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Abstract
Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is a highly heterogeneous disease. According to large-scale 
RNA sequencing (RNA-seq) data, B-ALL patients can be divided into more than 10 subgroups. However, many 
genomic defects associated with resistance mechanisms have not yet been identified. As an individual clinical tool 
for molecular diagnostic risk classification, RNA-seq and gene expression pattern-based therapy could be potential 
upcoming strategies. In this study, we retrospectively analyzed the RNA-seq gene expression profiles of 45 children 
whose molecular diagnostic classifications were inconsistent with the response to chemotherapy. The relationship 
between the transcriptome and chemotherapy response was analyzed. Fusion gene identification was conducted 
for the included patients who did not have known high-risk associated fusion genes or gene mutations. The most 
frequently detected fusion gene pair in the high-risk group was the DHRSX duplication, which is a novel finding. 
Fusions involving ABL1, LMNB2, NFATC1, PAX5, and TTYH3 at onset were more frequently detected in the high-risk 
group, while fusions involving LFNG, TTYH3, and NFATC1 were frequently detected in the relapse group. According 
to the pathways involved, the underlying drug resistance mechanism is related to DNA methylation, autophagy, 
and protein metabolism. Overall, the implementation of an RNA-seq diagnostic system will identify activated 
markers associated with chemotherapy response, and guide future treatment adjustments.
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      Background
Acute lymphoblastic leukemia (ALL) is the most com-
mon malignant disease in children. A high remission rate 
has been achieved by multiple-drug chemotherapy as an 
introduction remission therapy for ALL [1]. However, 
approximately 10% of ALL patients fail to achieve remis-
sion, indicating a poor response to chemotherapy and a 
high risk of relapse and mortality [2]. ALL is also a highly 
heterogeneous disorder. In a previous large-scale RNA 
sequencing (RNA-seq) study, according to the transcrip-
tional landscape of B- ALL, B-ALL patients were divided 
into more than 10 subgroups with different fusion genes 
and known gene mutations, which can be used to pre-
dict patient prognosis and help risk stratification [3]. The 
underlying genomic defects and mysterious mechanisms 
of drug resistance are still unclear. Beyond cytogenetics 
and fluorescence in situ hybridization, gene expression 
profiling has revealed new cytogenetic subgroups that 
display specific gene expression patterns. RNA-seq is 
believed to be implemented within an individual clinical 
service to enhance the current molecular diagnostic risk 
classification of leukemia [4–7]. Gene expression pattern-
based therapy could be a potential upcoming strategy.

Unfortunately, even though we stratified ALL patients 
according to genomic information, we did not adjust the 
therapy greatly. Concerning those without the included 
fusion gene or known gene mutation, physicians cannot 
stratify ALL patients without access to the results of the 
morphology of the bone marrow or minimal residual dis-
ease (MRD) at the end of induction therapy [2, 8, 9].

In recent years, small-molecule targeted drugs have 
been proven effective in clinical trials, regulating a vari-
ety of signaling pathways by targeting signaling molecules 
that play a regulatory role in cell proliferation, differ-
entiation, and apoptosis [10–19]. For those with drug-
resistant ALL, further exploration of the gene expression 
patterns of leukemic cells and translation of gene‒gene 
interactions would be meaningful for gene expression 
pattern-based drug combination therapy development. 
Genome-wide association studies/transcriptome-wide 
association studies (GWASs/TWAS) of pharmacoge-
nomic/pharmacotranscriptomic markers can identify 
relevant markers regardless of whether their function 
was previously known [20], but these studies have low 
statistical power due to the number of independent tests 
performed. Fusion gene detection and transcriptome 
analysis are approaches for identifying candidate phar-
macogenetic/pharmacotranscript markers [21].

In this study, by retrospectively analyzing the clinical 
data on induction chemotherapy in the SCCLG-2016-
ALL collaborative group (ChiCTR2000030357) and the 
relationship between clinical data and gene expression 
profiles, we evaluated the possibility of developing a 
novel pattern of personalized combination therapy in a 

group of children with unexplained chemotherapy-poor 
ALL patients.

Methods
Patient characteristics
Forty-five children with common-B ALL were treated. 
Bone marrow samples from patients before chemother-
apy and when their disease met the criteria for remis-
sion according to the SCCLG-2016-ALL protocol were 
used as test samples and control samples, respectively. 
The risk classification of this protocol is provided in the 
supplementary information (SI 1). All patients under-
went molecular diagnostic analyses, including karyotype 
and FISH analysis for ETV6::RUNX1, BCR::ABL1, and 
KMT2A rearrangements. Our 45 samples represented a 
selected subset deliberately biased toward samples with-
out a positive molecular diagnostic classification, which 
explained the poor response to chemotherapy. The clini-
cal and cytogenetic characteristics of the cohort are 
shown in Table  1 and are inconsistent with the estab-
lished features of childhood ALL [3, 4].

The prednisone response was evaluated on Day 8 after 
induction by peripheral blood leukemic cell counts. MRD 
was assessed on Day 15 and Day 33 of induction by flow 
cytometry. The prednisone response test and MRD sta-
tus are shown in Table 1. The rates of positive MRD on 
Day 15 and Day 33 were higher than those in all ALL 
patients managed in our center, reflecting the selection 
of nonstandard patients. The included cohort comprised 
62.2% non-high-risk and 37.8% high-risk B-ALL patients. 
None of the included datasets were analyzed in previous 
publications.

