + -normal and 15 TNBC-normal pairs. All the geno-
types between tumor and normal samples were identi-
cal at the nucleotide level in the coding region (3 fields 
of resolution). Accession numbers of matched pairs as 
well as predicted genotypes for classical HLA Class I 
genes are shown in the Supplementary Table 1.

Fig. 1 Figure showing HLA typing accuracies for OncoHLA and five previously published tools on 358 GEUVADIS samples with experimentally 
detected HLA genotypes. Accuracies representing the fraction of alleles correctly called are shown as a percentage for each locus separately 
and were calculated at two fields of resolution
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TNBC and ER + tumors can be characterized by varied 
tumor vs. normal HLA expression
We investigated the differential expression of HLA and 
B2M across two different subtypes of breast cancer 
including the ER + /HER2- and TNBC primary tumors 
from the publicly available dataset. Increased varia-
tion in HLA and B2M expression was observed in both 
breast cancer subtypes compared to normal adjacent tis-
sues (Fig.  2, Supplementary Figure S1). TNBC tumors 
depicted a higher variation of HLA and B2M expression 
compared to ER + tumors. We found that the medium 
expression of B2M and most of the HLA alleles decreased 
in both cancer subtypes compared to adjacent normal tis-
sues. Statistical analysis showed that B2M, which forms 
the small light chain subunit of the MHC Class I mole-
cules and plays a crucial role in antigen presentation, was 
downregulated in ER + breast cancer, but was not signifi-
cantly different in TNBC subtype compared to matched 
normal samples. In addition, HLA-C, -E, -DPA1, -DPB1, 
-DRB1 were also significantly downregulated in ER + . As 
for TNBC, the HLA-E, -DPA1, -DPB1 alleles were sig-
nificantly downregulated, while HLA-F was significantly 
upregulated. No significant change in HLA-F expression 
was found in ER + primary tumors. Interestingly, after 
applying more strict statistical testing on the differential 
expression of HLA genes, whereby we adjusted the P-val-
ues with Bonferroni multiple correction and performed 
filtering based on fold change, HLA-E maintained a sig-
nificant downregulation in both breast cancer subtypes 
compared to their normal tissue counterparts (Supple-
mentary Tables S2 and S4, Supplementary Figure S2).

Decreased HLA‑E expression in breast cancers corresponds 
with increased NK cell infiltration
As both HLA-E and HLA-F have been shown to be 
implicated in the mediation of immune evasion and 
immune suppression by inhibiting cells of the adaptive 
and innate immune system, we attempted to compare 
the absolute proportion of different immune cell phe-
notypes between breast cancer and adjacent normal 
tissues (Fig.  3) [61, 62]. After comparing the fractions 
of 10 different immune cells (B cells, Macrophages 
M1, Macrophages M2, Monocytes, Neutrophils, Natu-
ral Killer (NK) cells, T cells CD4, T cells CD8, Tregs 
and dendritic cells) between tumors and matched 
histologically normal tissues, we found that the frac-
tions of NK cells were significantly increased in both 
breast cancer subtypes. It is known that HLA-E inhib-
its NK cell-mediated lysis by interacting with CD94/
NKG2A receptors [63]. Therefore, the downregula-
tion of HLA-E may induce the observed increase in 
NK cell infiltration. NK cells play a crucial role in the 
nonadaptive immune system and kill target cells that 
exhibit a reduced abundance of surface-bound Class I 
HLA molecules. They express receptors that interact 
with MHC Class I serving to inhibit cell-mediated cyto-
toxicity [64]. At the same time, HLA-F molecules can 
interact with both activating and inhibitory receptors 
on NK cells, in particular, open conformers of HLA-
F are high-affinity ligands of the activating NK-cell 
receptor KIR3DS1 [65]. Tumors can deploy different 
mechanisms to escape from NK cells and differential 
expression of HLA-E and HLA-F may act synergistically 

