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Abstract
Background Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating 
from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play 
important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the 
underlying mechanisms of SRGs in KIRP.

Methods RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we 
calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed 
genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis 
(WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate 
Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by 
Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling 
pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors.

Results In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six 
prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established 
with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant 
correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might 
be a potential inhibitor for KIRP.

Conclusions We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, 
which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.
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Introduction
Kidney renal papillary cell carcinoma (KIRP) is a malig-
nancy known as the second most common histologic 
variant of renal cell carcinoma (RCC) and contributes 
to 10–15% of RCC morbidity [1, 2]. Therapeutically, tar-
geted drugs are widely used in the treatment of advanced 
RCC, such as sorafenib and sunitinib [3, 4], but these 
drugs that target kidney renal clear cell carcinoma 
(KIRC) are still limited in advanced KIRP [2]. Due to the 
low prevalence of KIRP in RCC and the different mecha-
nisms between KIRP and KIRC, patients with KIRP are 
always excluded from those large clinical trials of the 
current targeted therapies [5]. Therefore, it’s urgent to 
explore the mechanisms of KIRP and find its therapeutic 
targets.

Nowadays, cancer stem cells (CSCs) have been given 
greater attention. As we all know, CSCs are able to self-
renew and differentiate, and they play important roles in 
tumorigenesis and metastasis [5]. The stemness index is 
utilized to quantify the characteristics of CSCs in tumors. 
The mRNA expression-based stemness index (mRNAsi) 
and the DNA methylation-based stemness index 
(mDNAsi) represent the expression of transcriptomic 
stemness and the features of epigenetic stemness, respec-
tively. It has been revealed that mRNAsi is linked with 
the tumorigenesis and prognosis of hepatocellular carci-
noma (HCC) [6]. Nevertheless, the association between 
mRNAsi and KIRP is still unknown.

In the present study, we collected RNA-seq profiles 
and clinical information of KIRP patients from The Can-
cer Genome Atlas (TCGA) database and characterized 
differentially expressed genes (DEGs) between low- and 
high-stemness groups. Next, we conducted a compre-
hensive analysis to estimate the association between 
stemness-related genes (SRGs) and overall survival (OS), 
and subsequently constructed a prognostic model. Then, 
we utilized weighted gene correlation network analy-
sis (WGCNA), and univariate Cox analysis to identify 
prognostic SRGs. Afterwards, they were included in the 
multivariate Cox regression analysis, and established 
a prognostic model. In addition, a regulatory network 
was constructed by Pearson correlation analysis, which 
included key genes, upstream transcription factors (TFs), 
and downstream signaling pathways to clarify the poten-
tial mechanisms of tumorigenesis and metastasis in KIRP. 
Finally, we used Connectivity map (Cmap) analysis to 
identify the potential inhibitors targeting KIRP. Hope-
fully, the prognostic model might be beneficial to clinical 
decision-making, and the potential therapeutic targets 
would be useful for the treatment of KIRP patients.

Materials and methods
Data collection
The Ethics Committee of Xinhua Hospital Affiliated 
to Shanghai Jiao Tong University School of Medicine 
approved this study (XHEC-C-2021-145-1). We down-
loaded the RNA sequencing profiles and clinical informa-
tion of 141 KIRP patients from TCGA database (https://
tcga-data.nci.nih.gov), including demographic factors, 
patients’ survival, and clinical stages. The results were 
demonstrated in a table.

mRNAsi estimation
One-class logistic regression machine learning (OCLR) 
was employed to evaluate the stemness signatures of the 
KIRP samples as mRNAsi, which was an index between 0 
and 1 [7, 8]. Higher mRNAsi presented higher activity of 
CSCs in the bulk tumor tissue and greater dedifferentia-
tion of malignant cells. In the current study, mRNAsi of 
samples were evaluated by OCLR utilizing a normalized 
gene expression matrix acquired from RNA sequencing 
profiles.

Differential expression analysis for low- and high-mRNAsi 
groups
In this study, we deployed the limma package to find 
differential expression genes. All KIRP samples were 
categorized into two groups, low- and high-stemness 
groups. The high-stemness group contained samples 
with mRNAsi values greater than the median value, and 
the low-stemness group included samples with mRNAsi 
values less than the median value. We conducted differ-
ential expression analysis between low- and high-stem-
ness groups with a cut-off value of P < 0.05 and log2 Fold 
Change (FC) > 2.0 or < -2.0 to explore the DEGs.