Bone marrow/peripheral blood mononuclear cells were 
extracted, and total RNA was extracted for quality deter-
mination. After qualification, cDNA was synthesized by 
hybridization, and the original data were obtained by 
RNA sequencing. The original data were converted by 
statistical software for statistical analysis, and the differ-
ential expression profiles of mRNAs between the B-ALL 
patients and the bone marrow of patients in remis-
sion were obtained. Based on the NCBI Ref Seq, UCSC, 
RNAdb, and other database resources, bioinformatics 
analysis was conducted on the chip results, such as Gene 
Ontology and Pathways, and the gene network map of 
mRNA was established by calculating the Pearson corre-
lation coefficient.

Definitions
In this study, risk classification was based on the treat-
ment response to corticosteroids according to the pred-
nisone test and MRD level on Day 15 and Day 33. After 
seven days of prednisone, prednisone poor response 
(PPR) was defined as ≥ 1 × 109/L blasts in the periph-
eral blood. High risk (HR) (n = 17) was defined as poor 
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Characteristics Total
Gender, n(%)
 Male 22(48.9%)
 Female 23(51.1%)
Age(y), median(range) 4.6(1.4–14.9)
Age group(y)
 ≥ 1, < 10 37 (82.2%)
 ≥ 10 8(17.8%)
Initial WBC(×109/L), median(range) 12.42(0.49-197.59)
WBC group, n(%)
 < 10 × 109/L 18(40%)
 ≥ 10 × 109/L, < 50 × 109/L 18(40%)
 ≥ 50 × 109/L 9(20%)
Initial Hb(g/L), median(range) 69(38–125)
Hb group
 < 60 g/L 13(28.9%)
 ≥ 60 g/L, < 90 g/L 23(51.1%)
 ≥ 90 g/Lg/L 9(20%)
Initial PLT(×109/L), median(range) 57.0(4.0-290.0)
PLT group
 < 100 × 109/L 29(64.4%)
 ≥ 100, < 300 × 109/L 26(57.8%)
Risk group, n(%)
 Non-HR 28(62.2%)
 HR 17(37.8%)
Immunophenotype, n(%)
 Common-B 44(66.4%)
 Pre-B 1 (6.5%)
CNSL, n(%)
 Yes 0
 No 45(100%)
BCR::ABL1 Status, n(%)
 Negative 41(97.8%)
 Positive 4(2.2%)
KMT2A-r Status, n(%)
 Negative 45(100%)
 Positive 0
ETV6::RUNX1 Status, n(%)
 Negative 37(82.2%)
 Positive 8(17.8%)
Karyotype, n (%)
 Normal 25(55.6%)
 Abnormal 20(44.4%)
IKZF1 deletion, n (%)
 Yes 8(17.8%)
 No 37(82.2%)
P16 deletion, n (%)
 Yes 15(33.3%)
 No 30(66.7%)
RAS pathway gene mutation, n (%)
 Yes 13(28.9%)
 No 32(81.1%)
Prednisone Response, n (%)
 PGR 42(93.3%)

Table 1 Baseline Characteristics of Study Participants
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prednisone response (PPR), ≥ 10% MRD on Day 15, and 
≥ 0. 1% MRD on Day 33 or relapsed ALL. The remaining 
patients were defined as non-HRs (n = 28).

In the analysis of RNA-seq transcriptome data, we 
defined upregulated genes as genes whose expression 
increased twofold and whose Benjamini‒Hochberg 
adjusted p values were greater than those of the control, 
while downregulated genes were defined as genes whose 
expression decreased twofold and whose Benjamini‒
Hochberg adjusted p values were greater than those of 
the control.

RNA-seq
Patient blood and bone marrow samples were obtained 
from the Cancer Tissue Bank of Sun Yat-sen Memorial 
Hospital. The details of sample handling, RNA extrac-
tion, library preparation, and sequencing parameters are 
provided in the supplementary information (SI 2).

Fusion detection
RNA sequence fastq.gz files were aligned to the human 
genome (hg38) using STAR aligner (version 2.7.7a) in 
2-pass mode with a parsed version of the comprehensive 
GENCODE 38 annotation.36. The parameter details are 
provided in the supplemental materials. Detection of the 
fusion genes was performed using Arriba v1.1.0 (https://
github.com/suhrig/arriba/) with aligned bam files as 
the input data with default parameters. The visualiza-
tion of fusion genes was performed using circlize v0.4.13 
(https://github.com/jokergoo/circlize).

Gene expression analysis
RSEM (v1.3.3) was used to calculate the expression 
levels (reads count, TPM[transcripts per million], 
FPKM[fragments per kilobase of transcript per million 
fragments mapped]) of all the genes in each sample and 

to generate an expression matrix with the bam files gen-
erated in the Fusion detectionsection as the input data.

Gene expression classifier
Classification based on gene expression profiles (TPM 
values) for each sample was performed using Consensus-
ClusterPlus [22]. The 5,000 genes with the largest abso-
lute deviations among all samples were selected. The 
expression levels were normalized to the median. The 
parameter details of ConsensusClusterPlus are provided 
in the supplemental materials.

Differential expression analysis
Differential expression analysis was performed by 
DESeq2 v1.34.0 with a read count matrix as the input 
data. The significantly differentially expressed genes were 
defined as genes with adjusted p values less than 0.05 and 
twofold or greater differences in expression according to 
the DESeq2 results. Then, all significantly differentially 
expressed genes were annotated, and pathway analy-
sis was performed with ClusterProfiler (https://github.
com/YuLab-SMU/clusterProfiler) or Metascape (https://
Metascape.org/).

Statistical analyses
Comparisons of categorical variables were ascertained by 
Pearson’s χ2 test or Fisher’s exact test. Two-sided p values 
are reported. Analyses were performed with R (v4.0.2).

