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Abstract
Background Emerging investigations have increasingly highlighted the critical role of tumor-associated 
macrophages (TAMs) and M2 macrophages in cancer development, progression, and metastasis, marking them as 
potential targets in various cancer types. The main objective of this research is to discover new biomarkers associated 
with TAM-M2 macrophages in colorectal cancer (CRC) and to dissect the molecular heterogeneity of CRC by 
combining single-cell RNA sequencing and bulk RNA-seq data.

Methods By utilizing weighted gene co-expression network analysis (WGCNA), we acquired TAM-M2-associated 
genes by intersecting TAM marker genes obtained from scRNA-seq data with module genes of M2 macrophages 
derived from bulk RNA-seq data. We employed least absolute shrinkage and selection operator (LASSO) Cox analysis 
to select predictive biomarkers from these TAM-M2-related genes. Quantitative polymerase chain reaction (qPCR) 
was employed to validate the mRNA expression levels of the genes identified in the screening. This led to the 
development of the TAM-M2-related signature (TAMM2RS). We also conducted functional and immune landscape 
analyses of different risk groups.

Results The combination of scRNA-seq and bulk RNA-seq analyses yielded 377 TAM-M2-related genes. DAPK1, NAGK, 
and TRAF1 emerged as key prognostic genes in CRC, which were identified through LASSO Cox analysis. Utilizing 
these genes, we constructed and validated the TAMM2RS, demonstrating its effectiveness in predicting survival in 
CRC patients.

Conclusion Our research offers a thorough investigation into the molecular mechanisms associated with TAM-
M2 macrophages in CRC and unveils potential therapeutic targets, offering new insights for treatment strategies in 
colorectal cancer.
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Background
Colorectal cancer (CRC) remains a major global health 
concern, with an estimated 2 million new diagnoses and 
approximately 900,000 deaths in 2020 [1]. Moreover, 
CRC’s diverse clinical and molecular profiles exhibit 
marked differences in tumor progression and therapeu-
tic responsiveness [2]. However, the pathogenic pathways 
driving CRC, though intricate, remain only partially elu-
cidated. Hence, this situation highlights an exigent need 
for comprehensive investigation endeavors and the devel-
opment of novel signatures to refine our predictive capa-
bilities for CRC patient outcomes.

Myeloid cells emerge as a dominant immune sub-
set within TME, involved in a spectrum of roles from 
immunosuppressive to immunostimulatory activities 
[3]. Notably, tumor-associated macrophages (TAMs) 
delineate a dynamic subpopulation, displaying a plas-
ticity that enables phenotypic transitions contingent 
on TME cues [3]. The traditional dichotomy of mac-
rophages into pro-inflammatory M1 and pro-tumoral 
M2 subsets has undergone a foundational shift [4–6]. 
Advances in single-cell RNA sequencing (scRNA-Seq) 
technologies have illuminated a more delicate macro-
phage spectrum, revealing overlapping transcriptional 
gene expression profiles between M1 and M2 entities 
[7–9]. While TAMs are conspicuously absent under 
normal physiological conditions, their presence in 
various tumors has prompted reconsideration of their 
classification. Intriguingly, while TAMs exhibit charac-
teristics reminiscent of both M1 and M2 polarization, 
their operational functionalities mirror M2 macro-
phages [10]. Their pivotal roles in modulating TME 
immune landscapes, predominantly through immune 
suppression and facilitation of tumor immune eva-
sion, accentuate their significance [11]. Furthermore, 
the paramountcy of TAMs in the TME crystallizes 
their potential as therapeutic targets, underscoring the 
imperative for in-depth insights into TAM-M2-medi-
ated CRC pathogenesis and the consequent develop-
ment of associated prognostic signatures.

Here, we collaboratively employ the scRNA-seq and 
bulk RNA-seq datasets to delineate the molecular het-
erogeneity of CRC based on marker genes of M2-TAMs. 
Then, we introduced a TAM-M2-related signature 
(TAMM2RS) for CRC. The integrative approach is illus-
trated in Fig. 1.

Methods
Data curation
The single-cell data (GSE132465) were obtained from 
the Gene Expression Omnibus (GEO) database. The bulk 
RNA-seq data (including clinical data) were retrieved 
from The Cancer Genome Atlas (TCGA-CRC, n = 612) 
and GEO (GSE39582, n = 585) repositories.

