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Abstract 

Background Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of lung adeno-
carcinoma (LUAD) and are often associated with poorer clinical outcomes. This study aimed to screen for CAF-specific 
genes that could serve as promising therapeutic targets for LUAD.

Methods We established a single-cell transcriptional profile of LUAD, focusing on genetic changes in fibroblasts. 
Next, we identified key genes associated with fibroblasts through weighted gene co-expression network analysis 
(WGCNA) and univariate Cox analysis. Then, we evaluated the relationship between glutathione peroxidase 8 (GPX8) 
and clinical features in multiple independent LUAD cohorts. Furthermore, we analyzed immune infiltration to shed 
light on the relationship between GPX8 immune microenvironment remodeling. For clinical treatment, we used 
the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the immunotherapy prediction efficiency 
of GPX8. After that, we screened potential therapeutic drugs for LUAD by the connectivity map (cMAP). Finally, we 
conducted a cell trajectory analysis of  GPX8+ CAFs to show their unique function.

Results Fibroblasts were found to be enriched in tumor tissues. Then we identified GPX8 as a key gene associ-
ated with CAFs through comprehensive bioinformatics analysis. Further analysis across multiple LUAD cohorts 
demonstrated the relationship between GPX8 and poor prognosis. Additionally, we found that GPX8 played a role 
in inducing the formation of an immunosuppressive microenvironment. The TIDE method indicated that patients 
with low GPX8 expression were more likely to be responsive to immunotherapy. Using the cMAP, we identified beta-
CCP as a potential drug-related to GPX8. Finally, cell trajectory analysis provided insights into the dynamic process 
of  GPX8+ CAFs formation.
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Conclusions This study elucidates the association between  GPX8+ CAFs and poor prognosis, as well as the induction 
of immunosuppressive formation in LUAD. These findings suggest that targeting  GPX8+ CAFs could potentially serve 
as a therapeutic strategy for the treatment of LUAD.

Keywords Lung adenocarcinoma, GPX8, Cancer-associated fibroblasts, Prognosis, Immunosuppressive 
microenvironment

Introduction
Lung cancer is one of the leading causes of death in can-
cer patients in the world today [1]. Lung adenocarci-
noma, the most common histologic subtype of cancer, 
is responsible for approximately 40% of all lung cancer 
diagnoses [2]. Advances in early diagnostic techniques 
and more sophisticated, systematic surgical resection and 
chemotherapy have improved survival times and qual-
ity of life for patients with LUAD [3, 4]. However, due to 
the malignant nature of lung adenocarcinoma, which is 
prone to metastasis and drug resistance, the 5-year sur-
vival rate is still only around 20% [5–7]. Therefore, it is 
essential to investigate the mechanisms that drive the 
progression of LUAD and to identify viable therapeutic 
targets.

The remodeling of the tumor microenvironment is 
widely acknowledged as a critical factor that influences 
the effectiveness of clinical anticancer therapy [8]. As 
a major component of the tumor microenvironment, 
CAFs play a crucial role in promoting the progression 
of malignant tumors. This role is diverse and involves 
various functions such as regulating tumor cell growth, 
migration, and invasion [9, 10]. CAFs have been shown 
to not only modulate growth, metastasis, and angiogen-
esis by directly regulating cancer cells [11, 12], but also 
can indirectly induce the formation of a microenviron-
ment conducive to tumor invasion by activating and 
recruiting non-tumor components in the TME [13]. For 
example, CAFs can induce the recruitment of myeloid 
cells, which in turn induces immunosuppression of T 
cells and angiogenesis [14–16]. In co-culture, CAF was 
found to inhibit NK cell activation by interfering with 
IL-2-mediated upregulation of the triggering receptors 
NKp44, NKp30, and DNAM-1 [17]. Additionally, CAFs 
secrete a variety of molecules in the TME that assist in 
LUAD progression and metastasis, including matrix met-
alloproteinases (MMPs family), cytokines, chemokines, 
and growth factors among others [13]. CAF has begun to 
emerge as a key target for novel cancer therapies in the 
clinical setting. Currently, more and more drugs targeting 
CAF activation-related pathways have begun to enter the 
clinical field, such as TGF-β inhibitors, FAK inhibitors, 
Hedgehog inhibitors, and fibroblast growth factor recep-
tor (FGFR) inhibitors [17]. Therapeutic strategies target-
ing CAF have been shown to be effective in the treatment 

of non-small cell lung cancer (NSCLC) [18]. Therefore, 
exploring targets associated with CAFs represents a 
promising therapeutic strategy for LUAD treatment.

Glutathione peroxidase 8 (GPX8) is a transmembrane 
protein localized in the ER and the last recognized mem-
ber of the glutathione peroxidase (GPX) protein family, 
which has the primary function of limiting the cellular 
accumulation of reactive oxygen species (ROS) [19, 20]. 
GPX8 can reduce oxidized PDI and prevent endoplas-
mic reticulum oxidoreductase 1 alpha (ERO1α)-derived 
 H2O2 leakage by regulating ERO1α [21, 22]. Recent stud-
ies have shown that GPX8 can maintain the invasive mes-
enchymal-like phenotype of breast cancer cells through 
the IL-6/STAT3 axis [23]. GPX8 has been recognized as 
a prognostic marker for cancers such as gastric cancer 
and primary glioma [24, 25]. In clear cell renal cell car-
cinoma, GPX8 silencing inhibits tumorigenesis by regu-
lating nicotinamide N-methyltransferase (NNMT) [26]. 
These studies demonstrated the importance of aberrant 
expression of GPX8 in carcinogenesis, which may serve 
as a potential target for cancer therapy. However, the 
oncogenic role of GPX8 in LUAD still needs to be further 
explored.