Functional enrichment analysis
In order to further investigate the functions of the DEGs, 
the clusterProfiler package was utilized to conduct Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment analyses [9]. 
Also, we conducted Gene Set Variation Analysis (GSVA) 
to quantify the 50 hallmarks of cancer gene sets in each 
sample [10].

Weighted gene correlation network analysis
We used the weighted gene correlation network analysis 
(WGCNA) package to perform the subsequent analyses 
[11]. The identified DEGs between low- and high-stem-
ness groups were input for co-expression network analy-
sis. Then, mRNAsi and quantitative signaling pathways 
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were used as clinical phenotypes. With the gene modules, 
module dendrograms were constructed. In the principal 
component analysis of each module, the module eigen-
genes (MEs) possessing an expression profile signature, 
which was characterized by the expression patterns of 
all genes, constituted the main components. The mod-
ule membership (MM) was determined by the associa-
tion between genes in the corresponding modules and 
mRNAsi. After selecting modules of significance, we 
counted gene significance (GS) and MM for each key 
gene. We then chose the modules with the highest cor-
relation factor between mRNAsi and standardized gene 
expression of modules for further analysis. Genes whose 
correlation with MM (cor.gene MM) and GS (cor.gene 
GS) > 0.5 were regarded as SRG.

Construction of the prognostic model
We subsequently performed the univariate Cox regres-
sion analysis for the SRGs in the pink module (cor.gene 
MM > 0.5 and cor.gene GS > 0.5). And then the SRGs 
with prognostic significance were put into the multivari-
ate Cox regression model. Based on the multivariate Cox 
regression model, we evaluated the risk score based on 
the following formula for each KIRP patient. The formula 
was:

 

Risk score = β1× gene1 + β2× gene2 + β3×
gene3 . . . . . .+ βn× genen

In this formula, “x” referred to the number of patients, 
“β” referred to the coefficient of SRGs in the multivari-
ate model, and “n” referred to the number of SRGs in the 
multivariate model.

The receiver operator characteristic (ROC) curve was 
used to test the efficacy of the multivariate Cox regres-
sion model. After that, we divided all KIRP patients into 
two risk groups according to the median value of risk 
score. Additionally, we also constructed the Kaplan-
Meier (K-M) survival analysis to estimate the prognostic 
value of the risk score in KIRP. We then applied the uni-
variate and multivariate Cox regression analyses to assess 
the prognostic value of risk score, together with age and 
TNM stage.

Construction of regulatory network
Firstly, 318 cancer-related TFs and 50 hallmarks of can-
cer gene sets were extracted from the Cistrome data-
base (http://cistrome.org/) and the Molecular Signatures 
Database (MSigDB) v7.0 (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp). Next, we selected differentially 
expressed TFs between primary tumors and metastatic 
tumors, and the significant TFs were depicted in a heat-
map. Moreover, we performed co-expression analysis 
with differentially expressed TFs, SRGs, and 50 hallmarks 

of cancer. The selected criteria of the Pearson correlation 
analysis were|correlation coefficient| > 0.40 and P < 0.05. 
Eventually, the results were visualized as a regulatory net-
work, which directly demonstrated the potential regula-
tory relationship among TF, SRGs, and the 50 hallmarks 
of cancer.

Identification of candidate target drugs
By adopting the Connectivity Map (CMap) database, we 
aimed to identify candidate small molecules that might 
be potential drugs against CSCs. CMap analysis was per-
formed with the results of differential expression analysis 
between high- and low-mRNAsi groups in pan-cancer 
reported by Tathiane M et al. as input data [7, 12, 13]. 
Afterwards, small molecules that were significant in more 
than 10 types of cancer were demonstrated in a heatmap. 
Additionally, chemical structures of small molecules were 
downloaded from the Clue database (https://clue.io/).

Assay for transposase-accessible chromatin sequencing 
(ATAC-seq) and chromatin immunoprecipitation 
sequencing (ChIP-seq) analyses
Assay for transposase-accessible chromatin sequenc-
ing (ATAC-seq) data of KIRP samples were downloaded 
from the TGCA cohort of chromatin accessibility land-
scape of primary human cancers (https://gdc.cancer.gov/
about-data/publications/ATACseq-AWG) [14]. ATAC-
seq could validate the chromatin accessibility at the loca-
tion of the key genes. Next, the analysis was done using 
the UCSC genome browser home (www.genome.ucsc.
edu), and the “org.Hs.eg.db” R package and “TxDb.Hsa-
piens.UCSC.hg38.knownGene” R package. We divided 
each chromosome into 92 segments and normalized the 
number of binding peaks by the peak densities. Then, we 
counted the total number of peaks in those segments, to 
characterize the chromatin accessibility for the corre-
sponding region, helping validate the chromatin accessi-
bility of the key regulatory genes.

