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Abstract
Background  Despite the advancements in heart failure(HF) research, the early diagnosis of HF continues to be 
a challenging issue in clinical practice. This study aims to investigate the genes related to myocardial fibrosis and 
conduction block, with the goal of developing a diagnostic model for early treatment of HF in patients.

Method  The gene expression profiles of GSE57345, GSE16499, and GSE9128 were obtained from the Gene 
Expression Omnibus (GEO) database. After merging the expression profile data and adjusting for batch effects, 
differentially expressed genes (DEGs) associated with conduction block and myocardial fibrosis were identified. Gene 
Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, and gene set enrichment 
analysis (GSEA) were utilized for functional enrichment analysis. A protein-protein interaction network (PPI) was 
constructed using a string database. Potential key genes were selected based on the bioinformatics information 
mentioned above. SVM and LASSO were employed to identify hub genes and construct the module associated with 
HF. The mRNA levels of TAC mice and external datasets (GSE141910 and GSE59867) are utilized for validating the 
diagnostic model. Additionally, the study explores the relationship between the diagnostic model and immune cell 
infiltration.

Results  A total of 395 genes exhibiting differential expression were identified. Functional enrichment analysis 
revealed that these specific genes primarily participate in biological processes and pathways associated with the 
constituents of the extracellular matrix (ECM), immune system processes, and inflammatory responses. We identified 
a diagnostic model consisting of 16 hub genes, and its predictive performance was validated using external data sets 
and a transverse aortic coarctation (TAC) mouse model. In addition, we observed significant differences in mRNA 
expression of 7 genes in the TAC mouse model. Interestingly, our study also unveiled a correlation between these 
model genes and immune cell infiltration.

Conclusions  We identified sixteen key genes associated with myocardial fibrosis and conduction block, as well 
as diagnostic models for heart failure. Our findings have significant implications for the intensive management of 
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Background
Heart failure (HF) manifests as a clinical syndrome where 
individuals experience difficulty breathing or have limi-
tations in physical activity because of the inadequate 
filling or expulsion of blood from the ventricles [1]. The 
worldwide incidence of HF has increased considerably, 
affecting approximately 23 million people presently, and 
this figure is estimated to surpass 30 million by 2030 [2]. 
In the population aged 55 and above, the post-diagnosis 
survival rate over a five-year period ranges from 20 to 
50%, establishing HF as the leading cause of death among 
older adults [3–5].

Several studies [6–8] have demonstrated that individu-
als with HF display varying degrees of myocardial fibro-
sis, and the severity of fibrosis is directly correlated with 
prognosis. In addition to causing mechanical impair-
ments, myocardial fibrosis also contributes to disruptions 
in electrical conduction throughout the myocardium [9]. 
Irregularities in cardiac electrical activity are frequently 
observed in HF patients. About one-third of individu-
als affected by HF exhibit ventricular conduction abnor-
malities, excluding atrioventricular block and intra-atrial 
block [1, 10]. Consequently, the prevention and inhibi-
tion of myocardial fibrosis and conduction block have 
become prominent topics in HF research.

In the last 40 years, significant progress has been 
achieved in the management of HF through the use of 
drugs that decrease long-term mortality and rehospital-
ization rates in HF patients by inhibiting the develop-
ment of myocardial fibrosis [8, 11, 12]. Recent studies 
employing modified T cells targeting cardiac fibrosis have 
shown promising outcomes [13]. However, an essen-
tial challenge in the clinical application of engineered T 
cell intervention is the identification of individuals who 
require it. Traditional diagnostic techniques like echo-
cardiography, cardiac MRI, and BNP/NT-proBNP levels 
have limited efficacy in early detection of pathophysi-
ological changes associated with HF. Hence, the develop-
ment of reliable diagnostic models for HF is imperative 
for its prevention and treatment.

With the increasing abundance of gene expression 
profile data, the opportunity to construct a diagnostic 
model for HF is becoming more convenient. In a study by 
Tian, Y et al. [14], a diagnostic model for HF was devel-
oped using a combination of random forest and artificial 
neural network. From this study, HMOX2, SERPINA3, 
LCN6, CSDC2, FREM1, and ZMAT1 were identified as 
the hub genes of the model. Another research project 
carried out an analysis of weighted gene co-expression 

networks to establish a model for identifying HF, pin-
pointing CUX1 and ASB1 as the hub genes contributing 
to the disease [15]. Furthermore, Niu, X et al. [16] also 
utilized weighted gene co-expression network analysis to 
identify a diagnostic model for HF after acute myocardial 
infarction, which included six crucial genes involved in 
the processes of inflammation, immunity, and apoptosis. 
These studies primarily focused on the discovery of HF 
biomarkers, overlooking the two fundamental pheno-
types of HF - myocardial fibrosis and conduction block.