Our current study, based on single-cell sequencing 
data and comprehensive analysis of multiple independent 
bulk-RNA cohorts, has identified that GPX8 is expressed 
aberrantly in LUAD and is primarily found in CAFs, 
where it plays a key role in tumor progression. We found 
that the activation of GPX8 in the tumor microenviron-
ment is associated with poorer survival outcomes and 
the development of an immunosuppressive environment. 
Functionally,  GPX8+ CAFs demonstrated enhanced 
cell adhesion, migration, and immunomodulatory capa-
bilities compared to  GPX8− CAFs. Together, these find-
ings suggest that the interplay between GPX8 and CAFs 
significantly influences LUAD tumor progression, and 
 GPX8+ CAFs could represent a novel therapeutic target 
for future CAF-directed treatments.

Materials and methods
Data downloading and preprocessing
Bulk-RNA sequencing data: mRNA expression profiles 
and clinical information of The Cancer Genome Atlas 
Program (TCGA), LUAD patient data, including 576 
samples, 517 tumor samples, and 59 normal samples, 
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were obtained from the UCSC website (https:// xenab 
rowser. net/ datap ages/). Transcriptome data and clini-
cal information for GSE31210, GSE72094, GSE30219, 
GSE50081, and GSE19188 were obtained from the Gene 
Expression Omnibus (GEO) database (https:// www. ncbi. 
nlm. nih. gov/ geo/).

Download and integration of single-cell RNA sequenc-
ing data: scRNA-seq data for two LUADs (GSE123902 
and GSE153935) were obtained from the GEO database, 
respectively. 17 samples were acquired from GSE123902, 
4 normal and 13 tumor samples. 18 samples were 
obtained from GSE153935, which were 6 normal and 12 
tumor samples. The screening criteria for the cells were 
as follows: a). each sample should contain no less than 
300 and no more than 5000 cells; b). each cell should 
express more than 200 genes; c). each gene should be 
expressed in at least 3 cells; and d). the content of mito-
chondrial RNA in each cell should be less than 30% [27]. 
After filtering the qualified cells are screened by these 
criteria, we used the “NormalizeData” function in the 
Seurat package to normalize the expression values. Sub-
sequently, the “FindVariableFeatures” function was used 
to identify 2000 highly variable genes, which were then 
centered using the “ScaleData” function [27]. Finally, we 
used the “harmony” R package [28] for data integration. 
The “harmony” R package enables fast, sensitive and 
accurate integration of cells from different donors, tissues 
and technology platforms.

Cellular annotation, differential gene, and functional 
enrichment analysis
In this study, we utilized the “SingleR” package [29] to 
automatically annotate the samples by cell type and com-
bined it with manual annotation. The SingleR package 
calculates the correlation between the gene expression 
of a single cell sample and the gene expression of a cell 
type from a reference database. By iteratively eliminat-
ing the weakest correlation for each cell type, the corre-
sponding cell type can be identified [29]. Furthermore, 
considering that the differences in the study population 
may introduce some bias to the results of the automatic 
annotation, we then further manually annotated the 
automatically annotated cell populations. Subsequently, 
we used the “FindAllMarkers” function in the “Seurat” 
package to identify differentially expressed genes (DEGs) 
for further analysis by applying a threshold value of |log-
2FoldChange| > 0.8 and the adjusting P value < 0.05, and 
then used the “ClusterGVis” R package (https:// github. 
com/ junju nlab/ Clust erGVis) for visualization. “ClusterG-
Vis” R package was used to visualize the heatmap of dif-
ferential genes. The “clusterProfiler” R package was used 
for Gene Ontology (GO) enrichment analysis and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis.

Estimation of CAFs score in LUAD
We obtained marker genes for CAFs from a previous 
study [30] and evaluated these marker genes using the 
single sample gene set enrichment analysis (ssGSEA) to 
assess the CAFs in LUAD. In addition, the EPIC algo-
rithm [31] was also utilized in order to assess the amount 
of CAFs in patients. Subsequently, K-M curve survival 
analysis was used for the prognostic value of CAFs 
assessed by different algorithms.