Moreover, to validate the potential regulatory relation-
ship between the key TF and target gene, ChIP-seq pro-
files of two samples (GSM2700104 and GSM2700105) 
[15] in “bigwig” format were downloaded from the Cis-
trome Data Browser (DB) (http://cistrome.org/db/#/) 
[16]. Afterwards, the integrative genomics viewer (IGV) 
was used to visualize the result [17].

Multidimensional validation
In order to reduce bias, we used multiple databases, 
including K-M plotter [18], Gene Expression Profiling 
Interactive Analysis (GEPIA) [19], LinkedOmics [20], 
UALCAN [21], the Human Protein Atlas [22], and single-
cell RNA sequencing analysis [23, 24] to evaluate gene 
and protein expression levels of critical biomarkers at the 
tissue and cellular levels.

http://cistrome.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://clue.io/
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
http://cistrome.org/db/#/
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Single-cell RNA-sequencing validation
A total of 31,390 single-cell RNA sequencing (scRNA-
seq) profiles were downloaded from the National Center 
for Biotechnology Information Gene Expression Omni-
bus (NCBI-GEO) (accession no.GSE159115) [25, 26], 
which were composed of 11,740 from six benign adjacent 
kidney tissue (BA) samples and 19,650 from eight renal 
cell carcinoma (RCC) samples. Next, we conducted t-dis-
tributed stochastic neighbor embedding (tSNE) analysis 
for dimensional reduction. Then, we used the marker 
genes to annotate each cell spot, dividing the cells into six 
subclasses (B cells, endothelial cells, epithelial cells, fibro-
blasts, myeloid cells, and NK/T cells). Afterwards, we 
demonstrated the cell proportion of each sample, and the 
top five marker genes of each subtype. Finally, we demon-
strated the significant gene (ASPH), TF (CBX2), and five 
important genes in the Notch signaling pathway.

Statistics analysis
In this study, results with P < 0.05 were thought to be 
statistically significant. All statistical analyses were con-
ducted by R version 3.6.1 software (Institute for Statistics 
and Mathematics, Vienna, Austria; www.r-project.org) 
deploying the limma, Seurat, ggplot2, SingleR, reticulate, 
clusterProfiler, GSEABase, and GSVA packages.

Result
Differential gene expression analysis
We presented the flowchart of each analysis process in 
this study in Fig.  1 and the baseline clinical character-
istics of KIRP patients in Table 1; Fig. 2A. Totally, there 
were 1,124 genes identified as DEGs between high- and 
low-mRNAsi groups, with 959 upregulated and 165 
downregulated genes included. The heatmap and volcano 
plot were respectively presented in Fig. 2B and C.

Functional enrichment analysis
Functional enrichment analyses on the DEGs in GO 
terms and KEGG pathways were exhibited in Fig.  2D 
and Fig.  2E. The GO enrichment analysis revealed that 
the DEGs were enriched in biological processes includ-
ing “organelle fission”, “nuclear division”, “meiotic cell 
cycle” and “chromosome segregation”, as well as terms 
of molecular function such as “channel activity”, “pas-
sive transmembrane transporter activity”, and “ion chan-
nel activity”. The KEGG enrichment analysis also showed 
significantly enriched pathways, including “neuroactive 
ligand-receptor interaction”, “calcium signaling pathway”, 
and “proteoglycans in cancer”.

Weighted gene correlation network analysis
Sample dendrogram and trait heatmap by WGCNA were 
illustrated in Fig. 3A. And the identification of co-expres-
sion modules in KIRP was demonstrated in Fig.  3B. In 

order to evaluate the relationships between the mRNAsi 
of the samples and the modules, the expression level of 
the overall gene that belonged to the corresponding mod-
ule was calculated by MS. Then, MS was used to evalu-
ate the correlations with clinical phenotypes. The pink 
module was most significantly related to mRNAsi (cor-
relation coefficient = 0.44, P = 6e− 11, Fig.  3C). Therefore, 
we selected the pink module as the module of interest for 
subsequent analyses. We defined the threshold for select-
ing the key genes in the mRNAsi group as cor. GS > 0.5 
and cor. MM > 0.5 (Fig. 3D).