Fig. 2 Violin plots representing log-scaled allele-specific expression of classical and non-classical HLA loci and B2M protein in two breast cancer 
subtypes (in green for ER + /HER2- and blue for TNBC subtypes) and normal adjacent tissues (in gray). A ER + /HER2- primary tumor vs. matched 
normal adjacent tissue. B TNBC primary tumor vs. matched normal adjacent tissue. The dotted lines represent the quartile positions. * P-value < 0.05, 
** P-value < 0.01
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to promote tumor survival. This suggests that the 
expression of non-classical HLA Class I molecules, 
which plays an important role in mediating immune 
surveillance by NK cells, may modulate the breast 
tumor immune cell interaction and potentially mediate 
immune escape. In addition, an increased fraction of B 
cell infiltration was observed in TNBC tumors exclu-
sively which is consistent with previous studies show-
ing that tumor-infiltrating B cells are more frequently 
observed in the TNBC and HER2 + subtypes [66]. 
Moreover, a potential immunosuppressive environment 
was observed by a significant predicted decrease in M1 

macrophages and an increase in M2 macrophages in 
both breast cancer subtypes.

Validation on an independent dataset of ER + matched 
normal tissue pairs provides insights into breast cancer 
immunology
To further investigate the correspondence between 
our personalized integrative HLA typing approach, 
HLA expression quantification in tumor vs. normal, 
and the subsequent impact on the immunobiology of 
tumors, we applied our integrative approach on five 
ER + /HER2- primary breast tumors with matched 

Fig. 3 Bar plots representing the predicted immune cell fractions. A Immune cell fractions in normal adjacent to tumor tissues of 20 patients 
with ER + /HER2- breast cancer. B Immune cell fractions in normal adjacent to tumor tissues of 15 patients with TNBC. C Immune cell fractions 
in primary tumors of 20 patients with ER + /HER2- breast cancer. D Immune cell fractions in primary tumors of 15 patients with TNBC
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histologically normal adjacent breast tissue. The five 
tumor samples and their matched normal adjacent tis-
sues were sequenced both at the DNA level using whole 
exome sequencing (WES) and HLA typed using the 
previously published version of OncoHLA [45], and at 
the RNA level with the HLA typing performed using 
the RNA-seq HLA typing extension discussed in this 
study. No discordances were found between HLA typ-
ing from WES and RNA-seq at two fields of resolution, 
however, one disagreement at the third field of resolu-
tion was observed in the DQA1 locus in patient 4. This 
corresponds to a 100% match between HLA typing 
from WES and RNA-seq at two fields of resolution and 
a 98.75% match at three fields of resolution. As for the 
fourth field of resolution corresponding to changes in 
the non-coding region, 2 discordances were detected 
between WES tumor and WES matched normal in 
patient 2 in the DPB1 and the DQA1 loci.

In Fig.  4 we provide an in-depth patient-specific 
breakdown of the induvial HLA expression results in 
the tumor versus normal, and the subsequent impact on 
the immune microenvironment. While the small sam-
ple size prohibited rigorous hypothesis testing, the data 
did reveal some interesting and insightful trends. For 
example, similarly to the publicly available breast can-
cer dataset, we observed a decrease in HLA-E expres-
sion in the proprietary ER + /HER2- breast tumors 
compared to the normal adjacent to tumor tissue, and 
an increased infiltration of NK cells in four out of five 
patients (Fig.  4). NK cell infiltration was decreased 
marginally in patient 4, however, this was accompanied 
by a relatively high predicted neoantigen burden allud-
ing to an abrogation of the need for NK cell tumor infil-
tration in that specific case. The increased expression 
of classical HLA Class I alleles that typically present 
peptide antigens for T cell recognition was observed in 
most tumors, except for patient 1. However, in patient 
1, the decreased expression of the peptide present-
ing HLA alleles (HLA-A, -B, and -C) and HLA-E was 
accompanied by a notably increased infiltration of NK 
cells into the tumor. It is tempting to speculate that the 
tumor cells harboring a relatively high neoantigen load 
in patient 1 avoid killing by T cells, as these tumor cells 

may not present neoantigens due to the downregula-
tion of classical Class I HLA alleles.