The primary objective of this study is to create a diag-
nostic framework for identifying HF by investigating the 
distinctive genes linked to myocardial fibrosis and con-
duction block. To attain this objective, we conducted 
a thorough examination of three datasets (GSE16499, 
GSE57345, and GSE9128) and obtained pertinent differ-
ential genes. Analysis of enrichment unveiled that these 
differential genes are primarily associated with the acti-
vation of immune cells and the initiation of inflammatory 
responses. Subsequently, we devised a diagnostic model 
for HF, which revealed that the hub genes are closely 
linked to immune infiltration. This discovery bears signif-
icant clinical implications for the early detection, preven-
tion, and treatment of HF.

Materials and methods
Data collection and processing
The entire process flow is presented in Fig.  1. The 
gene expression profiles of GSE57345, GSE16499, and 
GSE9128 were obtained from the GEO database avail-
able at [http://www.ncbi.nlm.nih.gov/geo/]. GSE57345 
and GSE16499 consisted of samples obtained from car-
diac tissues, while GSE9128 consisted of a sample from 
peripheral blood mononuclear cells (refer to Table  1). 
Within GSE16499, there were 15 non-failure controls 
(NF) and 15 HF patient samples resulting from ischemic 
cardiomyopathy (ICM). In GSE57345, there were 136 
NF samples and 177 HF patient samples, including 82 
samples resulting from Non-ischemic cardiomyopathy 
(NICM) and 95 caused by ICM. As for GSE9128, there 
were 3 NF samples and 8 HF patient samples, with 4 sam-
ples caused by NICM and 4 caused by ICM. After merg-
ing and correcting for batch effects in the three datasets 
mentioned earlier, the ComBat function from the SVR 
package [17] was employed to remove any remaining 
batch effects.

In order to identify genes associated with Conduction 
block and Myocardial Fibrosis, we performed a search 

individuals with potential genetic variants associated with heart failure, especially in the context of advancing cell-
targeted therapy for myocardial fibrosis.
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on GeneCards using the keywords ‘Conduction block’ 
and ‘Myocardial Fibrosis’. Subsequently, we compared 
the genes related to Conduction block and myocardial 
fibrosis that we obtained from GeneCards with the genes 
present in the three aforementioned datasets. By inter-
secting these two sets of genes, we obtained the final list 
of genes that are associated with both Conduction block 
and myocardial fibrosis.

Identification of DEGs and their functional enrichment 
analysis
The R package ‘limma’ was used to identify differentially 
expressed genes (DEGs) between NF and HF patient 

samples. Upregulated DEGs were defined as having 
a log2 fold change (FC) value greater than 1.2 and an 
adjusted P value less than 0.05, while downregulated 
DEGs were defined as having a log2 FC value less than 
0.83 and an adjusted P value less than 0.05. The DEGs 
were then subjected to GO, KEGG enrichment analysis 
[18], and GSEA using the R package ‘clusterProfiler’. The 
GO function was evaluated in terms of biological process 
(BP), molecular function (MF), and cellular component 
(CC). A statistically significant adjusted P-value less than 
0.05 was considered.

Table 1  Datasets and sample information from GEO
GSE series Platform Gene Count Heart Failure

(n = 790)
Normal
(n = 366)

Total
(n = 1156)

Samples
Type

NICM ICM
Train Set
GSE16499 GPL5175 15,876 0 15(1.90%) 15(4.10%) 30(2.59%) Heart tissue
GSE57345 GPL11532 20,254 82(10.38%) 95(12.03%) 136(37.16%) 313(27.08%) Heart tissue
GSE9128 GPL96 13,096 4(0.505%) 4(0.505%) 3(0.82%) 11(0.95%) peripheral blood
Validation Set
GSE59867 GPL6244 23,307 0 390(49.37%) 46(12.57%) 436(37.72%) peripheral blood
GSE141910 GPL16791 17,102 200(25.32%) 0 166(45.35%) 366(31.66%) Heart tissue

Fig. 1  Study flowchart TAC, transverse-aortic constriction; LASSO, least absolute shrinkage and selection operator; SVM, support vector machines; HF, 
heart failure
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Protein interaction network (PPI) and module screening
To construct a protein-protein interaction (PPI) network 
of the differentially expressed genes (DEGs), we utilized 
the STRING database (http://stringdb.org/). The network 
was built with a combined score of at least 900 [19]. The 
Network Analyzer tool in Cytoscape [20] was employed 
to calculate the attributes of the network nodes. Hub 
nodes in the network were identified based on a con-
nectivity degree of at least 10, considering the degree of 
the node, tightness, and maximum cluster center. Subse-
quently, the MCODE plugin was used to identify impor-
tant clusters and genes, with a degree cutoff of 2, K-cor of 
2, and node score cutoff of 0.2.