Results
Clinical characteristics and cytogenetic features of the 
cohort
The clinical characteristics and cytogenetic features of 
the cohort are shown in Table 1. In addition to the above 
information, information on variations in fusion genes, 
gene mutations, and karyotypes was also collected. Gene 

Characteristics Total
 PPR 3(6.7%)
Day 15 BM, n (%)
 M1 33(73.3%)
 M2/M3 12(26.7%)
Day 33 BM, n (%)
 M1 45 (100%)
 M2/M3 0
Day 15 MRD, n (%)
 < 0.1% 12(26.7%)
 ≥ 0.1% 33 (73.3%)
Day 33 MRD, n (%)
 < 0.01% 34 (75.5%)
 ≥ 0.01% 11 (24.4%)
Abbreviations: WBC, white blood cell; Hb, hemoglobin; PLT, platelet; CNSL, central nervous system leukemia; BM, bone marrow; MRD, minimal residual disease; HR, 
high-risk group; PGR, prednisone good response; PPR, prednisone poor response; M1, M2, M3, neoplasm cells no more than 5% as M1, neoplasm cells more than 5% 
and no more than 25%  as M2, neoplasm cells more than 25% as M3.

Table 1 (continued) 

https://github.com/suhrig/arriba/
https://github.com/suhrig/arriba/
https://github.com/jokergoo/circlize
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/YuLab-SMU/clusterProfiler
https://Metascape.org/
https://Metascape.org/
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variations, including exon deletions or single nucleotide 
variations, in CDKN2A (n = 8), CDKN2B (n = 7), PAX5 
(n = 4), ETV6 (n = 3), E2A (n = 2), IGH (n = 2), and BTG1 
(n = 1) have been reported. Regarding the Ras signaling 
pathway, FLT3 (n = 5), KRAS (n = 12), and NRAS (n = 5) 
were commonly detected alone or together in 14 patients. 
Hyperdiploidy of chromosomes + 4, +10, and/or + 17 
was detected in 9 patients. ZNF384-TCF3 fusion (n = 1), 
EP300-ZNF384 (n = 1), and ZNF384-SYNRG (n = 1) were 
positive in 3 patients at the first diagnosis. Since most 
included patients did not have known high-risk associ-
ated fusion genes or gene mutations, fusion gene identifi-
cation was conducted.

Fusion genes identified in the cohort
To investigate the gene fusion pattern, we performed 
RNA-seq analysis of blood and bone marrow sam-
ples from this cohort of patients. The most commonly 
observed breakpoints at gene loci at the disease onset 
were FHRSX, KLF2, AL683807, CKS18P6, MRPL13, 
ZNF740, RUNX1, and CXCR4, while the most commonly 
observed breakpoints at the end of remission induction 

were SLC66A2, DHRSX, OAZ1, MBP, NFATC1, ZBTB7A, 
CTDP1, and SLC16A3 (Fig. 1A). Figure 1B-D shows the 
distribution of mutations on different chromosomes 
before and after remission with chromosome coordinates 
on the horizontal axis. The common mutation locations 
in the cohort are illustrated in Fig. 1B-D. Gene deletion 
on chromosome 18 (CYB5A-LINC01922 and DIPK1C), 
gene duplication on chromosome 8 (ST3GAl1, AG02), 
translocation on chromosome 6 (MRPS18A), inversion 
on chromosome 7 (TTYH3), translocation of chromo-
some 21 (RUNX1), translocation of chromosome 12 
(ETV6, ZNF384, ZNF740), translocation of chromosome 
2 (CXCR4), translocation of chromosome 19 (KLF2), 
translocation of chromosome X (CXorf21 and CKS1BP6), 
and translocation of chromosome 17 (SENP-EIF4A1) 
were high-frequency mutations at onset but not during 
remission (Fig. 1B).

Moreover, mutations of low frequency at onset but 
high frequency at remission were as follows: duplica-
tion of chromosome 18 (SLGGA2), inversion on chro-
mosome 4 (MAEA, CTBP1), inversion on chromosome 
18 (NFATC1, SLC66A2), inversion on chromosome 15 

Fig. 1 Overview of gene fusions in 45 pediatric B-ALL patients in the cohort. A. Illustration of the comparison between fusion break points at onset and 
at the end of remission induction. B-D. The locus distribution of different mutation types on different chromosomes before and after remission
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(C1Sorf39, SIN3A, ANP32A), and inversion on chromo-
some 19 (ZBTB7A, OAZ1). Duplication on chromosome 
1 (AL645608), duplication on chromosome Y (AL683807, 
DHRSX), inversion on chromosome 10 (BMS1, PARG), 
and translocation on chromosome 18 (MRPL13) were 
not different before and after remission (Fig. 1C-D).

To identify the differences in fusion genes before 
and after remission, we compared the genes at these 
breakpoints in patients before and after remission 
(Fig.  2A). The differences were highly significant for 
AC005258 (p = 0.00059), ZBTB7A (p = 0.00181), SLC16A3 
(p = 0.00185), MBP (p = 0.00478), SLC66A2 (p = 0.00519), 
CTBP1 (p = 0.00572), CDC42 (p = 0.00572), ZNF516 
(p = 0.00572), SIN3A (p = 0.0109), RUNX1 (p = 0.0109), 
C15orf39 (p = 0.0109), OAZ1 (p = 0.01262), ETV6 
(p = 0.0166), DMD (p = 0.02509), NFATC1 (p = 0.03528), 
and AL591378 (p = 0.03765).