Discussion and conclusions
The HLA complex is an integral part of the human 
immune system and is mandatory for immune cell rec-
ognition and subsequent tumor cell killing. Alterations 
in HLA expression are often used by tumors as a mecha-
nism of immune escape inducing an immunosuppres-
sive environment [9, 67–70]. The development of cancer 
therapies must arguably consider these HLA-associated 
immune escaping mechanisms as they have been shown 
to occur frequently in the majority of cancer types [71]. 
RNA-seq is a widely used approach for transcriptome 
profiling in biomedical research and can be used to per-
form both high throughput HLA genotyping and estima-
tion of HLA expression levels. Conventional RNA-seq 
analyses often involve read alignment to a reference 
genome with subsequent reconstruction of the transcrip-
tome and calculation of gene abundance. However, the 
polymorphic nature of the HLA complex is not reflected 
in the reference genome preventing accurate read align-
ment resulting in incorrect expression estimation of HLA 
alleles. Given the importance of HLA expression in pos-
sible tumor immune escape, it is important to consider 
the polymorphism of the HLA complex and perform 
personalized HLA expression analysis. Numerous com-
putational HLA typing methods applied to RNA-seq data 
have been published [34–36, 39, 41, 72], however, only a 
small subset of these provide allele-specific or personal-
ized HLA expression estimation [33, 42].

The aim of this study was to develop an integrated 
approach for analyzing the HLA complex using RNA-seq 
data that genotypes HLA alleles and infers personalized 
HLA expression at the allelic level, and show its potential 
in studying the interaction between cancer and the host 
immune system, using RNA-seq data from tumors and 
their normal adjacent tissues. We demonstrated that our 
method for HLA typing from RNA-seq achieved an accu-
racy above 99% outperforming the previously published 
tools that can type both Class I and Class II HLA genes. 
Our study of primary breast cancer and normal adja-
cent tissue demonstrated that an integrative approach 
studying personalized HLA expression, neoantigens and 

Fig. 4 Figure representing in-depth analysis of 5 patients with ER + /HER2- breast cancer. The antigen counts in tumor with antigen-presenting 
(AP) scores >  = 0.5 and >  = 0.7 are shown in the tables on the left side of the figure. The AP scores >  = 0.5 and >  = 0.7 are indicative of an increased 
likelihood of presenting the candidate neoantigen peptides. Radar plots in the middle of the figure display personalized HLA/B2M expression 
in tumor (green) versus matched normal adjacent tissues (gray). The numbers on the axes correspond to the TPM values of the HLA genes. The 
relative position of axes and the angles between the axes represent no biological meaning. HLA-E expression is shown in bar plots in the footnote 
of each radar plot. The radar plots on the right show immune cell fractions for tumor (green) and normal adjacent to tumor tissues (gray)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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immune cell infiltration may improve our understand-
ing of the interplay between a tumor and the patient’s 
immune system. Moreover, our analyses of tumor vs. nor-
mal HLA genotype expression indicate that the relative 
expression of non-classical HLA alleles (that may serve as 
activating or inhibiting ligands to NK cells) may play an 
important role in governing tumor-immune interactions, 
in addition to the expression levels of the classical anti-
gen-presenting HLA. We observed a down-regulation of 
non-classical HLA-E, an NK cell inhibitory ligand [64], 
corresponding to increased NK cell infiltration in breast 
tumors compared to adjacent normal tissues, in both 
the TNBC and ER + /HER2- cancer subtypes. Further 
experimental studies may be required to shed light on the 
connection between these two phenomena. Moreover, 
we have found that the non-classical HLA-F allele was 
upregulated in TNBC and had no significant change of 
expression in ER + /HER2- tumors. The biological func-
tion and clinical implications of altered HLA-E expres-
sion have been better studied than those of HLA-F [73]. 
Previously, upregulation of HLA-F has been found to be 
associated with poor survival in cancer patients [74, 75]. 
Triple-negative breast cancer patients have the worst 
prognosis and are considered the patients of choice for 
immunotherapies [76]. Therefore, the function of the 
HLA-F NK cell axis as an important immune regulatory 
interaction may be an important angle for further studies 
in the context of TNBC.