Calculation of risk score and independent prognostic 
analysis
We displayed the expression level of key genes (cor. 
GS > 0.5 and cor. MM > 0.5) of the pink module in the pri-
mary tumors and the metastatic tumors with a heatmap 
and a volcano plot (Fig.  4A, 4B), which were named as 
SRGs. Six SRGs had prognostic significance in the uni-
variate Cox regression analysis (Fig.  4C). We incorpo-
rated these SRGs into a multivariate Cox model and then 
calculated the riskscore of each KIRP patient. The distri-
bution of all KIRP patients’ riskscore was illustrated in 
the scatter plot and the risk curve (Fig. 5A, 5B). In addi-
tion, the receiver operator characteristic curve (ROC) 
curve illustrated the modest fitness and accuracy of the 
multivariate Cox regression model (area under curve 
(AUC) = 0.861) and K-M survival curve revealed the 
significant prognostic value of the riskscore (P < 0.001) 
(Fig. 5C, 55D). We subsequently confirmed that the risk 
score was an independent prognostic predictor for KIRP 
in univariate (hazard ratio (HR) = 170.391, 95% confiden-
tial interval (CI) (29.931–970.000), P < 0.001, Fig. 5E) and 
multivariate Cox regression analysis (HR = 1.028, 95%CI 
(1.004–1.052), P = 0.021), Fig. 5F).

Construction of the regulatory network
Firstly, we performed the TF enrichment analy-
sis between primary tumors and metastatic tumors, 
and finally, seven TFs were identified as differentially 
expressed TFs, including CBX2, CDX2, FOXA2, KLF4, 
NANOG, NCAPG, and TFAP2A, which was demon-
strated in a heatmap (Fig. 6A) and a volcano plot (Fig. 6B). 
What’s more, differential expression analysis identified 
19 significant signaling pathways between primary and 
metastatic KIRP samples, and 22 signaling pathways 
were significantly co-expressed with the pink module in 
the WGCNA. Finally, intersecting the two sets (Fig. 6C), 
eight signaling pathways were selected, including Notch 
signaling pathway, Apical surface pathway, MYC targets 
V1 pathway, MYC targets V2 pathway, UV response up 
pathway, Xenobiotic metabolism pathway, mTORC1 sig-
naling pathway, and Apical junction pathway.

http://www.r-project.org
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Furthermore, we performed Pearson correlation analy-
sis among significantly enriched seven TFs, SRGs of the 
pink module, and 50 hallmarks of cancer. As a result, 
115 co-expression interaction pairs were used to con-
struct the regulation network (Fig.  6D). What’s more, a 
co-expression heatmap was also exhibited to present the 
co-expression patterns of 115 interaction pairs (Fig. 6E). 
Based on the co-expression network, we found that the 

CBX2-ASPH-Notch signaling pathway axis was the most 
significant, implying its potential role in promoting the 
metastasis of KIRP.

Identification of candidate target drugs
We used the DEG analysis results between high- and 
low-mRNAsi samples in KIRP as input data to do 
CMap analysis. A heatmap was constructed based on 

Fig. 1 The flowchart of our analysis processes.
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small molecules whose statistical results were signifi-
cant in more than 10 kinds of cancers (Fig.  7A). The 
result proved that puromycin, resveratrol, semustine, 
tanespimycin, monobenzone, etacrynic acid, escule-
tin, alvespimycin, vinburnine, vinblastine, thioguano-
sine, naringenin, geldanamycin, and 8-azaguanine were 
potential small molecules that targeted SRGs and TFs in 
KIRP. After consulting current literatures, we found that 
the most significant potential molecule was resveratrol. 
Additionally, the chemical structure of resveratrol was 
also downloaded from the clue database (https://clue.io/) 
(Fig. 7B).

ATAC-seq and ChIP-seq analyses
In Fig.  8A-B, ATAC-seq helped validate the chroma-
tin accessibility at the location of the key genes (CXB2, 
ASPH). The peaks of the chromosomes suggested active 
transcription processes happened, so that we could fur-
ther evidence the critical roles of CXB2 and ASPH in 
regulating KIRP. What’s more, in ChIP-seq validation, 
binding peaks of CXB2 were found in ASPH sequence 
(GRCh38/hg38, chromosome 8: 61,498,556 − 61,716,592) 
in two ChIP-seq samples (Fig.  8C), and the binding 
motifs of CXB2 were predicted. Taken together, we fur-
ther proved a potential transcriptional regulation pattern 
between CXB2 and ASPH to regulate Notch signaling 
pathway in KIRP.