Analyses of macrophage infiltration
Utilizing the CIBERSORT method, we evaluated the infil-
tration of M2 macrophages across TCGA-CRC samples. 
The optimal threshold for distinguishing high and low 
infiltration of M2 macrophages was established by the 
survminer package. Employing the survival package, we 
analyzed survival differences between sub-groups speci-
fied by high and low M1/M2 macrophage infiltration. By 
stratifying CRC specimens into categories based on their 
M2 macrophage infiltration (high or low), we conducted 
the Weighted Gene Co-expression Network Analysis 
(WGCNA) [12]. The objective of this analysis was to 
identify genes closely associated with M2 macrophage 
infiltration. We performed a clustering of the samples to 
evaluate their collective significance within the dataset, 
while excluding any outliers. Guided by the point where 
the scale-free topology fit index showed a substantial 
value, the selection of the soft-thresholding power β was 
determined at the minimum power. We set the minimum 
threshold for genes per module at 60.

ScRNA-seq data processing
We conducted the processing of the scRNA-seq data-
set using Seurat package (version 4.3.0) [13]. The quality 
control criteria: preserving cells that have more than 300 
identified genes and genes expressed in over three cells; 
excluding cells with > 20% mitochondrial gene expres-
sion. After cell filtration, normalization of the high-
quality cellular data was performed, identifying highly 
variable genes pivotal for subsequent steps. Principal 
component analysis (PCA) was then applied to these 
genes to determine key principal components (PCs). For 
the visualization of cell clusters, we employed the Uni-
form Manifold Approximation and Projection (UMAP) 
method. Following this, the FindAllMarkers function was 
instrumental in identifying marker genes specific to each 
cluster. Each cell type was subsequently annotated, draw-
ing references from the CellMarker 2.0 database (http://
bio-bigdata.hrbmu.edu.cn/CellMarker/). The Feature-
Heatmap function was employed to illustrate the distinc-
tiveness of each cell type and its corresponding biological 
processes.

Intersection of TAM and M2 macrophage associated genes
We executed correlation assessments between modules 
and specific traits to identify modules that significantly 
correlate with high M2 macrophage infiltration. Subse-
quently, the genes within these identified modules were 
cross-referenced with TAM marker genes, which were 
derived from scRNA-seq data analyses.

Consensus clustering
Initially, we conducted a Cox regression analysis to iden-
tify TAM-M2 genes with potential prognostic value, 

http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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which were then used for consensus clustering analy-
sis utilizing the ConsensusClusterPlus package [14]. 
The optimal cluster count was ascertained by examin-
ing the cumulative distribution function (CDF) and its 
delta area. The prognostic relevance of our clustering 
was corroborated by constructing K-M survival curves, 
using the survminer package. Furthermore, we employed 
the limma package to identify differentially expressed 
genes (DEGs) across clusters, focusing on those with an 
absolute log fold change (|logFC|) > 1 and an adjusted 
P-value < 0.05 [15].

Functional analyses
The DEGs identified were subsequently incorporated into 
a Gene Ontology (GO) functional analysis. Following 
this, we presented a comprehensive heatmap to depict 
the expression patterns and clinicopathological features 
of screened genes across the various clusters. Moreover, 
to elucidate the distinct biological profiles, we employed 

the GSVA (Gene Set Variation Analysis) package [16]. 
This approach facilitated a precise assessment of the 
unique biological attributes inherent to each identified 
cluster.

Immune landscape
To illustrate the abundance of 23 different types of 
immune cells across distinct clusters and explore the 
TME, we performed CIBERSORT and then employed 
the ggplot2 package for visualization [17]. Furthermore, 
to uncover potential targets for CRC immunotherapy, 
we examined the variability in expression of human leu-
kocyte antigen (HLA) and immune checkpoint inhibitor 
(ICI) genes across the clusters.