Identification of CAFs‑related key genes in LUAD
We used weighted gene co-expression network analy-
sis (WGCNA) to identify key gene expression networks 
associated with the CAFs in 3 independent cohorts: 
TCGA, GSE31210 and GSE72094. We screened the top 
75% genes by of the median absolute deviation (MAD) 
for network construction (The MAD method can screen 
for genes with high variability that are representative of 
the sample’s attributes), After that, we adopted the crite-
ria of the previous study [32] using the standard method 
cutreeDynamic function to identify co-expressed gene 
modules with a minimum module size of 30 and a merge 
height cut of 0.25. The association between modules) 
and CAFs scores was assessed by correlation analysis, 
p-values < 0.05 were considered significant, and modules 
highly correlated with CAFs scores were selected for fur-
ther analysis. Subsequently, we intersected CAFs-related 
genes obtained from the 3 LUAD bulk-RNA cohorts and 
the single cell data (GSE123902) by overlapping genes. 
Then, we performed a univariate Cox analysis of these 
genes in each of the 3 cohorts to obtain prognostically 
relevant key genes. Next, the Tumor Immune Single-cell 
Hub 2 (TISCH2, http:// tisch. comp- genom ics. org/ home/) 
and the scRNASeqDB database (https:// bioin fo. uth. edu/ 
scrna seqdb/) were used to validate the expression profiles 
of key genes in CAFs. The UALCAN database  (https:// 
ualcan. path. uab. edu/)  was used to assess the protein 
expression changes of key genes, and the cBioportal data-
base (https:// www. cbiop ortal. org/) was used to analyze 
the mutation frequency.

Analysis of copy number variation
GSCALiter is a comprehensive pan-cancer genomic web 
server (http:// bioin fo. life. hust. edu. cn/ web/ GSCAL ite/). 
We used GSCALite public server to analyze the copy 
number variation (CNV) of GPXs family (GPX1-GPX8) 
at the pan-cancer level.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/junjunlab/ClusterGVis
https://github.com/junjunlab/ClusterGVis
http://tisch.comp-genomics.org/home/
https://bioinfo.uth.edu/scrnaseqdb/
https://bioinfo.uth.edu/scrnaseqdb/
https://ualcan.path.uab.edu/
https://ualcan.path.uab.edu/
https://www.cbioportal.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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Determination of TME cell infiltration levels 
and immune‑related functional enrichment scores
We evaluated the ESTIMATE, immune and stromal 
scores of tumor samples in TCGA using the “ESTI-
MATE” method. Tumor purity scores of TCGA-LUAD 
patients, 29 TME signature genes, as well as tumor 
microenvironmental properties and immune subtypes of 
LUAD patients were obtained from previous studies [30, 
33]. With the CIBERSORT algorithm, we obtained the 
infiltration levels of each of the 22 immune cell types. In 
addition, we evaluated the TME-related scores summa-
rized by Zeng et al. [34].

Enrichment analysis for hallmark gene sets
Hallmark gene sets were obtained from the Molecular 
Signatures Database (MSigDB, https:// www. gsea- msigdb. 
org/ gsea/ msigdb), which were assessed and quantified 
using ssGSEA. In addition, the “clusterProfiler” R pack-
age was used for GSEA analysis and “GseaVis” R package 
(https:// github. com/ junju nlab/ GseaV is/ wiki) was used 
for visualization.

Immune checkpoints and tumor immune dysfunction 
and exclusion (TIDE) analysis
Correlation analysis was used to calculate the correla-
tion between GPX8 and common immune checkpoints, 
which was visualized using the “corrplot” R package. The 
TIDE algorithm is mainly based on two mechanisms of 
tumor immune evasion: (1) the induction of T-cell dys-
function in tumors with high cytotoxic T-lymphocyte 
(CTL) infiltration; (2) the prevention of T-cell infiltra-
tion in tumors with low CTL levels. After uploading 
scaled transcriptome expression profiles, TIDE scores 
and immunotherapy responses of patients in the LUAD 
cohorts were calculated by TIDE website (http:// tide. dfci. 
harva rd. edu).

Tissue immunofluorescence analysis
After paraffin embedding, 5  μm sections are deparaffi-
nized, rehydrated, and antigen restored, and the primary 
antibody added prior to BSA blocking is treated with 
EDTA Antigen Repair Buffer. Sections were incubated 
overnight at 4  °C in a wet room, washed, and then the 
secondary antibody was dropped into the overlying tis-
sue and incubated at room temperature. Cell nuclei were 
restained with DAPI, blocked and photographed. Anti - 
α-SMA Rabbit pAb (GB111364-100) was purchased from 
Servicebio; Anti – GPX8 Rabbit pAb (GTX125992) was 
purchased from GeneTex.

Screening for small molecule drug candidates for GPX8
We performed differential gene analysis on patients 
from the TCGA, GSE72094, and GSE31210 datasets 

separately. Firstly, the patients were divided into high and 
low groups based on the median value of GPX8 expres-
sion. Next, to identify differentially expressed genes 
(DEGs), we utilized the ‘limma’ R package [35] to analyze 
the DEGs in different GPX8 groups among the 3 cohorts. 
The DEGs were determined using |log2FoldChange| > 1 
and adj. p value < 0.05 as the criteria, and then we per-
formed an intersection of the DEGs. To identify poten-
tial GPX8  related therapeutic agents, we imported the 
final intersected DEGs into the connectivity map (cMAP) 
database (https:// clue. io/).

Cell trajectory analysis (pseudotime analysis)
We used the “monocle2” package to perform pseudo-
time analysis of fibroblast cell subpopulations [36]. To 
explore the differentiation trajectories and related genes 
between different states of fibroblast cell subpopulations, 
the “plot_cell_trajectory” function was used to sort cells 
according to their pseudotimes. The “BEAM” function 
was used to identify genes responsible for cell branching 
and differentiation. The results were visualized using the 
“plot_genes_branched_heatmap” function.