Multidimensional validation
We intended to investigate the clinical profiles and the 
gene expressions of ASPH, CBX2, NOTCH3, HDAC6, 
HDAC11, MAML1, and NCSTN in KIRP, so an external 
validation employing multiple databases was performed. 
First of all, we found that ASPH, CBX2, NOTCH3, 
HDAC6, HDAC11, MAML1, and NCSTN were all sig-
nificantly associated with overall survival in K-M survival 
analysis (Figure S1). In the database of GEPIA, ASPH, 
CBX2, NOTCH3, HDAC6, HDAC11, MAML1, and 
NCSTN were all significantly related to tumor stage (Fig-
ure S2). In the LinkedOmics database, CBX2, NOTCH3, 
HDAC6 and HDAC11 were linked with tumor purity and 
TNM stage. Besides, ASPH, MAML1, and NCSTN were 
linked with TNM stage and overall survival (Figure S3, 
S4). Meanwhile, in the UALCAN database, we also found 
that ASPH, NOTCH3, HDAC6, MAML1, and NCSTN 
showed differential expression levels between normal 
kidney tissues and KIRP tissues. Moreover, expression of 
ASPH, CBX2, and HDAC6 were associated with histo-
logic subtypes (Figure S5). Employing the Human Protein 
Atlas database, the protein levels of ASPH, NOTCH3, 
MAML1, and NCSTN in KIRP tissue were suggested 
to be higher than those in normal renal tissues, while 
HDAC6 in KIRP was significantly lower (Figure S6). Last 
but not least, utilizing scRNA-seq analysis, we revealed 
that ASPH, CBX2, NOTCH3, HDAC6, HDAC11, 
MAML1, and NCSTN were co-expressed in fibroblasts 
and endothelial cells at relatively high levels (Fig. 9).

Discussion
As one of the malignant genitourinary tumors, KIRP is 
regarded as a heterogeneous disease in terms of disease 
progression and patients’ survival [27]. Because of its low 
occurrence, KIRP is constantly understudied compared 
to kidney renal clear cell carcinoma (KIRC), making in-
depth research for KIRP prognostic prediction challeng-
ing [27]. It’s reported that advanced-stage KIRP has no 
effective treatments currently, and KIRP treatment resis-
tance also appears because of the CSCs [28]. Therefore, 
the therapy of KIRP is still a problem for oncologists, 
and there is an urgent need to explore the CSC features 
of KIRP and find prognostic markers and therapeutic tar-
gets for KIRP patients.

In our study, we identified six prognostic SRGs and 
developed a prediction model that had high reliability 
(AUC: 0.861). The risk score was shown to be an inde-
pendent prognostic predictor for patients with KIRP. 
Additionally, we used Pearson correlation analysis to 
evaluate SRGs along with corresponding TFs and sig-
naling pathways, in which we discovered that the CBX2 
and Notch signaling pathways were most correlated with 
ASPH. In the meantime, resveratrol was proven to be the 

Table 1 Baseline characteristics of 141 patients diagnosed with 
KIRP
Variables Total patients (N = 141)
Age, years
Mean ± SD 59.84 ± 12.33
Median (Range) 60.00(28.00–85.00)
Survival month
Mean ± SD 975.33 ± 797.26
Median (Range) 740.00 (3.00–3950.00)
Clinical Stage
Stage I 92 (65.25%)
Stage II 16 (11.35%)
Stage III 23 (16.31%)
Stage IV 10 (7.09%)
Clinical T
T1 98 (69.50%)
T2 20 (14.18%)
T3 25 (17.73%)
T4 1 (0.71%)
Clinical N
N1 122 (86.52%)
N2 18 (12.77%)
N3 1(0.71%)
Clinical M
M1 132 (93.62%)
M2 9 (6.38%)
Abbreviations SD, standard deviation; KIRP, kidney renal papillary carcinoma

https://clue.io/
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Fig. 2 The mRNAsi of the KIRP samples, the results of differential gene expression analysis between high- and low-mRNAsi samples in KIRP, and functional 
enrichment analysis. (A) The mRNAsi summary of all samples, which was calculated through OCLR. (B) The heatmap of the differential expressed genes 
between high- and low-mRNAsi samples. (C) The volcano plot of the DEGs. (D) The bubble plot of GO analysis in BP and MF. (E) The bubble plot of KEGG 
pathways enrichment analysis. Abbreviations: mRNAsi, mRNA expression-based stemness index; KIRP, kidney renal papillary carcinoma; OCLR, one-class 
logistic regression machine learning; DEG, differentially expressed genes; BP, biological process; MF, molecular function.
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most significant potential inhibitor targeting KIRP, which 
would be of tremendous use in the treatment of KIRP 
patients.