Construction and verification of HF diagnostic model
The samples were randomly divided into a training set 
and an internal validation set with a ratio of 7:3. The diag-
nostic model was constructed using the least absolute 
shrinkage and selection operator (LASSO) regression 
analysis and support vector machine (SVM) method. The 
‘glmnet’ [21] and e1071 packages in the R package [22] 
were used for the LASSO regression analysis and SVM 
method, respectively, in the training set. The area under 
the ROC curves (AUC) was calculated and calibration 
curves were plotted in both the training set and internal 
validation set. Gene signatures with an AUC value > 0.5 in 
the internal validation set were retained. The beta coef-
ficients and truncation value from the LASSO model 

were extracted to construct the HF diagnostic model. The 
performance of the diagnostic model was evaluated by 
calculating the AUC of the ROC in both the internal and 
external validation datasets (GSE21125 and GSE59867).

Immune infiltration analysis
Using the leukocyte gene signature set (LM22) provided 
by CIBERSORT [23], we determined the composition 
ratio of 22 immune cells in each sample. We then investi-
gated the correlation between the diagnostic model genes 
and the 22 types of immune cells using the IOBR func-
tion in the R package [24].

Real time quantitative PCR
Eight-week-old male C57BL/6 mice were randomly 
divided into two groups: sham (n = 6) and TAC (n = 6) 
and obtained from Xinhua Hospital, Shanghai Jiao Tong 
University. TAC model mice were established based on a 
previous study [25]. After four weeks of TAC, mice were 
sacrificed by administration of intraperitoneal sodium 
pentobarbital, and heart tissue specimens were har-
vested. Total RNA was extracted from fresh-frozen tis-
sues using TRIZOL reagent (Takara, Kyoto, Japan). The 
frozen heart tissues were also used for total RNA extrac-
tion using Trizol (Takara, Kyoto, Japan), and cDNA was 
reversely transcribed using a PrimeScript™ RT Reagent 
Kit (Takara) following the manufacturer’s instructions. 
The primer sequences are listed in Table 2.

Statistical analysis
The statistical calculations were performed using R lan-
guage (version 4.0.2). An independent t-test was used 
to compare continuous variables between two groups. 
For independent variables with non-normal distribu-
tion, the Mann-Whitney U test (Wilcoxon rank-sum test) 
was conducted. The ROC package pROC was utilized to 
plot ROC curves and calculate the area under the curve 
(AUC) for assessing the performance of the HF diag-
nostic model. All statistical P values were bilateral, and 
a significance level of P < 0.05 was considered statistically 
significant.

Results
Identification of conduction block and myocardial fibrosis-
related DEGs
In the study, three datasets were used to identify differen-
tially expressed genes (DEGs). By applying ‘Batch correc-
tion’, a total of 929 DEGs were identified, with 400 genes 
upregulated and 529 genes downregulated (Data prepro-
cessing see Figure S1). Further analysis revealed that 395 
DEGs were related to conduction block and myocardial 
fibrosis. These DEGs were visualized using a volcano 
map (Fig.  2A), heatmap (Fig.  2B, C), and Venn diagram 
(Fig. 2D).

Table 2  Primers sequence
Genes Forward Reverse
IFIT2 ​A​G​T​A​C​A​A​C​G​A​G​T​A​A​G​G​A​G​

T​C​A​C​T
​A​G​G​C​C​A​G​T​A​T​G​T​T​G​C​A​C​A​T​G​G

IFITM2 ​T​G​G​G​C​T​T​C​G​T​T​G​C​C​T​A​T​G​C ​A​G​A​A​T​G​G​G​G​T​G​T​T​C​T​T​T​G​T​G​C
OAS2 ​T​T​G​A​A​G​A​G​G​A​A​T​A​C​A​T​G​C​G​

G​A​A​G
​G​G​G​T​C​T​G​C​A​T​T​A​C​T​G​G​C​A​C​T​T

EGR1 ​T​C​G​G​C​T​C​C​T​T​T​C​C​T​C​A​C​T​C​A ​C​T​C​A​T​A​G​G​G​T​T​G​T​T​C​G​C​T​C​G​G
STAT3 ​C​A​A​T​A​C​C​A​T​T​G​A​C​C​T​G​C​C​G​A​T ​G​A​G​C​G​A​C​T​C​A​A​A​C​T​G​C​C​C​T
JAK1 ​C​T​C​T​C​T​G​T​C​A​C​A​A​C​C​T​C​T​T​

C​G​C
​T​T​G​G​T​A​A​A​G​T​A​G​A​A​C​C​T​C​A​
T​G​C​G

JAK2 ​T​T​G​T​G​G​T​A​T​T​A​C​G​C​C​T​G​T​G​
T​A​T​C

​A​T​G​C​C​T​G​G​T​T​G​A​C​T​C​G​T​C​T​A​T

CXCL12 ​T​G​C​A​T​C​A​G​T​G​A​C​G​G​T​A​A​A​
C​C​A

​T​T​C​T​T​C​A​G​C​C​G​T​G​C​A​A​C​A​A​T​C

PDGFRB ​T​T​C​C​A​G​G​A​G​T​G​A​T​A​C​C​A​G​C​T​T ​A​G​G​G​G​G​C​G​T​G​A​T​G​A​C​T​A​G​G
FGR ​C​G​G​C​T​G​A​A​G​A​A​C​G​C​T​A​T​T​