Statistical analysis
Wilcoxon rank sum test was utilized to assess statistical 
significance between different groups. Kaplan-Meier sur-
vival curves were used to analyze the survival of different 
LUAD patients. Pearson or spearman correlation analysis 
was used for correlation analysis. Statistical significance 
was described as follows: ns (not significant), * p < 0.05, ** 
p ≤ 0.01, *** p ≤ 0.001.

Results
Cancer‑associated fibroblasts are associated with poor 
prognosis in lung adenocarcinoma
Figure 1 presents the workflow diagram of the study con-
ducted. In the initial step, we analyzed 17 samples from 
the GSE123902 dataset, consisting of 4 normal tissues 
and 13 tumor tissues. Subsequently, we screened each 
sample to eliminate low-quality data, resulting in the 
retention of 38,124 cells for further analysis. Cluster-
ing visualization using the t-SNE method revealed the 
distinction of cells into 27 clusters (Fig.  2A). To refine 
the annotation, we employed the “SingleR” and manual 
annotation, classifying the cells into 10 distinct types 
(Fig. 2B). Among them, tumor tissues exhibited a higher 
abundance of adaptive response immune cells (T cells, B 
cells) relative to immune cell types involved in the innate 
immune response (macrophages, NK cells). This result 
may attribute to the antigenic heterogeneity in tumor 
cells (Fig.  2B). To gain further insight into the genetic 
aspects, we constructed a heatmap showcasing the 
Top10 differential genes and the Top5 enriched biological 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://github.com/junjunlab/GseaVis/wiki
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://clue.io/
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Fig. 1 The overview of study design to evaluate the biological role of  GPX8+ CAFs in lung adenocarcinoma
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pathways for each cell type (Fig. 2C). And it’s worth not-
ing that we found that more fibroblasts were recruited 
at the cancer tissue (Fig. 2D, E). Evaluating the extent of 
cancer-associated fibroblasts (CAFs) infiltration in the 
bulk-RNA cohorts, the prognostic analysis revealed that 
a higher level of CAFs correlated with decreased survival 
time in patients (Fig. 2F) (Supplementary Fig. 1A). These 

findings suggest that CAFs are enriched in tumor tissues 
and contribute to tumor progression.

Identification of GPX8 as a key prognostic gene associated 
with CAFs
Afterward, we identified key prognostic genes associated 
with cancer-associated fibroblasts (CAFs) using bulk-
RNA data. We performing WGCNA analysis for each of 

Fig. 2  Overview of single-cell data for normal and tumor samples. A t-SNE clustering plots of 17 samples. B t-SNE clustering plot of normal 
and tumor tissues. C Heatmap showing marker genes and biological pathways involved in 10 cell types. D Stacked diagram of cell distribution 
in normal and tumor tissues. E Bar plot showing the number of fibroblasts in normal and tumor tissues. F Quantification of CAFs abundance 
in LUAD using the EPIC algorithm, and analysis of the prognostic value of CAFs using the K-M curve analysis
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the three LUAD cohorts to identify gene co-expression 
network modules (Supplementary Fig.  2A, B). We then 
estimated the correlation between each module and the 
scores indicating CAF infiltration (ssGSEA_CAFs and 
EPIC_CAFs. Modules with correlations higher than 0.4 
for both scores were selected, indicating a strong rela-
tionship between the module genes and CAF infiltra-
tion. Subsequently, we focused on the genes within these 
modules (Fig.  3A). The Upset plots demonstrated the 
intersection of module genes across the 3 cohorts and the 
single cell data (GSE123902), revealing 78 shared CAFs-
associated genes (Fig.  3B). To identify prognostic genes 
among these, we performed univariate Cox analysis in 
the 3 bulk-RNA cohorts (Fig.  3C). We then overlapped 
the prognostic-related genes from 3 cohorts and screened 
for GPX8 and IGFBP3 (Fig.  3D). Correlation analysis 
showed that the two CAF scores had a strong correlation 
between GPX8, IGFBP3 and CAFs, with GPX8 showing 
a relatively higher correlation score compared to IGFBP3 
(Fig. 3E). To further examine the expression localization, 
we investigated GPX8 and IGFBP3 expression on fibro-
blasts using single-cell sequencing data. Analysis of the 
GSE123902 and GSE153935 datasets demonstrated that 
GPX8 exhibited relatively specific and higher expres-
sion on fibroblasts compared to IGFBP3 (Supplementary 
Fig.  2C) (Fig.  3F, G). The specific localization of GPX8 
on fibroblasts was also confirmed using the TISCH and 
scRNAseqDB databases (Supplementary Fig.  2D, E). 
Additionally, we assessed the localization of α-SMA (a 
biomarker for cancer-associated fibroblasts) and GPX8 
through immunofluorescence in LUAD specimens. The 
results showed co-localization of α-SMA and GPX8 
(Supplementary Fig. 3A). Altogether, the consistent find-
ings support that GPX8 is predominantly expressed in 
CAFs to fulfill its biological role.