Construction of TAMM2RS
We employed Cox regression analyses using the glm-
net package on genes that were common to both TAM 
from scRNA-seq data and M2 macrophages from bulk 

Fig. 1 Workflow of the study
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RNA-seq data, with the aim of identifying prognostic 
genes. Following this, we employed LASSO Cox regres-
sion analysis to ascertain the coefficients of each gene 
that held predictive value. Based on these coefficients, 
risk scores were computed:

 
Riskscore =

∑n

i=1
(coefi ∗ expi)

Based on median risk score, CRC samples were catego-
rized into either a low-risk group (LRG) or a high-risk 
group (HRG). This categorization enabled the genera-
tion of K-M curves, which were used to underscore the 
survival differences between the risk groups. To further 
corroborate the robustness of this risk signature, the 
GSE39582 dataset was included to form an external vali-
dation cohort.

Moreover, the variation in clinicopathological fea-
tures was delineated using the ggplot2 package. Fur-
thermore, the survival disparities between the HRG 
and LRG were stratified and analyzed in the context of 
age, gender, and clinical stage.

GSEA
Utilizing the clusterProfiler package, we conducted gene 
set enrichment analysis (GSEA) to investigate the path-
ways that are predominantly enriched in HRG [18, 19]. 
These pathways were ordered based on their normalized 
enrichment scores, and the most significant pathways 
were selected for detailed visualization.

Immune infiltration analysis
We employed the Estimation of Stromal and Immune 
cells in Malignant Tumor tissues using Expression data 
(ESTIMATE) analysis to assess immune cell infiltration. 
This approach quantified stromal and immune scores, as 
well as the overall ESTIMATE scores, within the tumor 
microenvironment. Moreover, we utilized several algo-
rithms to evaluate the correlation between risk score and 
macrophage infiltration.

Prediction of immunotherapy response
We sourced immunophenotype data from The Cancer 
Immunome Atlas to predict how CRC samples would 
respond to immunotherapy treatments. This data was 
utilized to compute the immunophenoscore (IPS) for 
each sample.

Cell culture
Human CRC cell line HCT116 (CL-0096) was obtained 
from Procell Life Science & Technology (China), while 
the NCM460 (iCell-h373) cell line, representing nor-
mal colonic epithelial cells, was acquired from Cell-
verse (China). HCT116 cells were propagated in DMEM 
(C11995500BT, Gibco, USA), and NCM460 cells were 
cultivated in RPMI 1640 medium (10-040-CV, Corning, 
USA). Both media were fortified with 10% fetal bovine 
serum (FBS; C0235, Gibco, USA) and a combination of 
100 U/ml penicillin and 100 µg/ml streptomycin (C0222, 
Beyotime, China). Cell cultures were incubated at 37  °C 
in a humidified incubator with a 5% CO2 atmosphere.

Quantitative polymerase chain reaction (qPCR)
qPCR was employed to quantify mRNA expression lev-
els utilizing the EZBioscience™ PCR array (EZBioscience, 
Roseville, CA, USA). Gene expression quantification was 
conducted applying the comparative 2^(-ΔΔCt) method, 
normalizing to GAPDH as the endogenous control. This 
analysis was independently replicated on three separate 
occasions. Primer sequences utilized for amplification 
are detailed in Table 1.

Immunohistochemistry (IHC) analysis
We verified the protein expression profiles of both nor-
mal and CRC samples through the Human Protein Atlas 
(HPA) database.

Anti-cancer drugs prediction
Utilizing the oncoPredict package, our study assessed the 
anticancer effectiveness by gauging drug sensitivity in 
CRC patients [20].

Statistical analyses
R software (version 4.3.1) was employed to conduct the 
statistical analyses. Survival time distributions were esti-
mated via the K-M method. The Wilcoxon test was uti-
lized to compare two cohorts, while the Kruskal-Wallis 
test was carried out to examine differences among multi-
ple groups. Statistical significance was indicated by estab-
lishing a P-value threshold below 0.05.

Results
Acquisition of genes related to M2 macrophages
Our investigation sought to elucidate the prognos-
tic impact of macrophages in CRC. Patients from the 
TCGA-CRC dataset were stratified into groups with 
high or low M2 macrophage infiltration via CIBER-
SORT method. Survival analysis using the K-M approach 
revealed that patients characterized by a high infiltra-
tion of M2 macrophages exhibited reduced survival rates 
(Fig. 2A). This finding implicates M2 macrophages as sig-
nificant prognostic factors in CRC. Subsequent WGCNA 