T​C​C
​G​G​G​C​G​A​C​G​A​A​T​A​T​G​G​T​C​A​C​T​C

IL10 ​G​C​T​C​T​T​A​C​T​G​A​C​T​G​G​C​A​T​
G​A​G

​C​G​C​A​G​C​T​C​T​A​G​G​A​G​C​A​T​G​T​G

TLR4 ​A​T​G​G​C​A​T​G​G​C​T​T​A​C​A​C​C​A​C​C ​G​A​G​G​C​C​A​A​T​T​T​T​G​T​C​T​C​C​A​C​A
HIF1A ​A​C​C​T​T​C​A​T​C​G​G​A​A​A​C​T​C​C​

A​A​A​G
​A​C​T​G​T​T​A​G​G​C​T​C​A​G​G​T​G​A​A​C​T

ITGA3 ​C​C​T​C​T​T​C​G​G​C​T​A​C​T​C​G​G​T​C ​C​C​G​G​T​T​G​G​T​A​T​A​G​T​C​A​T​C​A​C​C​C
ITGAL ​C​C​A​G​A​C​T​T​T​T​G​C​T​A​C​T​G​G​

G​A​C
​G​C​T​T​G​T​T​C​G​G​C​A​G​T​G​A​T​A​G​A​G

ITGA8 ​T​G​G​C​T​G​G​G​A​T​T​C​C​A​A​G​A​G​G​A ​G​T​G​C​C​C​C​G​A​C​C​A​A​T​A​T​G​T​C​A

http://stringdb.org/
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The DEGs are enriched in the process of ECM, inflammatory 
response and immune cell activation
To investigate the biological processes and functions of 
DEGs in conduction block and myocardial fibrosis, we 
performed Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Gene set enrichment 
analysis (GSEA) on these DEGs (Fig.  3, A-F). The GO 
annotations of DEGs included BP (biological process), 
CC (cellular component), and MF (Molecular function), 
which were utilized to analyze the functional enrich-
ment of DEGs. The DEGs were primarily associated with 
angiogenesis and substance transport, such as regula-
tion of vasculature development, extracellular matrix 
structural constituent, and integrin binding (Fig. 3, A-C). 
KEGG analysis was performed to determine the relation-
ship between DEGs and signaling pathways. The DEGs 
were found to be mainly involved in cell proliferation 
and immune processes, including the PI3K-Akt signal-
ing pathway, HIF-1 signaling pathway, Leishmaniasis, and 
Hematopoietic cell lineage (Fig.  3D). GSEA supported 
the findings of the GO and KEGG analysis (Fig.  3E, F). 
Overall, the DEGs exhibited significant associations with 

the extracellular matrix (ECM), inflammatory response, 
and immune cell activation.

Sixteen hub genes were selected to construct a diagnostic 
model for HF
To analyze the interactions of differentially expressed 
genes (DEGs), protein-protein interaction (PPI) networks 
were constructed using the STRING database and visual-
ized using Cytoscape software (Fig. 4.A). Important node 
genes and subnetworks were further analyzed using the 
Cytohubba and MCODE plugins, respectively. By over-
lapping the four modules, a total of twenty-three candi-
date hub genes were identified (Fig. 4.B-F).

Using LASSO, we identified 16 out of the 23 candidate 
signature genes, with a lambda.min value of 0.005714653 
(Fig. 5, A-B). In the internal validation sets, these 16 can-
didate signature genes effectively distinguished between 
HF patient samples and control samples, achieving an 
AUC of 0.981 (Fig. 5, C-D). The support vector machine 
(SVM) analysis retained all 23 hub genes with an AUC 
greater than 0.5 (Fig. 5E).

Fig. 2  Identification of DEGs with conduction block and myocardial fibrosis. (A) Volcano plot of significant DEGs with conduction block or myocardial 
fibrosis. (B) Heatmap of DEGs with conduction block. (C) Heatmap of DEGs with myocardial fibrosis. (D) Venn diagram of DEGs with conduction block 
and myocardial fibrosis
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By overlapping the genes from LASSO and SVM, we 
identified a robust signature gene set consisting of 16 
genes (Fig. 5E; Table 3). As indicated in Table 3, the genes 
IFIT2, IFITM2, OAS2, STAT3, JAK1, JAK2, and IL10 play 
a significant role in immune response and inflamma-
tory processes. On the other hand, the genes FGR, TLR4, 
HIF1A, CXCL12, ITGA3, ITGAL, ITGA8, PDGFRB, and 
EGR1 primarily participate in cell adhesion, migration, 
and chemotaxis. The coefficients and truncation values 
from Lasso analysis were used to construct the diagnostic 
model (Table 3). The diagnostic model in the training set 
demonstrated excellent performance with an AUC value 
of 0.985 (Fig. 5F).