The fusion gene pair in B-ALL detected in the onset 
samples is illustrated in Fig.  2B. The most frequently 
detected fusion gene pairs included DHRSX-DHRSX 
(n = 12), ETV6-RUNX1 (n = 8), C008696-AC008696 
(n = 8), CXorf21-MROS18A (n = 7), AL591378-DMD 
(n = 6), VRK3-VRK3 (n = 5), KLF2-SENP3-EIF4A1 
(n = 5), MRPL13-ZNF740 (n = 5), AC016876-KLF2 
(n = 5), EIF4A1-KLF2 (n = 5), AGO2-ST3GAL1 (n = 4), 
and CYB5A-DIPK1C (n = 4). The fusion genes involved 
in non-high-risk B-ALL at the disease onset included 
C008696-AC008696 (n = 4), ETV6-RUNX1 (n = 4), 
MRPL13-ZNF740 (n = 4), and KLF2-SENP3-EIF4A1 
(n = 2) (Fig.  2C). Several fusion genes, such as DHRSX-
DHRSX (n = 7), CXorf21-MROS18A (n = 4), AL591378-
DMD (n = 3), and KLF2-SENP3-EIF4A1 (n = 2), were 
specific to the high-risk group (Fig.  2D). Some of the 
above fusion genes can still be detected in remission 
samples, as can some new fusion genes (Fig. 2E).

Comparison of fusion genes between the high-risk group 
and the non-high-risk group
According to the initial chemotherapy response defined 
by the prednisone test and MRD, but not by fusion genes 
or gene mutations, we classified the cohort into a high-
risk group and a non-high-risk group. To determine the 
differences in biological characteristics between the high-
risk group and the non-high-risk group, the differential 
expression profiles were compared. Clinical character-
istics and cytogenetic feature comparisons between the 
high-risk group and the non-high-risk group are shown 
in Table 2.

To identify potential high-risk-related fusion genes, the 
genes that were differentially expressed between the high-
risk group and the non-high-risk group were further ana-
lyzed (Fig. 3). Fusions involving ABL1, LMNB2, NFATC1, 
PAX5, and TTYH3 at onset were more frequently 
detected in the high-risk group, while fusions involving 

LFNG, TTYH3, and NFATC1 were frequently detected 
in the relapse group. In addition, there are several newly 
discovered fusion genes with high frequencys, such as 
DMD::AL591378, MRPL13::ZNF740, and DHRSX dupli-
cation (Fig.  4). DMD::AL591378 fusion was frequently 
found in onset samples and disappeared at remission 
(Fig.  4A). The MRPL13::ZNF740 fusion was frequently 
found in the non-high-risk group at onset, but it did not 
disappear after treatment (Fig. 4B). DHRSX-DHRSX pre-
sented a high frequency in the high-risk group (Fig. 4C). 
DHRSX-DHRSX is AL683807.2 (442,713) and DHRSX 
(8017)-DHRSX. During analysis, when fusion sites are 
located between genes, upstream or downstream genes 
are selected according to the location of fusion sites 
in the transcript to represent the fusions. In the output 
result, for DHRSX-DHRSX, AL683807.2(442,713) is the 
only form, while DHRSX (8017)-DHRSX does not exist. 
According to the results, at the locus 8017 upstream of 
DHRSX, there is a fusion within the DHRSX gene, which 
is a duplication.

Elevated gene expression and low gene expression in the 
cohort
Compared to the gene expression profile before remis-
sion, 3824 genes were significantly upregulated and 5853 
genes were significantly downregulated at remission 
(Fig.  5A). The differentially expressed genes were anno-
tated functionally. The most highly upregulated path-
ways are illustrated in Fig.  5B and are mainly involved 
in the activation of neutrophils in the immune response, 
hemostasis, and stress response. The most downregu-
lated pathways are illustrated in Fig. 5C and are involved 
mainly in herpes simplex virus infection and DNA meth-
ylation. DNA methylation played a very special role in 
this cohort. Moreover, the genes related to homophilic 
cell adhesion via plasma membrane adhesion molecules, 
development growth, regulation of cell differentia-
tion, and B-cell proliferation were involved in leukemia 
progression in the cohort. By comparing the overlap 
between these DEGs and fusion genes, we identified sev-
eral shared genes (Fig. 5D and E). However, the overlaps 
were not significant.