The dysregulation of HLA expression has been 
observed in many different types of cancer includ-
ing melanoma, lung, breast, and prostate cancer [8, 
77–79]. Chowell et  al., demonstrated that physiochemi-
cal sequence divergence between HLA Class I alleles of 
patient’s genotypes influences their response to immune 
checkpoint inhibitor treatments [18]. This discovery 
highlights the importance of HLA genotyping in can-
cer research and treatment. However, currently, there is 
not a bulk of published evidence characterizing the role 
of HLA expression as a potential biomarker for patient 
stratification or for predicting tumor responses to immu-
notherapies. Nevertheless, some initial advances have 
been already made in this area [80]. For example, Rodig 
et al., demonstrated that HLA Class I and Class II expres-
sion can serve as a reliable predictive biomarker of tumor 
response to a group of immune checkpoint inhibitor-
based immunotherapies [81]. Also, it has been shown 
that the expression level of a non-classical HLA-G gene 
is correlated with different clinical parameters in many 
tumors [82]. For example, the high expression of this 
gene in hepatocellular carcinoma has been shown to be 
associated with poor outcome [83]. Given the crucial role 
that HLA molecules play in the modulation of immune 
response against cancer, investigation of the role of their 

expression as predictive biomarkers may represent a 
promising direction for future research.

There are several limitations in our study. First, we have 
not assessed the presence of novel alleles in the studied 
datasets. All the samples were derived from well-studied 
populations, and HLA genotyping was performed under 
the assumption that the individuals harbor HLA alleles 
already present in the IPD-IMGT/HLA DB. Secondly, 
even though we were able to identify interesting patient-
specific trends relating to HLA expression and immune 
cell infiltration, the number of samples was too low to 
make statistically robust conclusions. Another limita-
tion relates to the nature of sampling normal adjacent 
tissues. Comparing tumor with normal tissue samples is 
important for understanding the mechanisms of cancer 
progression and has many advantages over tumor-only 
approaches. Moreover, it has even been reported that 
paired normal samples are in general more informa-
tive on patient survival than tumors [84]. However, col-
lecting matched normal tissues from patients is either 
impossible or at best challenging. In addition, there is 
some uncertainty regarding whether histologically nor-
mal adjacent to tumor samples are molecularly normal. 
Aran et al., have performed a comprehensive analysis of 
normal adjacent to tumor transcriptomes and concluded 
that these tissues rather present a unique intermediate 
state between healthy and tumor [85]. This implies that 
the normal adjacent tissues used in the current study 
may bear the neighboring tumor microenvironment sig-
nals and can’t be considered as truly ‘normal’. However, 
despite these potential limitations, the comparison of 
normal adjacent to tumor tissue and tumor can provide 
valuable insights into the tumor microenvironments and 
the interplay between tumors and nearby tissues. For 
example, it has been demonstrated, that the evaluation 
of the microenvironment in breast tumors is essential 
for predicting recurrence and aiding surgical strategies 
settings [86, 87]. It would be of great interest to see the 
unique HLA expression and immune cell infiltration pat-
terns as well as those shared between normal adjacent 
and distal microenvironments to the tumor.

In summary, we have developed a novel method for 
HLA genotyping and expression estimation from RNA-
seq and demonstrated that transcriptome profiling 
of tumor versus normal adjacent to tumor tissues can 
reveal interesting insights into the characterization of 
adjacent normal tissue and can be of value for study-
ing the interplay between the HLA genotype expres-
sion patterns and tumor immune escape. Given the 
pivotal role of HLA genes in tumor cell recognition, 
further experiments are crucially required to validate 
the role of HLA expression as a novel potential bio-
marker in cancer immunotherapy. We believe that the 
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methodology described here for the integrative and 
accurate HLA genotyping and personal HLA expres-
sion estimation may help to capture further insights 
into the role of HLA expression in the mechanisms of 
tumor progression and immune evasion and help to 
identify evidence of HLA expression as a biomarker in 
patient stratification in cancer immunotherapy.
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