The HF diagnostic model was validated by external dataset 
and the hub genes upregulated in TAC mouse model.
To evaluate the accuracy and applicability of the diag-
nostic model, we conducted validation using two exter-
nal datasets: GSE141910 and GSE59867. GSE141910 

consisted of cardiac tissue samples from NICM patients, 
while GSE59867 included peripheral blood mononuclear 
cell samples from ICM patients. Remarkably, out of the 
16 central genes, 10 exhibited distinct expression pat-
terns in the HF and control samples in both externally 
validated datasets (see Fig.  6A, C). The AUC value of 
GSE141910 was 0.992 (Fig.  6.D), indicating strong per-
formance of the diagnostic model. However, the AUC 
value of GSE59867 was only 0.516 (Fig. 6.B), possibly due 
to variations in expression patterns between heart tissue 
and peripheral blood mononuclear cells.

To further validate the diagnostic model, we performed 
tests on TAC mice and analyzed the mRNA expression 
levels of the 16 genes in cardiac tissues. Out of these 
genes, 7 showed distinct expression patterns between 
the TAC group and the sham group (p < 0.05) (Fig.  7A). 
Moreover, the prediction score of the diagnostic model 
also displayed a significant difference between the TAC 
group and the sham group, indicating that the hub genes 

Fig. 3  Biological differences between normal and patient samples. (A) Bar plot of top 5 enriched GO terms of DEGs in BP. (B) Bar plot of top 5 enriched 
GO terms of DEGs in CC. (C) Bar plot of top 5 enriched GO terms of DEGs in MF. (D) Bubble plot of significantly enriched KEGG pathways of DEGs. (E) Top 
5 enriched GSEA pathway of DEGs for up-regulation part. (F) Top 5 enriched GSEA pathway of DEGs for down-regulation part
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could potentially serve as indicators of cardiac dysfunc-
tion in mice as well (Fig. 7B).

The relationship between diagnostic model and immune 
cells infiltration
Table  3 presents the results of the analysis of 16 hub 
genes, showing that 11 of them are associated with 
inflammatory responses and immune activation pro-
cesses. In order to compare the immune reactions 
between HF patients and NF patients, an analysis of 
immune cell infiltration was conducted. The analysis 
revealed significant differences in the infiltration of 22 
types of immune cells between the two patient groups 
(Fig.  8.A-B), particularly in plasma cells, CD8 + T cells, 
CD4 + T cells, and resting memory CD4 + T cells. It is 
worth noting that there were variations in the level of 
immune infiltration observed between the groups. For 
example, in normal samples, there was a significant nega-
tive correlation between macrophages M2 and resting 
dendritic cells, whereas a weak positive correlation was 
observed in the HF group (Fig. 8.C-D). Furthermore, the 
differences in immune cell infiltration observed in the 
high and low score subgroups, based on the predicted 

score of the diagnostic model, were similar to those 
observed in the two groups mentioned above (Fig. 8.E-F). 
This side-by-side comparison demonstrates the accuracy 
of the diagnostic model.

The correlations revealed that TLR4 and ITGAL were 
associated with different immune cells (Fig. 9.A-F). Nota-
bly, TLR4 exhibited a negative correlation with CD8 + T 
cells and a positive correlation with MacrophagesM2. 
These findings indicate that the infiltration of immune 
cells may have a significant impact on the progression of 
myocardial fibrosis and conduction block in HF.

Discussion
HF is acknowledged as the primary reason for mortal-
ity and incapacitation in the elderly population world-
wide [26]. In truth, specific investigations propose that 
the outlook for HF is even graver when compared to the 
majority of malignancies [27]. HF profoundly diminishes 
the overall well-being of individuals and imposes a note-
worthy economic burden on a global scale [28]. Despite 
the progress achieved in HF remedial agents, which have 
bolstered extended results [29–31], the clinical jour-
ney of HF continues to be unfavorable, emphasizing the 

Fig. 4  PPI network and hub gene screening. (A) PPI network of 395 DEGs with conduction block and myocardial fibrosis phenotypes. (B) Top scoring 
module genes screened by MCODE. (C) Top 10 genes screened by MCC algorithm in cytoHubba. (D) Top 10 genes screened by Degree in cytoHubba. 
(E) Top 10 genes screened by Closeness in cytoHubba. (F) PPI network of 23 hub genes. The node color reflects the degree; the greater the degree, the 
darker the node color
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need for novel diagnostic approaches to facilitate prompt 
detection and prevention.