Chromobox homolog 2 (CBX2), a polycomb repressor 
complex subunit, was known to be a significant com-
ponent of Polycomb group (PcG)-mediated repression 
[29]. In particular, CBX2 assisted polycomb-repressive 
complex 1 (PRC1) in targeting chromatin by recogniz-
ing the repressive mark H3K27me3 [30]. Previous studies 

revealed that elevated expression of CBX2 was associ-
ated with unfavorable survival through retaining CSCs in 
an undifferentiated state and inhibiting tumor suppres-
sors [30]. What’s more, mounting evidences suggested 
that CBX2 could block differentiation and promote 
self-renewal of CSCs, thus playing an important part 
in tumor initiation and development [31]. For example, 
CBX2 could drive a cancer stem cell-like phenotype in 
HCC revealed by multi-omics and multi-cohorts [32]. 

Fig. 3 Weighted gene co-expression network analysis for the clinical phenotypes and the DEGs. (A) Samples dendrogram and trait heatmap. (B) Cluster-
ing of module eigengenes and cluster dendrogram identified different modules (black, yellow, blue, turquoise, magenta, red, pink, brown, green, and 
gray). (C) Pearson correlation analysis between the gene module and 50 hallmarks of cancer and mRNAsi. The correlation coefficient and corresponding 
P value are annotated. (D) Scatter plot of module eigengenes in the pink module for mRNAsi. Abbreviations: DEG, differentially expressed genes; mRNAsi, 
mRNA expression-based stemness index.
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Similar to our study, there is increasing evidence that 
overexpression and amplification of CBX2 were substan-
tially related to proliferation, metastasis and poor prog-
nosis in a variety of cancers [33–36]. In hepatoma, an 
obvious high expression of CBX2 is regarded as an inde-
pendent poor prognostic factor, and down-regulation of 
CBX2 expression inhibits the development of liver cancer 
[37]. Additionally, CBX2 expression in cancer tissues was 

higher than normal tissues and escalated CBX2 expres-
sion was significantly correlated with tumor size, lymph 
node metastasis, and high TNM stage [29]. Furthermore, 
Jangal, M. et al. found that inhibiting CBX2 was a prom-
ising method to target polycomb complexes in the CSC 
niche [30].

Aspartate β-hydroxylase (ASPH), a type II trans-
membrane protein that is approximately 86  kDa, was 

Fig. 4 The SRGs of the pink module and the univariate Cox regression analysis. (A) The heatmap of the SRGs in the primary and metastatic samples. (B) 
The volcano plot of the SRGs. (C) Univariate Cox regression analysis identified the prognostic SRGs, which was visualize by the forest map. Abbreviations: 
SRGs, stemness-related genes.
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identified as a part of the family of α- ketoglutarate-
dependent dioxygenases [38]. The human ASPH gene 
lies in q12.3 of chromosome 8 and consists of 214,085 
base pairs and 33 exons, which is highly conserved in 
the evolution of mammals [38]. The entire ASPH is com-
posed of five domains, including a C-terminal catalytic 

domain, a calcium binding domain, a positively charged 
luminal domain, a universal transmembrane domain, 
and an N-terminal cytoplasmic domain [39]. According 
to the previous study, ASPH catalyzed the hydroxylation 
of aspartyl and asparaginyl residues of epidermal growth 
factor (EGF)-like domains that exist in various proteins, 