New classifier for identifying subgroups in B-ALL patients
There were 102 upregulated genes and 56 downregu-
lated genes in the high-risk group (Fig. 5F). The pathways 
involved are illustrated in Fig. 5G-H. Pathways related to 
exocytosis, cell chemotaxis, inflammatory response, and 
cell proliferation and survival were ultimately upregu-
lated. These differences are likely attributed to the leu-
kemia stem cells and relapse clones retained in the 
high-risk group. The pathways related to the regulation of 
ion transmembrane transport, potassium ion transmem-
brane transport, negative regulation of cellular amide 
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Fig. 2 Overview of gene fusions in 45 pediatric B-ALL patients in the cohort. (A) Comparison of break points in patients before and after remission. (B) 
Fusion gene pairs in B-ALL detected in the onset samples. (C) Fusion gene pairs in non-high-risk B-ALL patients detected in the onset samples. (D) Fusion 
gene pairs in high-risk B-ALL patients detected in the onset samples. (E) Fusion gene pairs in B-ALL detected in remission samples
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Characteristics Non-high risk (n = 28) High-risk (n = 17)
Gender, n(%) 0.763
 Male 13(46.4%) 9(52.9%)
 Female 15(53.6%) 8(47.1%)
Age(y), median(range) 4.6(1.4–12.9) 6.7(2.2–14.9) 0.374
Age group(y) 0.226
 ≥ 1, < 10 25 (89.3%) 12 (70.6%)
 ≥ 10 3 (10.7%) 5 (29.4%)
Initial WBC(×109/L), median(range) 10.1(1.92–197.6) 12.4(1.61–154.7) 0.721
WBC group, n(%) 0.371
 < 10 × 109/L 13(46.4%) 5(29.4%)
 ≥ 10 × 109/L, < 50 × 109/L 11(39.3%) 7(41.2%)
 ≥ 50 × 109/L 4(14.3%) 5(29.4%)
Initial Hb(g/L), median(range) 70.0(43.0-125.0) 63.0(39.0–88.0) 0.236
Hb group 0.536
 < 60 g/L 8(28.6%) 5(29.4%)
 ≥ 60 g/L, < 90 g/L 13(46.4%) 10(58.8%)
 ≥ 90 g/L 7(25.0%) 2(11.8%)
Initial PLT(×109/L), median(range) 56.0(4.0-290.0) 98.0(10.0-217.0) 0.829
PLT group 0.749
 < 100 × 109/L 19(67.9%) 10(58.8%)
 ≥ 100, < 300 × 109/L 9(32.1%) 7(41.2%)
CNSL, n (%) 0.651
 Yes 1(3.6%) 0
 No 27(96.4%) 15(100%)
BCR::ABL1 Status, n (%) 0.564
 Negative 25 (89.3%) 16(94.1%)
 Positive 3 (10.7%) 1 (5.9%)
KMT2A-r Status, n (%)
 Positive 0 0
ETV6::RUNX1 Status, n (%) 0.583
 Negative 23(82.1%) 14(82.4%)
 Positive 5(17.9%) 3(17.6%)
Karyotype, n (%) 0.135
 Normal 13(46.4%) 12(70.6%)
 Abnormal 15(53.6%) 5(29.4%)
IKZF1 deletion, n (%) 1.000
 Yes 5(17.9%) 3(17.6%)
 No 23(82.1%) 14(82.4%)
P16 deletion, n (%) 0.110
 Yes 12(42.9%) 3(17.6%)
 No 16(57.1%) 14(82.4%)
RAS pathway gene mutation, n (%) 1.000
 Yes 8(26.8%) 5(29.4%)
 No 20(71.4%) 12(70.6%)
Prednisone Response, n (%) 0.048
 PGR 28(100%) 14(82.4%)
 PPR 0 3(17.6%)
Day 15 BM, n (%) 0.004
 M1 25 (89.3%) 8 (47.1%)
 M2/M3 3 (10.7%) 9 (52.9%)
Day 33 BM, n (%)
 M1 28 (100%) 17 (100%)
 M2/M3 0 0

Table 2 Baseline Characteristics of Study Participants in the analysis of fusion genes
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metabolic processes, and protein‒DNA complex assem-
bly were suppressed, which likely suppressed protein 
metabolism. By comparing the overlap between these 
DEGs and fusion genes, we identified several shared 
genes (Fig.  5I and J). However, the overlaps were not 
significant.

RAS signaling pathway gene mutations are contro-
versial factors regarding patient prognosis. Thus far, 
we do not know the necessity of targeted therapy for 
ALL patients with RAS signaling pathway gene muta-
tions, nor do we know the targets that should be focused 
on for ALL patients with RAS signaling pathway gene 
mutations. Therefore, we investigated the general char-
acteristics of the RAS signaling pathway gene muta-
tion subgroup. Thirteen patients carrying RAS signaling 
pathway genes were identified in the cohort, 4 of which 
presented high-risk characteristics, while 9 presented of 
nonhigh-risk characteristics. There were 193 upregulated 

genes and 108 downregulated genes in the RAS signaling 
pathway gene mutation subgroup (Fig. 6A). The pathways 
involved are illustrated in Fig.  6B-C. By comparing the 
overlap between these DEGs and fusion genes, we identi-
fied several shared genes (Fig.  6D and E). However, the 
overlaps were not significant.

For comparison between the RAS signaling path-
way genes mutated high-risk and RAS pathway genes 
mutated non-high-risk, there were 193 upregulated 
genes and 108 downregulated genes in the RAS signaling 
pathway gene mutation subgroup (Fig. 6F). The pathways 
involved are illustrated in Fig.  6G-H. By comparing the 
overlap between these DEGs and fusion genes, we iden-
tified several shared genes (Fig.  6I and J). However, the 
overlaps were not significant. Interestingly, the fusion 
genes MRPL13::ZNF740 (n = 4), DHRSX duplication 
(n = 4), CYR5A::DIPK1C (n = 4) and CXorf21::MRPS16A 

Fig. 3 Comparison of differentially expressed fusion genes between the high-risk group and non-high-risk group. The table on the right shows detailed 
information on 22 genes shared among the high-risk group, onset group and relapse group, but not among the genes in the medium-risk group. The 
number in the table indicates the number of patients with the corresponding fusion genes

 

Characteristics Non-high risk (n = 28) High-risk (n = 17)
Day 15 MRD, n (%) 0.001
 < 0.1% 12 (42.9%) 0
 ≥ 0.1% 16 (57.1%) 17 (100%)
Day 33 MRD, n (%) 0.001
 < 0.01% 26 (92.9%) 8 (47.1%)
 ≥ 0.01% 2 (7.1%) 9 (52.9%)
Abbreviations: WBC, white blood cell; Hb, hemoglobin; PLT, platelet; CNSL, central nervous system leukemia; BM, bone marrow; MRD, minimal residual disease;PGR, 
prednisone good response; PPR, prednisone poor response; M1, M2, M3, neoplasm cells no more than 5% as M1, neoplasm cells more than 5% and no more than 
25%  as M2, neoplasm cells more than 25% as M3.