GPX8 is associated with clinical malignant pathologic 
features
We further validated the prognostic role of GPX8 in 
6 independent LUAD cohorts. As shown in (Fig.  4A, 
B), GPX8 exhibited strong prognostic predictive abil-
ity across different cohorts. Furthermore, the analysis 
incorporating clinicopathologic features indicated that 
high GPX8 expression correlated with more advanced 
clinicopathologic features (Fig. 4C, D). Multivariate Cox 

analysis confirmed GPX8 as an independent predictor 
of overall survival (OS) (HR = 1.205, p = 0.022) in LUAD 
patients (Fig.  4E). GPX8 expression at both mRNA and 
protein levels revealed significantly higher expression in 
tumor tissues compared to the normal group (Fig. 4F, G). 
Analysis of the cBioportal database indicated a mutation 
rate of 6% for GPX8 in LUAD (Fig. 4H). Additionally, a 
correlation analysis of the GPXs family revealed a sig-
nificant expression correlation between GPX8 and GPX7 
across all 3 cohorts (Supplementary Fig. 4A-C). This may 
be related to the functions of both enzymes, GPX7 and 
GPX8, which are located in the endoplasmic reticulum 
and together participate in the oxidative folding of endo-
plasmic reticulum proteins [37].

Copy number variation (CNV) is a class of structural 
genomic variation, which is generally considered to be 
one of the major factors influencing tumorigenesis and 
progression [38]. CNV is mainly classified as copy num-
ber heterozygous amplifications and copy number hete-
rozygous deletions, which can induce aberrant expression 
of oncogenes, DNA repair genes, and other genes to 
influence tumor formation [39–42]. We analyzed the var-
iation of CNV frequency among GPXs family in pan-can-
cer. We found that the GPXs family had universal CNV 
in different cancers and there was significant heterogene-
ity among different cancers. Among them, GPX8 showed 
mainly copy number heterozygous amplification in can-
cers such as ACC, LIHC and DLBC; while in cancers 
such as LUSC and ESCA, it mainly showed significant 
copy number heterozygous deletion. In LUAD, the GPX8 
also had frequent CNV. Taken together, these results sug-
gest that genomic instability is largely involved in the 
occurrence of functional abnormalities of the GPXs fam-
ily in cancer. (Supplementary Fig. 5A, B).

GPX8 is associated with the formation 
of immunosuppressive microenvironment
Tumor microenvironment remodeling is considered 
to be one of the key factors affecting patient prognosis 
and anticancer therapy. Considering that TCGA-LUAD 
patients have abundant information about the proper-
ties of the defined tumor microenvironment, we analyzed 
the correlation between GPX8 and the tumor microen-
vironment in the TCGA cohort. We obtained tumor 
purity information of TCGA-LUAD patients from a 

Fig. 3  GPX8 promotes cancer progression. A Correlation heatmap showing the correlation between EPIC_CAFs and ssGSEA_CAFs with gene 
modules in the 3 LUAD cohorts. B Upset plot showing the overlap of fibroblast-associated genes from the 3 LUAD cohorts and the single-cell 
data (GSE123902). C Volcano plots were used to visualize the prognostic value of genes. D Venn plots overlapping CAFs-related prognostic genes 
of the 3 cohorts. E Heatmap of the correlation of GPX8 and IGFBP3 with CAFs. F Violin plots and scatter plots of GPX8 and IGFBP3 expression 
in the GSE123902 dataset. G Violin plots and scatter plots of GPX8 and IGFBP3 expression in the GSE153935 dataset

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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previous study and performed correlation analysis with 
gene expression of GPX8. The results showed that GPX8 
was negatively correlated with tumor purity (R=-0.295, 
P < 0.001) (Fig.  5A), suggesting that GPX8 was mainly 
expressed in non-tumor cells. We then used the ESTI-
MATE method to assess the patients’ immunity score, 
stromal score, and ESTIMATE score. Correlation analy-
sis showed positive correlations between the immune 
score (R = 0.194, P < 0.001), stromal score (R = 0.415, 
P < 0.001) and ESTIMATE score (R = 0.328, P < 0.001) for 
GPX8, with the stromal score having the highest correla-
tion with GPX8 (Fig. 5B).

Heatmaps showed the distribution of 29 known tumor 
microenvironmental signatures in relation to GPX8 
expression. As expected, TME signatures such as can-
cer-associated fibroblast, matrix, matrix remodeling, 
and EMT  signature rose with a gradual rise in GPX8 
(Fig.  5C). CIBESORT analysis showed that in the high 
GPX8 group, regulatory T cells and activated dendritic 
cell infiltration were significantly increased (Fig.  5D). 
Among them, regulatory T cells are considered to be one 
of the major cell subsets promoting immune response 
suppression [43, 44].

Sankey diagram showed that the tumor microenvi-
ronment properties in the high expression GPX8 group 
were predominantly C2 immune subtype and F sub-
type predominant (Fig.  5E). Subsequent subgroup com-
parison plots similarly showed that GPX8 expression 
was most active in the F subtype as defined by Bagaev 
et  al. and active in the C1 and C2 subtypes as defined 
by Thorsson et  al. (Fig.  5F, G). In addition, in the TME 
features summarized by Zeng et al. we found that GPX8 
was highly correlated with EMT1 and EMT2 (Fig.  5H). 
In conclusion, these results suggest that the tumor 
microenvironment with active GPX8 expression mainly 
exhibits immunosuppressive cell-enriched and fibroblast-
enriched phenotypes as well as an active EMT program 
phenotype.