Fig. 5 Model diagnosis of our prognostic model, and multivariate Cox regression analysis helped identify the independent prognostic value of the risk 
score. (A) The risk scatter of all samples and the overall survival profiles of all KIRP patients. (B) The risk score curve of all KIRP patients. (C) The ROC curve 
for evaluating the reliability of the predictive model. (D) The K-M survival analysis validated significantly different survival probability for the patients with 
low risk score and high risk score. (E) The univariate Cox regression analysis of risk score, age and TNM stage. (F) The multivariate Cox regression analysis 
of risk score, age and TNM stage. Abbreviations: KIRP, kidney renal papillary carcinoma; ROC, receiver operator characteristic curve.
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Fig. 6 Pearson correlation analysis identified the significant correlation among significant TFs, SRGs and signaling pathways, on the basis of which we 
built a regulatory network. (A) The heatmap of the significant TFs (CBX2, CDX2, FOXA2, KLF4, NANOG, NCAPG, and TFAP2A). (B) The volcano plot of the 
significant TFs. (C) The Venn plot demonstrated that 8 signaling pathways were significant in both sets. (D) The regulatory network of significant TFs, SRGs 
and signaling pathways. (E) The heatmap of the correlation factor among significant TFs, SRGs and signaling pathways. Abbreviations: TF, transcription 
factor; SRG, stemness-related genes.
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Fig. 7 The Cmap analysis of special inhibitors targeting the KIRP. (A) The heatmap of potential candidate drugs across cancers. (B) The chemical structures 
details of resveratrol. Abbreviations: Cmap, Connectivity map; KIRP, kidney renal papillary cell carcinoma.
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Fig. 8 ATAC-seq and ChIP-seq validation (A) ATAC-seq helped validate the chromatin accessibility at the location of CXB2. (B) ATAC-seq helped val-
idate the chromatin accessibility at the location of ASPH. (C) Bnding peaks of CXB2 were found in ASPH sequence (GRCh38/hg38, chromosome 8: 
61,498,556 − 61,716,592) in two ChIP-seq samples, and the binding motifs of CXB2 were predicted Abbreviations: ATAC-seq, Assay for Transposase-Acces-
sible Chromatin Sequencing; ChIP-seq, Chromatin Immunoprecipitation Sequencing.
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Fig. 9 (See legend on next page.)
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Notch receptors and ligands included [40]. Additionally, 
it was revealed that the overexpression of ASPH had been 
found in 70–90% of human solid tumors and that ASPH 
played a significant role in the malignant transformation 
of solid tumors via promoting proliferation, migration, 
and invasion of cancer cells [38]. It was worth mention-
ing that ASPH expression was relatively low or negli-
gible in normal adult tissues but very high in a number 
of malignancies, including HCC, cholangiocarcinoma, 
lung, breast, and colon cancer, plus the neoplasms of the 
nervous system [38, 40]. Besides, ASPH was also over-
expressed in pancreatic cancer and played an active part 
in the regulation of pancreatic cancer cells’ proliferation, 
migration, and invasion by a variety of signaling pathways 
[40]. What’s more, in HCC, over-expression of ASPH also 
resulted in its invasiveness and augmented hydroxylase 
activity of tumor tissues was associated with unfavor-
able prognoses of patients with HCC [41]. Therefore, we 
could draw the conclusion that ASPH might be regarded 
as a potential prognostic marker in cancer detection [42]. 
Moreover, ASPH was found to be a potential target for 
cancer therapy [43] and immunotherapy [44].

In order to further research the deep mechanism of 
ASPH regulating the development of cancer, we found 
that the Notch signaling pathway was the overlapped 
co-expression signal pathway. The Notch signaling path-
way was a primordial and remarkably conserved pathway 
which was related to the communication between con-
tiguous cells through transmembrane ligands and Notch 
proteins, the single-pass cell surface receptors [38, 45]. 
As was known to us, the Notch signaling pathway had 
diverse functions, such as governing embryonic develop-
ment, the regulation of cell proliferation, differentiation, 
survival, and apoptosis [40, 46]. What’s more, the Notch 
signaling pathway also played an active part in the main-
tenance and self-renewal of stem cells [38].

In recent years, there was increasing evidence that 
aberrant activation of Notch was involved in the tumor 
process and inducement of cell proliferation, metastasis, 
and epithelial-mesenchymal transition in many differ-
ent solid tumors, which also had translational medical 
significance [47–50]. Meanwhile, persistent activation of 
the Notch signaling pathway had been shown to correlate 
with multiple aspects of cancer biology, such as CSCs, 
angiogenesis, tumor immunity, and cancer metastasis [45, 
46]. When it came to the mechanism between ASPH and 

the Notch signaling pathway, previous studies revealed 
that upregulation of ASPH led to enzymatic modifi-
cation of cbEGF-like repeats in extracellular domains 
and ligands of the Notch receptor, which enhanced the 
interaction between the receptor and ligands, as well as 
the activation of the Notch signaling pathway [38]. For 
instance, ASPH promoted the interaction between Notch 
and JAG to keep Notch receptors, ligands, and regula-
tors stable and strengthened ligand-receptor binding, 
which confirmed that ASPH-Notch axis was critical in 
carcinogenesis in breast cancer [51]. Furthermore, the 
ASPH-notch Axis could intricately orchestrate the exo-
somal transport of prometastatic secretome, thereby 
facilitating multi-organ metastasis in breast cancer [52]. 
Additionally, studies had shown that ASPH acted as an 
intermediate protein that linked upstream growth factor 
signal cascades with downstream Notch activation, and 
the activation of the Notch signaling pathway promoted 
migration, invasion, and metastases in HCC [53]. In gen-
eral, ASPH could facilitate tumor growth mainly through 
the activation of the Notch signaling pathway, so it’s pos-
sible to block the self-renewal and proliferation of CSC 
and tumor progression by targeting the Notch signaling 
pathway [45].