Table 2 (continued) 
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(n = 3) were dominant in RAS signaling pathway-mutated 
B-ALL (Fig. 6K).

For B-ALL without known molecular markers, molec-
ular subtyping according to expression profiles would 
help identify new subgroups (Fig.  7). The AUCs of the 

consistency indices between K = 3 and K = 10 were not 
significantly different (Fig.  7A-C). Therefore, they were 
subtyped into three groups: Group 1, Group 2 and Group 
3 (Fig.  7D). Differentially expressed genes were com-
pared among these subgroups. A pairwise comparison of 

Fig. 4 Newly discovered fusion genes with high frequency. (A)DMD::AL591378 fusion in onset samples, but not in remission samples. (B)MRPL13::ZNF740 
fusion in onset samples and remission samples. (C)DHRSX::DHRSX in the high-risk group
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Fig. 5 Genetic expression alterations in 45 pediatric B-ALL patients in the cohort. (A) Volcano plot comparing the gene expression profiles before and 
after remission. (B) The most highly upregulated pathways. (C) The most downregulated pathways. (D) Venn diagram showing the overlap between 
fusion genes and upregulated genes after remission. (E) Venn diagram showing the overlap between fusion genes and downregulated genes after 
remission. (F) Volcano plot comparing the gene expression profiles in the high-risk group before and after remission. (G) The most highly upregulated 
pathways in the high-risk group. (H) The most downregulated pathways in the high-risk group. (I) Venn diagram showing the overlap between fusion and 
upregulated genes in the high-risk group after remission. (J) Venn diagram showing the overlap between the fusion genes and downregulated genes in 
the high-risk group after remission
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Fig. 6 Genetic expression alterations in 13 RAS signaling pathway mutated pediatric B-ALL patients in the cohort. (A) Volcano plot comparing the gene 
expression profiles before and after remission. (B) The most highly upregulated pathways. (C) The most downregulated pathways. (D) Venn diagram 
showing the overlap between fusion genes and upregulated genes after remission. (E) Venn diagram showing the overlap between fusion genes and 
downregulated genes after remission. (F) Volcano map comparing the gene expression profiles in the high-risk and non-high-risk groups. (G) The most 
highly upregulated pathways in the high-risk group. (H) The most downregulated pathways in the high-risk group. (I) Venn diagram showing the overlap 
between the fusion genes and upregulated genes in the high-risk group after remission. (J) Venn diagram showing the overlap between the fusion genes 
and downregulated genes in the high-risk group after remission. K. Fusion genes in RAS signaling pathway-mutated B-ALL
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Fig. 7 Molecular subtyping according to expression profiles in 45 pediatric B-ALL patients in the cohort. A. According to the molecular subtyping ac-
cording to the expression profiles, the patients are divided into three major subgroups. B-C. When the subgroup number was increased from 3 to 10, 
the AUC of the consistency index between K = 3 and K = 10 was not significantly different. D. Genetic expression profiles were compared among these 
three subgroups. Different colors indicate different numbers, with red indicating 1, yellow indicationg 2, light-green indicating 3 and green indicating 4
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the three subgroups is illustrated in Tables 3 and Fig. 8. 
A comparison of Group 1 and Group 2, revealed and 
the DEGs and pathways involved in these genes affected 
RNA polymerase I promoter opening, eukaryotic transla-
tion elongation, and the electron transport chain of the 
OXPHOS system in mitochondria (Fig. 8A). A compari-
son of Group 1 and Group 3 revealed that the DEGs and 
involved pathways affected eukaryotic translation elon-
gation and the electron transport chain of the OXPHOS 
system in mitochondria (Fig. 8B). The expression profiles 
of Group 1 and Group 3 were very similar, as shown by 
the transcriptome data. Group 3 should be regarded as 
deriving from Group 1. A comparison of Group 2 and 
Group 3 revealed that the DEGs and pathways involved 
affect eukaryotic translation elongation and that HDACs 
deacetylate histones (Fig.  8C). Gene Cluster 1, involv-
ing pathways of SRP-dependent cotranslational protein 
targeting membrane and signal sequence recognition, 
was upregulated in Group 1. Gene Cluster 2, involv-
ing pathways of mRNA 5’-splice site recognition path-
ways, NABA proteoglycans, and nucleosome assembly, 
was upregulated in Group 3. The expression of genes in 
Cluster 3, involving antigen receptor-mediated signal-
ing pathway, mitochondrial transmembrane transport, 
eukaryotic translation elongation, and mitochondrial 
protein pathways, was upregulated in Group 2 (Fig. 8D).

To determine whether these pathways are related to 
the therapeutic response, we further validated the model 
by comparing MRD and prednisone responses between 
clusters and subgroups (Fig. 8E). Group 1 is more likely 
to be high-risk, while Group 3 is less likely to be high-
risk. Although these two groups showed similar down-
regulated transcriptomes, the differential expression 
of gene Cluster 3 was likely the most important factor 
related to the different treatment responses. The upreg-
ulated pathways in the high-risk group were related to 
the circulatory system process, positive regulation of 
cell motility, signaling by GPCRs, tube morphogenesis, 
NABA microsome association, regulation of cell adhe-
sion, and response to the hormones. The downregu-
lated pathways in the high-risk group were related to the 
immune response-regulating signaling pathway. To elimi-
nate the bias caused by mutations of P16 deletion, KRAS 
mutations, and NRAS mutations, which were frequent in 

the cohort, the distribution differences were compared 
between subgroups, and the results presented no signifi-
cant difference (p > 0.05).