In this research, an effective HF diagnostic model was 
developed and demonstrated a remarkable performance, 
achieving an AUV of 99.2% in the validated dataset. 
These findings are consistent with previously reported 
models [32]. Additionally, the hub genes identified in this 
model showed upregulation in our TAC mouse model. 
Notably, the HF diagnostic predictive model displayed 

superior diagnostic accuracy in patients with NICM 
compared to those with ICM. This discrepancy can be 
attributed to the distinct pathophysiological processes 
associated with myocardial fibrosis and conduction block 
in NICM and ICM, as well as the tissue cell specificity of 
the genes [8]. For example, oxidative stress levels differ 
significantly between patients with HF caused by isch-
emic and non-ischemic cardiomyopathy [33]. Although 
peripheral blood mononuclear cell samples are more 

Fig. 5  Construction of HF diagnostic model by LASSO and SVM. (A) LASSO coefficient profiles of candidate genes. (B) The optimal tuning parameter log 
(Lambda) in LASSO regression analysis. (C) Comparison of LASSO prediction score between normal and HF patient samples. (D) ROC curve evaluation 
of LASSO regression analysis. (E) Venn diagram demonstrating overlapping key feature genes screened by LASSO and SVM. (F) ROC curve evaluation of 
LASSO + SVM
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readily obtainable, heart tissue samples provide a more 
precise representation of gene expression and can be 
acquired through biopsy or surgery in a clinical setting. 
Insight into the molecular mechanisms that underlie the 
development of HF helps to identify a range of abnormal-
ities in cellular signaling pathways, which could poten-
tially be targeted for diagnosis and treatment [34, 35].

Pathophysiological changes frequently occur prior 
to clinical symptoms, and the identification of distinct 
pathophysiological changes allows for early detection of 
the disease. Cardiac fibrosis is a prevalent pathological 
manifestation observed in both inherited and acquired 
heart diseases. Furthermore, it is recognized as the pri-
mary factor contributing to cardiac electrical conduction 
disorders and pump failure [36, 37]. The main objective 
of this study is to examine the essential genes linked to 
myocardial fibrosis and conduction block, as well as to 
explore the diagnostic model and potential mechanism 
of HF. Additionally, further investigation into the role of 
genes in the diagnostic model will significantly contrib-
ute to the diagnosis and treatment of HF.

Some diagnostic model genes related to the mechanism of 
ECM formation
Our study aligns with previous investigations, as the 
DEGs in our research were predominantly implicated 
in biological processes and pathways linked to the ECM 
[38]. In the context of the heart, reactive oxygen species 
(ROS) triggers signaling pathways that are involved in 
cardiomyocyte hypertrophy, interstitial fibrosis, systolic 
dysfunction, and inflammation. These pathways have an 
impact on the structure and function of cells, ultimately 
resulting in heart damage and remodeling [39]. A study 
has shown that oxidative stress is associated with apop-
tosis, and inhibiting oxidative stress can potentially pre-
vent the progression of dilated cardiomyopathy [40]. The 

Table 3  Parameters and functional clustering of diagnostic 
model gene
functional clustering Model gene β value p value
Immune response/
inflammatory response

IL10 -1.812 3.21E-21
TLR4 + 0.111 5.54E-08
IFIT2 + 0.180 3.87E-35
IFITM2 -1.165 6.80E-25
OAS2 + 2.713 2.65E-16
STAT3 − 0.076 2.95E-38
JAK1 -4.070 5.31E-40
JAK2 + 0.324 3.99E-22

Cell adhesion/
migration/
chemotaxis

FGR -0.822 1.13E-12
HIF1A -2.320 3.45E-24
CXCL12 + 0.096 1.26E-19
ITGA3 -0.624 8.34E-20
ITGAL + 0.810 1.85E-11
ITGA8 + 1.217 4.63E-08
PDGFRB -2.372 2.91E-20
EGR1 + 0.332 7.84E-08

Constant value 72.002

Fig. 6  Validation of diagnostic model in external datasets. (A) Boxplots of the expression levels of diagnostic model gene in normal control and HF pa-
tient samples from GSE59867. (B) ROC curve for diagnostic model performance in GSE59867. (C) Boxplots of the expression levels of diagnostic model 
gene in normal and HF patient samples from GSE141910. (D) ROC curve evaluation of diagnostic model performance in GSE141910. ns p > 0.05, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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phosphoinositol 3 kinase (PI3K) /Akt signaling pathway 
plays a crucial role in the development of cardiac fibrosis. 
It regulates various processes such as cell survival, apop-
tosis, growth, myocardial contractility, and transcription 
of relevant genes [41].