GPX8 is associated with clinical treatment efficacy
Immunotherapy, as a novel anticancer treatment, has 
achieved promising results in recent years. However, 
the limited number of beneficiary populations and the 
specificity of indications have been one of the limitations 
preventing its large-scale application [45]. Therefore, 

identifying effective immunotherapy biomarkers can help 
clarify the appropriate population for immunotherapy. In 
this study, we investigated the correlation between GPX8 
and common immune checkpoints. The correlation heat-
map demonstrated a positive correlation between GPX8 
and immune checkpoints across all 3 LUAD cohorts 
(Fig. 6A). We further utilized the TIDE algorithm to eval-
uate the degree of immunotherapy response and immune 
escape in patients. Interestingly, non-responsive patients 
evaluated by the TIDE algorithm exhibited significantly 
higher levels of GPX8 expression (Fig. 6B). The correla-
tion scatter plot confirmed a significant positive cor-
relation between GPX8 expression and the TIDE score, 
reflecting the level of immune escape (Fig. 6C).

Next, to explore the potential clinical applications of 
GPX8, we first compared the differentially expressed 
genes between the GPX8 high expression group and the 
GPX8 low expression group. The volcano plot displayed 
the distribution of differentially expressed genes in the 3 
LUAD cohorts (Fig. 6D). Then, we overlapped differential 
genes with adj. p value < 0.05 and |logFC| > 1, and identi-
fied 24 down-regulated genes and 43 up-regulated genes 
shared among the 3 LUAD cohorts (Fig.  6E). Next, we 
imported these genes into the cMAP database to search 
for drugs that affected the GPX8 expression profile and 
visualized the results (Fig.  6F). The most effective drug 
in perturbing GPX8 expression was the beta-CCP small 
molecule compound. This compound has the potential 
to be used as a therapeutic drug targeting GPX8 for the 
treatment of lung adenocarcinoma.

Unique transcriptional features of  GPX8+ CAFs
Next, we extracted fibroblast subgroups from the 
GSE123902 dataset and applied clustering analysis. 
The results revealed the division of fibroblasts into 
five clusters (Fig.  7A), with cluster 3 showing weaker 
GPX8 expression compared to other cell subpopula-
tions (Fig. 7B, C). Consequently, we categorized clusters 
0, 1, 2, and 4 as  GPX8+ fibroblasts, while cluster 3 was 
classified as the  GPX8− fibroblast subpopulation. The 
expression distribution of hallmark gene sets was then 
analyzed in the  GPX8+ and  GPX8− fibroblast. The find-
ings demonstrated significant enrichment of inflamma-
tion-related pathways, including INTERFERON ALPHA 
RESPONSE, INTERFERON GAMMA RESPONSE, 

(See figure on next page.)
Fig. 4 GPX8 is associated with adverse clinical outcomes. K-M curves were analyzed for OS (A) and PFS (B) of GPX8 in 6 independent cohorts. 
C Heatmap of the distribution of GPX8 with clinicopathologic features. D Comparison plot of GPX8 with different clinical features. E Forest plot 
of multivariate cox analysis of GPX8 in combination with other clinicopathologic features. F Differential expression of GPX8 at mRNA level in normal 
and tumor tissues in the TCGA cohort. G Differences in protein expression levels of GPX8 in normal and tumor tissues were analyzed using 
the ULCAN database. H Mutation profile of GPX8 was analyzed using cBioportal database (***p < 0.001; **p < 0.01; *p < 0.05; ns. no significance)
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ALLOGRAFT_REJECTION, and TNFA_SIGNALING_
VIA_NFκB, in  GPX8+ CAFs compared to  GPX8− CAFs 
(Fig.  7D). Furthermore, GSEA analysis indicated a sub-
stantial enrichment of differential genes in the GO_BP 
pathway of cell adhesion and cell migration (Fig.  7E). 
Similar results were observed in another LUAD single-
cell dataset (Supplementary Fig. 6A-E).

To assess the relationship between  GPX8+ fibroblasts 
and prognosis, we selected  GPX8+ upregulate genes with 
avg_logfoldchange > 1, and quantified them in 3 bulk-
RNA cohorts using the ssGSEA method, and examined 
their association with prognosis. The results indicated 
that high expression of  GPX8+ CAFs correlated with 
poor prognosis in all 3 independent bulk-RNA cohorts 
(Fig.  7F). Considering the functional heterogeneity and 
poor prognosis of  GPX8+ CAFs, we performed pseudo-
time analysis to investigate the underlying mechanism 
of functional changes. The temporal analysis revealed 
that cluster 3 projected to the root (state1), while cluster 
0 (state3) and cluster 1 (state2) mainly projected to the 
two branches, respectively (Fig.  7G). Notably,  GPX8− 
CAF was primarily in state1 and gradually transitioned 
to  GPX8+ CAF (state2 and state3) (Fig. 7H). In this pro-
cess, GPX8 gene expression also changed with CAF state 
(Fig.  7I-J). Subsequently, we conducted BEAM analysis 
to identify branch-dependent genes. The results showed 
that genes such as MMP11 and SDC1 were positively 
correlated with the developmental direction of  GPX8+ 
CAFs (Fig. 7K).

Discussion
CAFs, one of the key components of the tumor micro-
environment, are thought to be associated with a higher 
risk of immune evasion and a poorer prognosis. To gain 
insight into the role of CAFs in the progression mecha-
nism of LUAD and to identify potential therapeutic tar-
gets, we combined single-cell sequencing data analysis 
with bulk-RNA sequencing data analysis to reveal the 
potential value of  GPX8+ CAFs as biomarkers for prog-
nosis and indicators of immunotherapy in LUAD.