Discussion
This is an exploratory study, with the main finding that 
RNA sequencing can reveal previously unreported fusion 
genes in some pediatric B-ALL patients whose chemo-
therapy response is inconsistent with the risk stratifi-
cation corresponding to routine molecular biological 
features. Abnormal regulation of previously neglected 
signaling pathways can also be found. These new abnor-
malities may be related to pathogenesis and treatment 
response. Further comparison of groups of patients with 
different treatment responses may reveal new classifica-
tions of expression profiles. A novel approach for tar-
geted treatment of B-ALL based on the transcriptome is 
discussed.

In a previous study, according to the transcriptional 
landscape, B-ALL patients were divided into sub-
groups with different fusion genes and known gene 
mutations, which included MEF2D fusions, TCF3-
PBX1, ETV6::RUNX1 or ETV6::RUNX1-like, DUX4 
fusions, ZNF384 fusions, BCR::ABL1 or BCR::ABL1-
like, high hyperdiploidy, KMT2A fusions, PAX5 and 
CRLF2 fusions, PAX5 (p. P80R) mutations, IKZF1 (p. 
N159Y) mutations, ZEB2 (p. H1038R)/IGH::CEBPE, 
TCF3/4::HLF, and NUTM1 fusions [3]. Gene muta-
tions among signaling molecules, epigenetic factors, and 
transcription factor genes are enriched in different sub-
groups, which means that, except for subgroup identi-
fiers, enriched mutations in different functional genes 
are attributed to the gene expression files together [23]. 
However, regarding a random individual patient, it does 
not always copy the genomic and epigenetic characteris-
tics of certain subgroups, and there would be confound-
ing variations [24–28]. It is still necessary to discover the 
underlying genomic defects and mysterious mechanisms 
in individuals for treatment response [29]. By using an 
intertomics-based approach, transcriptome-based sub-
cluster identification can be achieved directly at the clini-
cal level, which may be critical for predicting potential 
drug targets for individual subclusters [5]. Therefore, 
RNA-seq can be implemented in the diagnostic workflow 
of ALL and enhances the individual molecular diagnostic 
risk classification of ALL [4, 30].

In this study, we explored the gene expression pattern 
in a group of childhood B-ALL patients whose molecu-
lar biological characteristics and chemotherapy response 
did not completely match the above subgroup identifiers. 
RNA-seq-based subgroups were used stratify patients 
into low-risk, intermediate-risk, and high-risk groups 
according to survival [3]. BCR::ABL1-positive B-ALL is 
usually regarded as a “high-risk” reference [31–33], while 

Table 3 Comparison for gene expression across groups of 
different mRNA expression profiles
Paired groups Number of up-regulat-

ed genes
Number 
of down-
regulated 
genes

Group 1 vs. Group 2 4893(2303) 1292(1059)
Group 1 vs. Group 3 489(400) 781(323)
Group 2 vs. Group 3 2589(2331) 6255(2974)
Note: In parentheses are the number of annotated genes
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Fig. 8 Expression profiles in molecular subgroups. A-C. Pairwise comparison of expression profiles between the two subgroups and the involved path-
ways. D. Comparison of expression profiles among the three subgroups and the involved pathways. E. Validation of the molecular subtyping model by 
comparing MRD and prednisone response between clusters and subgroups
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ETV6::RUNX1-positive B-ALL is a “low-risk” reference 
[34]. Subgroups with TCF3::PBX1, ETV6::RUNX1-like, 
ZNF384 fusions, DUX4 fusions [34], or high hyperdip-
loidy are low-risk according to the BCR::ABL1-positive 
subgroup and ETV6::RUNX1-positive subgroup. PAX5 
and CRLF2 fusions and hyperdiploidy (≤ 50 chromo-
somes) are classified into the intermediate-risk group due 
to an inferior 5-year overall survival compared with that 
of ETV6::RUNX1-positive/ETV6::RUNX1-like. MEF2D 
fusions and KMT2A fusions tend to be associated with 
high risk [3]. Usually, the low-risk group responds well to 
chemotherapy. It does not need highly intensified treat-
ment to induce or maintain long-term remission [35, 36]. 
In contrast, the high-risk group is often insensitive to 
chemotherapy and needs intensified treatment with che-
motherapy, immunotherapy, or small molecular targeted 
medicine [37]. We did not stratify B-ALL patients simply 
according to the above criteria. Post-chemotherapy treat-
ment response evaluation through prednisone response 
and/or MRD corresponds well to the long-term progno-
sis. Therefore, in this study, we retrospectively evaluated 
the included patients in terms of prednisone response 
and MRD status, ignoring the molecular biological char-
acteristics indentified by the enrollment test, to analyze 
the transcriptome characteristics related to treatment 
response-.

Gene expression profiling has revealed new cytogenetic 
subgroups that display certain specific gene expression 
patterns. In this study, DNA methylation played a very 
special role in this cohort. Moreover, the relationships 
between genes involved in homophilic cell adhesion via 
plasma membrane adhesion molecules, development 
growth, regulation of cell differentiation, B-cell prolif-
eration, and leukemia progression in the cohort are not 
well understood and should be further evaluated for 
treatment designation. There is a potential role for DNA 
methylation-targeting therapy in this cohort. Further-
more, pathways related to exocytosis, cell chemotaxis, 
inflammatory response, and cell proliferation and sur-
vival were upregulated, which was probably attributed 
to leukemia stem cell and relapse clone retention in the 
high-risk group. The suppressed pathways related to the 
regulation of ion transmembrane transport, potassium 
ion transmembrane transport, negative regulation of cel-
lular amide metabolic processes, and protein‒DNA com-
plex assembly likely suppress protein metabolism and 
provide self-protection.