ECM is a complex network composed of a variety of 
biomolecules and extracellular matrix, which plays an 
important role in maintaining cardiac structure and 
function. Metabolic imbalance and excessive deposition 
of ECM are important features of myocardial fibrosis. 
The composition and structure of ECM can influence cell 
adhesion and migration, while cell adhesion and migra-
tion can regulate the formation and degradation of ECM. 
In our research, eight genes (ITGA3, ITGA8, ITGAL, 
PDGFRB, HIF1A, CXCL12, FGR, EGR1) are involved in 
various cellular processes such as adhesion, migration, 
and chemotaxis. These genes are closely linked to the for-
mation of the ECM, specifically the pathways influenced 
by integrins. Four of these genes, FGR, ITGA3, ITGA8, 

and ITGAL, are essential components of integrin-medi-
ated signaling. Integrins, which are receptor proteins 
on the cell membrane, play a critical role in facilitating 
communication between cardiac fibroblasts, cardiomyo-
cytes, and the extracellular matrix (ECM) by responding 
to mechanical stress signals [42]. The stimulation of inte-
grin signaling caused by pressure overload in the heart 
can result in the activation of myofibroblasts and exces-
sive accumulation of collagen [43]. Prior studies have 
demonstrated that ITGA8 plays a role in promoting renal 
fibrosis by influencing fibroblast activation and immune 
cell infiltration [44]. Additionally, it has been shown that 
ITGA8 contributes to heart valve damage and repair 
through its impact on the interaction between myo-
blasts and the ECM [45]. Moreover, PDGFR-β has been 
observed to be activated via an integrin β1-dependent 
mechanism, promoting fibroblast proliferation and the 
synthesis of the ECM in a model of cardiac stress over-
load [46]. In numerous cardiac pathological states, the 

Fig. 7  Validation of diagnostic model in TAC mouse model. (A) Real-time PCR analyses of the expression levels of diagnostic model genes in heart tissue 
from TAC and sham group mice. (B) Comparison of prediction score of diagnostic model between TAC and sham group mice. PCR, polymerase chain 
reaction; TAC, transverse-aortic constriction. ns p > 0.05, *p < = 0.05, **p < = 0.01, ***p < = 0.001, ****p < = 0.0001
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Fig. 8  The relationship between diagnostic model and immune cells infiltration. (A) Stacked histogram of 22 types of immune cell infiltration corre-
sponding to the dataset(B) Boxplot of infiltration of 22 immune cells in normal control samples. (C) Correlation heatmap of immune cells in HF patient 
samples. (D) Correlation heatmap of immune cells in low score group of diagnostic model. (E) Correlation heatmap of immune cells in high score group 
of diagnostic model. HF, heart failure; ns p > 0.05, *p < = 0.05, **p < = 0.01, ***p < = 0.001,****p < = 0.0001
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expansion of the ECM network or modifications in the 
composition of matrix proteins can result in heart dis-
ease. This may transpire either by directly impairing the 
heart’s normal structure and function or by transmit-
ting inappropriate signals to cells [47]. The ECM governs 
diverse aspects of cell behavior within the cardiac micro-
environment, encompassing attachment, movement, 
viability, growth, specialization, and maturation [48, 49]. 
cell adhesion, migration and cytokine chemotaxis plays 
an important role in ECM information.

HIF1A is an important transcription factor that plays 
a key role in the adaptive response of cells to low-oxygen 

environments. It is found that abnormal expression of 
HIF1A in the sympathetic nervous system affects myo-
cardial collagen deposition, ECM formation, and myo-
cardial fibrosis in diabetic cardiomyopathy [50]. HIF1A 
has been shown to enhance the activation of cardiac 
fibroblasts by upregulating the expression of specific 
genes associated with ECM formation [51]. Additionally, 
CXCL12 plays a crucial role in the chemotaxis of cardiac 
fibroblasts, thereby influencing cardiac remodeling [52]. 
Furthermore, it has been observed that FGR inhibitors 
stimulate the release of fibrotic chemokines, which in 
turn affects the deposition of collagen in tissues [53].

Fig. 9  Correlation between diagnostic model genes and immune cells. (A)Scatter plot showed the association between ITGAL and Plasma cells. (B) Scat-
ter plot showed the association between TLR4 and Macrophages M2. (C) Scatter plot showed the association between ITGAL and Macrophages M1. (D) 
Scatter plot showed the association between OAS2 and T cell gamma/delta. (E) Scatter plot showed the association between IL10 and Neutrophils. (F) 
Scatter plot showed the association between TLR4 and T cells CD8
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In summary, the diagnostic model gene exhibits char-
acteristics that regulate cell adhesion, migration, and 
cytokine chemotaxis, and it is closely linked to ECM 
formation.