Table 1 Primers of qPCR
Primer Forward (5’ to 3’) Reverse (5’ to 3’)
NAGK  C A C T A T T T C C A G G T G C C A G  G A A G A T A T A G C G G G A A A G G G
DAPK1  C A T C A A G A A C C G A G A A G G A G  C A A T G T G T C C G T C C T T G T C
TRAF1  A A A G A G A A C C C A T C T G T C G  A T G A A G G T G A C C T T G T T C C
GAPDH  T C A A G A T C A T C A G C A A T G C C  C G A T A C C A A A G T T G T C A T G G A



Page 5 of 13Shi et al. BMC Medical Genomics          (2024) 17:145 

identified gene modules associated with M2 macrophage 
levels in CRC, with 11 modules emerging from the anal-
ysis (Fig.  2B, Figure S1). From these, the black module, 
containing 1,158 genes, was chosen for further analysis 
(Table S1).

Identifying TAM marker genes
We analyzed the scRNA-seq data to identify TAM 
marker genes in CRC, with the objective of mapping the 
composition of the TME. After rigorous quality control 
and data normalization, a cohort of 63,252 cells from 
23 CRC specimens was curated for subsequent analysis. 
Utilizing the FindNeighbors and FindClusters functions, 
we classified the cells into 39 distinct clusters (Figure S2). 
These clusters were subsequently annotated with cell 
type identities using the CellMarker 2.0 database, iden-
tifying diverse cellular populations including Epithelial 
cells, Plasma cells, T cells, Endothelial cells, Stromal cells, 
B cells, Mast cells, and Myeloids (Fig. 3A). Further refine-
ment of the myeloid population allowed us to re-cluster 
these cells into 9 distinct clusters, which were catego-
rized as TAMs and macrophages based on extant litera-
ture (Fig. 3B). 3,083 marker genes characteristic of TAMs 
were thus elucidated (Fig. 3C, Table S2). Additionally, the 
distribution and expression of marker genes for each cell 
type were illustrated in Fig. 3D.

Furthermore, we employed a heatmap for the valida-
tion of our annotation outcomes, which delineates the 
array of enriched biological processes alongside each 
cellular annotation, as illustrated in the rightmost col-
umn (Fig. 4).

Determination of TAM-M2-mediated clusters
Upon merging the gene sets pertaining to M2 macro-
phages with TAM marker genes, we retrieved a total 

of 377 genes associated with TAM-M2 macrophages 
(Fig. 5A, Table S3). To elucidate the TAM-M2-mediated 
heterogeneity within CRC, we applied consensus cluster-
ing to stratify the TCGA-CRC dataset into two principal 
clusters based on the expression profiles of TAM-M2-re-
lated genes (Fig. 5B–D). Notably, patients classified under 
cluster C2 were observed to have an adverse prognosis 
relative to those in cluster C1 (Fig. 5E).

Additionally, we incorporated the DEGs from clusters 
C1 and C2 into GO enrichment analysis. The findings 
revealed that these DEGs were predominantly enriched 
in biological processes related to ossification, regula-
tion of vascular development, angiogenesis, extracellular 
matrix organization, and macrophage activation (Fig. 5F). 
Furthermore, we generated a heatmap to portray the dis-
tribution of significant genes identified by univariate Cox 
analysis and the differential clinicopathological features 
between clusters C1 and C2 (Fig. 5G).

GSVA
The findings from GSVA revealed a pronounced enrich-
ment of C2 in several key biological processes, including 
natural killer cell chemotaxis, Toll-like receptor 7 signal-
ing pathway, regulation of monocyte chemotaxis, mac-
rophage cytokine production, macrophage activation 
and response to macrophage colony-stimulating factor 
(Fig. 6A).

Immune analysis
The analysis using CIBERSORT demonstrated a notable 
infiltration of a majority of the 23 immune cell types in 
C2 (Fig.  6B). Following this, the expression patterns of 
ICI- and HLA-related genes were comparatively analyzed 
across the two clusters. The expression of genes related 

Fig. 2 Identification of M2 macrophage-related genes. (A) The group with high infiltration of M2 macrophages exhibited a worse prognosis. (B) WGCNA 
was utilized to identify M2 macrophage-related modular genes. WGCNA, weighted gene co-expression network analysis
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to ICI and HLA exhibited distinctive patterns across the 
two clusters. (Figs. 6C, D).