In our study, resveratrol was identified as a poten-
tial target drug. Resveratrol, a phytoalexin antioxidant 
detected in red grapes, was confirmed to play an impor-
tant part in suppressing various human malignancies, 
including breast, cervical, uterine, blood, kidney, liver, 
eye, bladder, thyroid, esophageal, prostate, brain, lung, 
skin, gastric, colon, head and neck, bone, ovarian, and 
cervical cancers [54]. Furthermore, mounting evidence 
suggested that resveratrol affected diverse signal-trans-
duction pathways that controlled inflammation, cell 
growth and division, apoptosis, metastasis, and angio-
genesis and played a critical part in affecting various can-
cer stages, such as initiation, promotion, and progression 
[55]. In cervical cancers, resveratrol could concurrently 
inhibit STAT3, Wnt, and Notch signaling activations, 
leading to the growth arrest and apoptosis of cervical 
squamous cell carcinoma and adenocarcinoma cells [56]. 
In human T-cell acute lymphoblastic leukemia, resvera-
trol triggered apoptosis through suppressing the Notch 
signaling pathway along with the downstream effec-
tors and regulating the operation of interacting apop-
tosis pathways, which were mediated by p53 and PI3K/

(See figure on previous page.)
Fig. 9 scRNA-seq validation. (A) tSNE dimension reduction analysis for 14 samples. (B) tSNE dimension reduction analysis displayed 32 seurat clusters 
(cluster 0–31) and six bulk labels (B cells, endothelial cells, epithelial cells, fibroblasts, myeloid cells, and NK/T cells). (C) Bar plots demonstrated average 
number (left) and cell proportion (right) of the six types of cells in these samples. (D) Cleveland dot plot visualized average expression levels of four classic 
marker genes CD24, CD44, PROM1, and MKI67 in the six types of cells. (E) Expression feature plots revealed the marker genes for cell annotation of the six 
types of cells. (F) Point plot showed marker genes (adjusted P < 0.05) of the 32 clusters as Up_Highly (adjusted P < 0.01), Down_Highly (adjusted P < 0.01), 
Up_Lowly (adjusted P < 0.05), and Down_Lowly (adjusted P < 0.05) in a color-coded way. (G) Differential expression heatmap illustrated the top five DEGs 
of the six types of cells. (H) Expression feature plots revealing expression of ASPH, CBX2, NOTCH3, HDAC6, HDAC11, MAML1, and NCSTN in the six types 
of cells. Abbreviations: scRNA-seq, single-cell RNA-sequencing; tSNE, t-distributed stochastic neighbor embedding; DEG, differentially expressed genes.
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Akt [57]. On the contrary, some research revealed that 
resveratrol repressed cell growth and enhanced rediffer-
entiation of anaplastic thyroid carcinoma cells through 
the activation of Notch1 signaling [58]. The mechanisms 
of Notch signaling regulated by resveratrol appeared to 
be contradictory, but the comprehensive mechanisms 
revealed that the effects of resveratrol on the Notch sig-
naling pathway were context-dependent. Notch signal-
ing was effectively inhibited by resveratrol when it was 
oncogenic, but it was activated when it acted towards 
tumor-suppression [59]. Generally speaking, resveratrol 
inhibited cancer cell growth via a variety of important 
pathways and could be regarded as a promising anti-can-
cer agent in the future.

Our investigation nevertheless had several inevita-
ble limitations. Firstly, this was merely bioinformatics 
research, no direct mechanism experiments had previ-
ously proven the scientific hypothesis. Secondly, despite 
the external validation performed by multiple databases, 
the clinicopathological feature analysis of the data was 
incomplete and the sample size was limited. Thirdly, 
potential statistical bias was unavoidable because of the 
heterogeneity of data from different batches. Finally, the 
only single omics analysis was an intrinsic restriction to 
our work. However, based on this scientific hypothesis, 
hopefully we will perform further cell and animal experi-
ments to verify the direct mechanism. Furthermore, 
the relationship between CBX2, ASPH, Notch signaling 
pathway, and KIRP tumorigenesis and development will 
be clarified in the future. These biological experiment 
assays might contribute to identifying novel prognostic 
factors and potential therapeutic targets in KIRP.

Conclusions
According to our comprehensive bioinformatics results, 
we hypothesized that transcription factor CBX2 regu-
lated ASPH may well be correlated with the carcinogen-
esis, cancer development, and unfavorable prognosis of 
KIRP through activation of Notch signaling pathway.
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