Other model genes involved to inflammation and immune 
responses
In this study, we identified eight signature genes involved 
in immune and inflammatory responses: IL-10, TLR4, 
IFIT2, IFITM2, OAS2, STAT3, JAK1, and JAK2. IL-10 
is an anti-inflammatory cytokine that regulates extracel-
lular matrix biosynthesis and is predominantly found in 
T lymphocytes and macrophages [54]. IL-10 has been 
shown to have an anti-fibrotic effect by inhibiting the 
migration of fibroblast progenitor cells from the bone 
marrow to the heart and preventing their conversion 
into myofibroblasts [55]. Toll-like receptors (TLRs) are a 
family of pattern recognition receptors that play a crucial 
role in the innate immune system and are implicated in 
cardiovascular diseases. Among the ten TLRs found in 
humans, TLR4 is highly expressed in the heart. Activa-
tion of TLR4 in rat models has been shown to increase 
the production of IL-6 and ICAM-1, decrease cardio-
myocyte contractility, and worsen HF. Conversely, inhi-
bition of TLR4 reduces the expression of inflammatory 
mediators and improves cardiac function [56, 57].Sur-
prisingly, in the present study, it was found that IFIT2, 
IFITM2, and OAS2, which were previously reported 
to be mainly involved in intrinsic cellular immune pro-
cesses, are closely associated with HF. Previous studies 
have also reported the involvement of IFIT2 and IFITM2 
in cardiac diseases. IFIT2 has been identified as a poten-
tial biomarker of ischemic cardiomyopathy in human and 
rat heart tissue samples [58], and it has been found to be 
highly expressed in HF patients with pulmonary arterial 
hypertension [59]. Additionally, studies on rat cardio-
myocyte development have suggested that IFITM2 may 
play a role in differentiation and cell proliferation during 
cardiac development [60]. These findings indicate that 
inflammation and immune responses are key factors in 
the development of HF. Further investigation into the 
impact of each type of infiltrating immune cell may pro-
vide valuable insights for the development of new thera-
peutic strategies for HF.

Possible relationship between immune cell infiltration and 
heart failure
Previous research has demonstrated that immune cell 
infiltration plays a critical role in the development and 
progression of cardiac disease [61, 62]. It has also been 
shown that immune cell infiltration of the myocardium 
can impair cardiac function [63–65]. Through single-cell 
sequencing analysis, the interaction between inflam-
mation and myocardial fibrosis has been revealed, 

highlighting the role of immune cell infiltration in pro-
moting the mechanis3m of HF [61, 66, 67].

In our study, we observed a correlation between the 
diagnostic genes and the level of immune cell infiltration. 
Specifically, we found that TLR4 exhibited a negative cor-
relation with CD8 + T cells, while TLR4 showed a positive 
correlation with M2 macrophages. This is consistent with 
the findings of Gu et al., who identified TLR4 as a crucial 
target for regulating cardiac dysfunction after myocardial 
infarction, with its action being associated with macro-
phage activation [68]. Through the regulation of TLR4, 
Losartan effectively modulates macrophage polarization, 
resulting in a decrease in oxidative stress and cardiomyo-
cyte apoptosis [69]. Consequently, sepsis-induced car-
diomyopathy is alleviated. These findings underscore the 
substantial role of TLR4 in the process of macrophage 
polarization. Additionally, ITGAL has been found to be 
involved in various immune phenomena that contribute 
to the cytotoxicity of natural killer cells [70–73]. Previous 
studies [74, 75] have identified the association between 
OAS2 and T lymphocyte activation in psoriasis and 
systemic lupus erythematosus, indicating its role as an 
active phase marker of these diseases. However, limited 
attention has been given to the investigation of OAS2 in 
the context of heart failure. This current study reveals 
that OAS2 is significantly expressed in the myocardium 
of heart failure patients, presenting a fresh insight into 
the mechanism underlying HF. Collectively, these find-
ings indicate that the diagnostic model genes can par-
tially respond to the pathogenesis of HF, which laterally 
reflects the accuracy of the diagnostic model.

Study limitations
While this diagnostic model demonstrated exceptional 
performance when applied to cardiac tissue samples 
from patients with NICM, its performance was mediocre 
when applied to peripheral blood mononuclear cells from 
patients with ICM. The diagnostic performance of this 
model in patients with peripheral blood mononuclear 
cells derived from NICM and in patients with cardiac tis-
sue samples from ICM remains uncertain due to the lack 
of appropriate datasets. The limited availability of heart 
tissue samples may restrict the practical application of 
this model. It is important to note that our model was 
constructed and validated using expression profile data, 
but it has not been validated in prospective cohort stud-
ies. Therefore, further investigation is needed to deter-
mine its accuracy.

Conclusions
In this study, we have identified 16 hub genes that are 
associated with myocardial fibrosis and conduction block 
phenotypes. Based on these findings, we have developed 
a diagnostic model for HF. These results have important 
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implications for the intensive management of individuals 
who have underlying genetic variants linked to heart fail-
ure, especially in the context of advancing cell-targeted 
therapies for myocardial fibrosis.
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