Construction of TAMM2RS
Utilizing the intersecting genes, we first applied uni-
variate Cox regression analysis to screened genes of sig-
nificant prognostic importance (Fig.  7A). Subsequently, 
these genes were incorporated into a LASSO Cox 

regression analysis. Through this process, we identified 
three key genes - DAPK1, NAGK, and TRAF1 - for the 
construction of the TAMM2RS (Fig. 7B, C, Table S4). The 
TCGA-CRC dataset was utilized as the training set, while 
the GSE39582 served as the validation set for external 
verification. K-M survival analysis across these cohorts 
indicated a less favorable outcome for the HRG (Fig. 7D, 
E). Additionally, Fig. 7F-K illustrated the variance in gene 

Fig. 4 Heatmap displaying marker genes and biological processes for each cell type

 

Fig. 3 ScRNA-seq processing. (A) Cell annotation. (B) Myeloids was re-clustered and annotated. (C) Identification of TAM marker genes. (D) Distribution 
and expression of marker genes. TAM, tumor-associated macrophage
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expression, risk scores, and survival statuses for both the 
training and external validation sets.

Additionally, we performed a sub-stratification 
analysis comparing the HRG and LRG. This analy-
sis revealed a slight predominance of older age and 
advanced tumor stages within the HRG (Fig.  8A-E). 
K-M survival analysis further elucidated that patients 
in the HRG had a less favorable prognosis across both 
age groups (≤ 65 years and > 65 years) and in both gen-
ders (male and female), as shown in Fig.  8F and G. 
Notably, there was a significant prognostic difference 
in stages III-IV between HRG and LRG, whereas no 
such difference was apparent in stages I-II (Fig. 8H).

Functional analyses between HRG and LRG
GSVA disclosed that the HRG exhibited enrichment in 
several biological processes, notably T helper 1 cell differ-
entiation, positive regulation of monocyte differentiation, 
response to macrophage colony-stimulating factor and 
regulation of monocyte differentiation (Fig. 9A). Further-
more, GSEA highlighted that the HRG predominantly 
showed enrichment in pathways related to cell adhesion 
molecules (CAMs), T cell receptor signaling pathway, 
cytokine-cytokine receptor interaction and chemokine 
signaling pathway (Fig. 9B).

Fig. 5 Clustering. (A) Intersection of TAM marker genes and M2 macrophage-related modular genes. (B-D) Unsupervised consensus clustering. (E) K-M 
survival analysis between C1 and C2. (F) GO analysis for DEGs between C1 and C2. (G) Distribution of clinical features and expression of prognostic DEGs. 
GO, Gene Ontology; DEGs, differentially expressed genes
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Immune investigations between HRG and LRG
The findings from ESTIMATE analyses revealed that, 
compared to the LRG, the HRG consistently showed 
higher scores in immune, stromal, and overall ESTI-
MATE scores, suggesting significant distinctions in the 
TME (Fig.  9C). Moreover, the HRG was characterized 
by a marginally higher immune infiltration relative to 
the LRG (Fig. 9D). To further investigate the relationship 
between risk score and M2 macrophage infiltration, we 
applied four distinct algorithms – XCELL, QUANTISEQ, 
CIBERSORT-ABS, and CIBERSORT. These analyses con-
firmed a positive correlation between the infiltration of 
M2 macrophages and the risk score (Fig. 9E).

Further investigation revealed that C2 presented 
with a higher risk score compared to C1 (Fig. 10A). In 
the search of identifying prospective treatment targets, 
we found that the HRG was characterized by a reduced 
expression of genes related to both ICI and HLA 
(Fig.  10B, C). By contrast, the LRG patients demon-
strated a heightened IPS, suggesting potentially greater 
sensitivity to immunotherapies (Fig. 10D).

qPCR
Using qPCR, we were able to assess the relative expres-
sion levels of mRNA in CRC cells. The findings of this 

study revealed a notable upregulation of TRAF1 and 
DAPK1 expression in CRC cells (Fig. 11A).

IHC
For further validation, we consulted the HPA database, 
which corroborated the transcriptional patterns and 
supplemented them with protein expression data derived 
from IHC staining (Fig. 11B). Employing the oncoPredict 
algorithm, our analysis identified ten anticancer drugs 
(bortezomib, cediranib, gemcitabine, ibrutinib, irinote-
can, mitoxantrone, rapamycin, vincristine, vinorelbine, 
and zoledronate) with reduced IC50 levels in the HRG 
(Fig.  11C-L). This suggests a heightened likelihood of 
therapeutic efficacy for these drugs in patients classified 
within the HRG.