Imbalanced shaping of the tumor microenvironment 
(TME) is a major factor contributing to the poor prog-
nosis of cancer patients. The TME is composed of a vari-
ety of stromal cells, with cancer-associated fibroblasts 

(CAFs) being the most abundant [10]. CAFs can influence 
tumor progression by regulating changes in the composi-
tion of the TME through cell-to-cell contacts, secretion 
of regulatory molecules, and extracellular vesicles [46]. 
In this study, single-cell sequencing data revealed that 
CAFs were more enriched in tumor tissues compared to 
normal tissues, and survival analyses showed a signifi-
cant correlation between CAFs and poor patient survival 
in bulk-RNA data. Similarly, a pan-cancer study by Luo 
et  al. found that in terms of interactions between TME 
components, fibroblasts dominated interactions with 
other TME components, with a progressive increase in 
the order of normal, neighboring, and tumor samples in 
the dimension of single-cell resolution [47]. These results 
suggest a possible increased recruitment and generalized 
activation of fibroblasts in the TME, which may contrib-
ute to the poor prognosis of cancer.

Subsequently, we identified GPX8 as a CAFs-associated 
biomarker based on comprehensive bioinformatics anal-
yses. GPX8 is a localized ER transmembrane protein that 
regulates ROS production and clearance in organisms 
[19]. Recent studies have shown that GPX8 is associated 
with poor prognosis in various cancers, including gastric 
cancer, lung cancer, and glioma [23, 25, 48]. In clear cell 
renal cell carcinoma, GPX8 regulates NNMT expres-
sion through the IL6-STAT3 signaling axis and inhibits 
ccRCC cell survival by blocking this axis through activa-
tion of AMPK [23]. Similarly, in esophageal squamous 
carcinoma cells, GPX8 was found to induce the onset 
of autophagy and apoptosis by regulating the IRE1/JNK 
pathway in tumor cells [49]. These findings collectively 
suggest a connection between GPX8 expression in tumor 
tissues and cancer progression.

Notably, in a recent study on lung cancer, researchers 
discovered that GPX8 expression on cancer-associated 
fibroblasts can promote the metastasis of lung cancer 
cells [50]. Our findings, corroborated in multiple cohorts, 
indicate that in LUAD, GPX8 is primarily localized on 
CAFs. Consistent with our expectations, GPX8 was sig-
nificantly associated with reduced survival time and 
exhibited a strong predictive effect on prognosis in mul-
tiple independent LUAD cohorts. Even after adjusting 
for confounding factors, GPX8 remained an independent 
prognostic predictor in lung adenocarcinoma patients. 

Fig. 5 Role of GPX8 in the tumor microenvironment. A Correlation scatter plot of GPX8 with tumor purity. B Correlation scatter plot of GPX8 
with ESTIMATE score, immune score, and stromal score. C Heatmap of the distribution of 29 TME-associated signatures with GPX8 expression values. 
D Relationship between GPX8 expression and the proportion of 22 immune cells infiltrated. E Sankey diagram of TME attributes and immune 
subtype attributes of patients in different GPX8 groups. Distribution of GPX8 expression in TME subtypes defined by Bagaev et al. (F) and immune 
subtypes defined by Thorsson et al. (G). H Heatmap of different TME-related scores correlating with GPX8 (***p < 0.001; **p < 0.01; *p < 0.05; ns. 
no significance)

(See figure on next page.)
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These findings suggest that GPX8 has the potential to 
serve as a valuable biomarker for LUAD. Furthermore, we 
observed that GPXs family members, including GPX8, 
commonly exhibit copy number variation (CNV) changes 
across various cancers. This suggests that the abnormal 

function of these genes in the carcinogenesis process may 
be linked to DNA damage. Interestingly, Chu et al. found 
in a mouse model that the disruption of GPX1 and GPX2 
genes increased the mice’s susceptibility to certain can-
cers [51]. Collectively, these results indicate that genetic 

Fig. 6 Clinical value of GPX8. A Heatmap of GPX8 correlation with immune checkpoints in 3 LUAD cohorts. B Distribution of GPX8 expression 
in immune-responsive and non-immune-responsive groups assessed based on the TIDE algorithm. C Correlation scatter plots of GPX8 
with TIDE scores in the 3 LUAD cohorts. D Differential gene volcano plot based on high and low GPX8 expression groups. E Venn plots 
showing up- and down-regulated genes shared in the 3 cohorts (adj. p value < 0.05 and |logFC| > 1). F Small molecule drugs screened based 
on up- and down-regulated genes and the cMAP database, with the heatmap at the top ranking the small molecules
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Fig. 7 Functional analysis of  GPX8+ CAFs. A t-SNE clustering plot of fibroblasts. Distribution of GPX8 expression in fibroblasts t-SNE plot (B) 
and violin plot (C). D Heatmap showing enrichment of hallmark gene sets in fibroblast subpopulations. E GSEA analysis for GPX8 + CAFs. F K-M curve 
analyzing the prognostic value of  GPX8+ CAFs in LUAD. G The trajectory plot showed identified fibroblast clusters in pseudo timeline. H Trajectories 
showing the developmental trajectories of  GPX8− CAFs clusters and  GPX8+ CAFs clusters. I-J Dynamic changes of GPX8 with cell developmental 
trajectories. K Heatmap of gene expression changes along cellular trajectories
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variants within the GPXs family may contribute to tumor 
formation and partly account for the association between 
GPX8 and aggressive tumor characteristics.