Discussion
CRC exhibits significant heterogeneity in clinicopatho-
logical and molecular profiles, influencing tumor pro-
gression and treatment responses [21]. TME interactions 
facilitate CRC progression via multiple pathways. TAMs 
play a pivotal role in tumor progression by mediating 
immunosuppression, extracellular matrix remodeling, 
and releasing growth factors [22]. TAMs also interact 
with various immune cells within the TME, aiding in 
immune suppression and facilitating tumor immune 

Fig. 6 Functional and immune analyses between C1 and C2. (A) Heatmap illustrating GSVA differences between C1 and C2. (B) Immune infiltration analy-
sis of 23 immune cells. (C-D) Difference in major ICI- and HLA-related genes between clusters. GSVA, gene set variation analysis; ICI, immune checkpoint 
inhibitor; HLA, human leukocyte antigen. *P < 0.05; **P < 0.01; ***P < 0.001
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evasion [11]. The critical role of TAMs in CRC progres-
sion has sparked interest in TAM-targeted therapeutic 
strategies [23, 24]. Advances in immunotherapy have led 
to significant progress in cancer treatment [25]. However, 
not all patients respond to immunotherapy, largely due 
to TME characteristics [26]. PD-1 inhibitors have been 
shown to target TAMs directly, enhancing their phago-
cytic abilities [27]. Specific TAM markers, like CD40, 
show promise for use in adoptive cell immunother-
apy [28]. Additionally, studies have demonstrated that 
CSF1R inhibitors can decrease TAM levels in the TME 
and induce macrophage repolarization towards the M1 
phenotype, offering considerable clinical potential [29]. 
Eliminating SPP1 + TAMs could improve the efficacy of 
myeloid-targeted immunotherapy or enhance outcomes 

when combined with ICI therapies [9]. Despite these 
advancements, research in CRC remains insufficient, and 
further detailed studies on TAMs’ role in CRC prognosis 
are urgently needed.

In this study, we utilized bulk RNA-seq data to explore 
the prognostic implications of M2 macrophage infiltra-
tion in TCGA-CRC samples. Our findings indicate that 
higher levels of M2 macrophage infiltration are linked to 
poorer outcomes in CRC, underscoring the pivotal role 
of M2 macrophages in the prognosis. Acknowledging the 
dual roles of M2 macrophages in immunosuppression 
and tumor promotion, our study involved an intersec-
tional analysis of M2 macrophage-associated genes from 
the TCGA-CRC dataset with TAM marker genes derived 
from scRNA-seq datasets [5, 6]. This integrative approach 

Fig. 7 Construction of TAMM2RS. (A) Univariate Cox analysis for screened genes. (B-C) LASSO Cox regression analysis. K-M survival analyses for TCGA-CRC 
cohort (D) and GSE39582 cohort (F). Distribution of gene expressions, risk scores and survival statuses for TCGA-CRC cohort (F-H) and GSE39582 cohort 
(I-K). TAMM2RS, tumor-associated macrophages and M2 macrophages related signature; LASSO, least absolute shrinkage and selection operator; TCGA, 
The Cancer Genome Atlas; CRC, colorectal cancer
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led to the discovery of 377 genes that are related to both 
M2 macrophages and TAMs. Subsequent univariate and 
LASSO Cox regression analyses facilitated the selection 
of three prognostic genes (DAPK1, NAGK, and TRAF1) 
for the construction of the TAMM2RS. DAPK1 is note-
worthy for its specificity in anal squamous cell carcinoma 
and potential as a molecular biomarker [30]. Methyla-
tion of DAPK1 correlates with nodal metastasis and is 
considered a significant risk factor in CRC plasma [31, 
32]. The DAPK1-ERK1 signaling axis is implicated in 
CRC metastatic progression, positioning DAPK1 as a key 
anti-metastatic factor and a prospective predictive bio-
marker [33]. Furthermore, inhibiting DAPK1 enhances 
cancer stem cell (CSC) stemness and the epithelial-mes-
enchymal transition (EMT) process, with the DAPK1-
ZEB1 axis potentially intersecting the TGF-β and WNT 

pathways and influencing both CSCs and EMT processes 
[34]. TRAF1, on the other hand, is targeted by miR-483, 
a suppressor in colorectal cancer that hampers cell prolif-
eration and migration [35]. Moreover, TRAF1 plays a role 
in the mobility and M1 polarization of macrophages, a 
process mediated by TNFSF9/TRAF1/p-AKT/IL-1β sig-
naling in response to F. nucleatum AI-2 [36]. This com-
prehensive analysis elucidates the multifaceted roles of 
these genes in CRC, providing valuable insights for future 
research and potential therapeutic strategies.