Regarding tumor microenvironment expression pat-
terns, we observed a significant correlation between 
GPX8 and the infiltration of non-tumor cellular compo-
nents. This suggests a higher occurrence of cell-to-cell 
signaling crosstalk in TMEs with high GPX8 expression. 
Interestingly, apart from the enrichment of cancer-asso-
ciated fibroblasts in GPX8 high expression TMEs, we also 
found the active expression of the epithelial-mesenchy-
mal transition (EMT) program. Coincidentally, a study by 
Khatib has reported that GPX8 expression is crucial for 
maintaining the EMT phenotype in breast cancer cells 
[23]. Furthermore, numerous studies have highlighted 
the signaling crosstalk between EMT progression and 
immune escape. Wang et  al. conducted transcriptomic 
studies at the pan-cancer level, revealing the existence 
of signaling crosstalk between EMT progression and 
immune escape [52]. Alsuliman et  al. demonstrated an 
association between the progression of the EMT pro-
gram and PD-L1-mediated immune escape in breast 
cancer cells [53]. This partly explains the intrinsic link 
between GPX8 and the occurrence of immune escape. In 
our study, we found that the proportion of Treg cell infil-
tration was upregulated in TME with high GPX8 expres-
sion. Treg cells, as immunosressive T cells, are primarily 
responsible for downregulating immune and inflamma-
tory responses and maintaining organismal stability. In 
tumors, the recruitment of Treg cells is closely associ-
ated with tumor immune escape [43, 44]. Immune check-
points, as an important part of promoting the occurrence 
of immune escape, have entered the field of clinical treat-
ment with a large number of immune checkpoint block-
ers, and combination therapy with immune checkpoint 
blockade has become one of the main anticancer thera-
peutic tools in the clinic [54, 55]. Our correlation analy-
sis revealed that GPX8 positively correlates with immune 
checkpoints such as PD-L1 and CTLA-4 in several LUAD 
cohorts. Furthermore, in the context of immunotherapy, 
patients with high GPX8 expression demonstrated a sig-
nificantly lower response rate to immunotherapy com-
pared to those with low GPX8 expression. Collectively, 
these findings indicate that GPX8 is associated with the 
formation of an immunosuppressive microenvironment 
and could represent a potential therapeutic target for 
immunotherapy.

To expand the potential clinical applications of GPX8, 
we conducted a screening for beta-CCP using the cMAP 
database. Previous research has demonstrated that 
beta-CCP can antagonize diazepam-induced passive 
avoidance disorder [56]. Our study revealed that beta-
CCP exhibited the most significant inhibitory effect on 

GPX8-related expression profiles. These findings suggest 
that beta-CCP may be a promising therapeutic agent for 
the treatment of LUAD.

Finally, we delved into the potential function of the 
 GPX8+ CAFs subpopulation in LUAD. We observed 
that the  GPX8+ CAFs cell subpopulation displayed a 
significantly more active inflammation-related pathway 
compared to the  GPX8− CAFs cell subpopulation. Addi-
tionally, the presence of the  GPX8+ CAFs subpopulation 
was strongly associated with poor prognosis. These find-
ings suggest that the  GPX8+ CAFs subpopulation may 
exert its influence on cancer progression by participating 
in immune regulation within the tumor microenviron-
ment (TME). It is worth mentioning that Öhlun et  al. 
categorized CAFs in pancreatic cancer into myofibroblast 
and inflammatory fibroblast based on phenotypic and 
molecular heterogeneity of CAFs [57]. Among them, the 
phenotype of inflammatory CAFs is mainly character-
ized by fibroblasts exhibiting active immunoregulatory 
pathways. In bladder uroepithelial carcinoma, enrich-
ment of inflammatory CAFs was significantly associated 
with poor patient prognosis [58]. Cell trajectories showed 
an upregulation of GPX8 expression in response to 
changes in fibroblast activity. We hypothesized that the 
upregulation of GPX8 may drive the transition of CAFs 
to the inflammatory fibroblast phenotype. However, the 
underlying mechanisms still need to be further explored. 
Overall,  GPX8+ CAFs may have an important role in 
remodeling TME, and targeting  GPX8+ CAFs may serve 
as a promising novel therapeutic strategy for LUAD.

The study still has several limitations, the data used in 
the study are mainly from public datasets, and further 
experiments are still needed for exploration and valida-
tion. The lack of large-scale clinical specimens for the val-
idation of the results is also one of the limitations of this 
paper. In addition, we will also try to construct an inter-
nal LUAD cohort in the future to validate and explore the 
results of the current analysis in depth.

Conclusion
In this study, we identified GPX8 as a key prognostic gene 
expressed in CAFs through a series of bioinformatics 
analysis. And the high expression of GPX8 was associated 
with poor patient survival and the formation of an immu-
nosuppressive microenvironment. Consequently,  GPX8+ 
CAFs holds potential as a therapeutic target for LUAD.
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