In the field of CRC research, there has been a growing 
interest in developing various risk assessment models. 
Zhang et al. focused on crucial lysosome-related genes 
integral to CRC, thereby establishing a correspond-
ing risk signature [37]. Similarly, Han and colleagues 
delved into adipogenesis-associated genes, creating a 

Fig. 8 Distribution of clinical features and survival analyses. (A-E) Distribution of different clinical features between HRG and LRG. K-M survival analyses 
for stratified by age (F), gender (G) and stage (H). HRG, high-risk group; LRG, low-risk group
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prognostic model while illuminating the immunoge-
nomic landscape of CRC [38]. In another vein, Huang et 
al. explored genes with prognostic significance from the 
angle of fatty acid metabolism, suggesting their potential 
relevance in immunotherapy strategies [39]. These stud-
ies collectively enhance the accuracy of CRC prognosis 
predictions through diverse methodologies, demonstrat-
ing their models’ effectiveness. Conventional bulk RNA-
seq methods provide an overall gene expression profile 
at the tissue level, yet fail to discriminate the transcrip-
tomic diversity of various cell types and their propor-
tions within these tissues. In a novel approach, our study 
integrates scRNA-seq data, which offers precise cell type 
identification and high-resolution expression profiles, 
with bulk RNA-seq data. This integration allowed us to 
pinpoint specific TAM-M2 prognostic biomarkers for 
CRC. To our knowledge, this is the first study to integrate 
these two data types for the purpose of identifying TAM-
M2-related genes and developing a risk signature in CRC. 
The identification of these signature genes opens new 
avenues for deeper comprehension and exploration in 
CRC research. Moreover, our discovered prognostic sig-
nature holds promise for enhancing the clinical manage-
ment of CRC patients.

Despite the encouraging outcomes of our research, it 
is important to acknowledge some inherent limitations. 
Firstly, the reliance on data sourced from public data-
bases could potentially limit the representativeness of 

Fig. 10 Prediction of response to immunotherapy. (A) In comparison to C1, C2 showed a higher risk score. (B-C) Difference in ICI- and HLA-related genes 
between clusters. (D) IPS score predicting immunotherapy response. ICI, immune checkpoint inhibitor; HLA, human leukocyte antigen; IPS, immunophe-
noscore. *P < 0.05; **P < 0.01; ***P < 0.001

 

Fig. 9 Functional and immune analyses between HRG and LRG. (A) Heat-
map depicting GSVA differences between C1 and C2. (B) GSEA for HRG. 
(C) ESTIMATE analysis. (D) Immune infiltration analysis of 23 immune cells. 
(E) Correlation between risk score and M2 macrophage infiltration. HRG, 
high-risk group; LRG, low-risk group; GSVA, gene set variation analysis; 
GSEA, gene set enrichment analysis; ESTIMATE, Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression data. *P < 0.05; 
**P < 0.01; ***P < 0.001
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our findings across the broader patient demographic. 
Secondly, our conclusions are predominantly based 
on bioinformatics analyses, underscoring the need for 
further validation through detailed studies of molecu-
lar mechanisms. Consequently, there is a compelling 
necessity for more comprehensive investigations to 
elucidate the intricate roles of TAM-M2-related genes 
in CRC.

Conclusion
In our study, we combined scRNA-seq and bulk RNA-
seq analyses to unveil the diverse landscape of CRC at 
both the individual cell and tissue levels, culminating in 
the development of the TAMM2RS. This approach sheds 
new light on the multifaceted nature of M2 macrophages 
and TAMs, contributing to a deeper understanding of the 

TME complexities. Furthermore, our research identifies 
potential therapeutic targets for CRC, offering novel ave-
nues for treatment strategies.
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