RAS signaling pathway mutational status of NRAS, 
KRAS, and PTPN11 genes is associated with genetic/
cytogenetic features in children with B-precursor acute 
lymphoblastic leukemia. Previous reports have shown 
that 70% of ALL patients with damaging germline ETV6 
variants exhibit hyperdiploid karyotypes with character-
istic recurrent mutations in NRAS, KRAS, and PTPN11 

[38]. The RAS signaling pathway is related to the patho-
genesis, prognosis, and relapse process of B-ALL. How-
ever, in the analysis of the subgroup expression profile of 
the cohort, we found that the distribution of RAS signal-
ing pathway mutations among subgroups was not sig-
nificantly different, which indicated that RAS signaling 
pathway mutations did not play key roles in controlling 
the variations in the expression profile. This finding does 
not support the idea that the mutation status of the RAS 
signaling pathway may be involved in therapy designation 
in the future.

Fusion gene detection of candidate pharmacogenes/
pharmacotranscripts cannot revealed new genes or tran-
scripts [21]. The transcriptomes of fusion genes may 
be more informative of disease development, cell pro-
liferation, differentiation, and apoptosis. In this study, 
we identified new fusion genes without identifying 
their biological functions. Seven patients in the high-
risk group carried DHRSX duplications. According to a 
previous report, using overexpression and knockdown 
analyses, Zhang et al. showed that DHRSX promoted 
starvation-induced autophagy in HeLa and U2OS cells 
[39]. The promotion of autophagy by DHRSX involves 
the downregulation of AKT/mTOR phosphorylation and 
the upregulation of beclin-1, which are highly related 
to the antiapoptotic function and chemotherapy resis-
tance of leukemia cells [40–42]. This result provides new 
insight for further exploration of a new mechanism for 
drug resistance in B-ALL. Whether DHRSX duplication 
enhances the function of starvation-induced autophagy 
in B-ALL remains to be determined in future studies.

Although ALL patients are stratified according to 
genomic information, we cannot adjust the therapy with-
out MRD evaluation at the end of induction therapy [2, 
8, 9]. Treatment of childhood refractory and relapsed 
acute lymphoblastic leukemia (R/R ALL) patients with 
refractory and poor prognostic genes cannot be resolved 
by chemotherapy alone [43]. In recent years, small-
molecule targeted drugs have been proven effective in 
clinical trials [44–48]. Small molecule targeted drugs 
regulate a variety of signaling pathways by targeting sig-
naling molecules that play a regulatory role in cell pro-
liferation, differentiation, and apoptosis [10–19]. For 
example, targeting BCR::ABL1 and BCR::ABL1-like [29, 
46, 49–51] significantly affects patient prognosis. There-
fore, RNA-seq-based therapy adjustments may be more 
beneficial in the ETV6::RUNX1-positive subgroup. The 
“low-risk” ETV6::RUNX1-positive subgroup was not 
always low-risk, similar to the patients in this study. It 
has been reported that the intensity of chemotherapy 
[52] in the ETV6::RUNX1-positive subgroup should not 
decrease for those who have positive MRD postinduction 
chemotherapy. Discontinuation of L-asparaginase and 
poor response to prednisolone is associated with poor 
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outcomes in ETV6::RUNX1-positive pediatric B-ALL 
patients, indicating drug insensitivity [53]. Autophagy 
inhibition [54], spleen tyrosine kinase (SYK) [55], and 
IGF2BP1 [56] are potential future therapeutic targets 
for ETV6::RUNX1-driven B-cell precursor acute lym-
phoblastic leukemia due to their roles in ETV6::RUNX1 
cell survival and prognosis. Through RNA-seq, we can 
identify upregulated and activated pathways at diagnosis 
and design combination chemotherapeutics to sensitize 
resistant primary cells to conventional drugs. There were 
4 ETV6::RUNX1-positive high-risk patients for whom 
further analysis of the mechanism underlying the poor 
response to therapy was needed. For those with drug-
resistant ALL, further exploration of the gene expression 
patterns of leukemic cells and translation of gene-gene 
interactions would be meaningful for gene expression 
pattern-based drug combination therapy development.

Conclusions
Although large cohort studies have systematically clas-
sified ALL, some patients often cannot use these clas-
sification models to explain their illness and treatment 
response. When their insensitivity to treatment cannot 
be explained by the existing classification system, we can 
analyze their expression profiles through RNA-seq by 
implementing a diagnostic system to identify activated 
markers related to leukemogenesis and drug resistance. 
These findings will guide the selection of targeted drugs 
and the design of treatment plans in the future. The 
implementation of an RNA-seq diagnosis system and a 
new concept for treatment deserve a prospective study.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12920-024-01892-w.

Supplementary Material 1

Acknowledgements
The authors would like to thank all the patients and their guardians who 
participated in this study. The authors sincerely acknowledge the help and 
consultation offered by the hematology laboratories of Guangzhou Kingmed 
Center for Clinical Laboratory, Co., Ltd on the storage and professional analysis 
of gene sequencing data. The authors acknowledge the care and support of 
the New Sunshine Charity Foundation. The authors would like to thank the 
hardworking nurses and the outpatient assistants from the follow-up center 
for providing data collection and important information.

Author contributions
XY L, ZL H, and LW Z contributed equally to the manuscript. LH X, ZH L and 
JP F designed the study. XY L, ZL H, ZH L, and LW Z analyzed the data and 
wrote the manuscript. XY L, WX L, YY L, H C, DD L, JJ H, ZD H, Y L, WJ W and 
HG X contributed to the retrieval and analysis of essential data. All authors 
contributed to the charts, critical revision and final approval of the manuscript.

Funding
This work was supported in part by grants from the fund of the 5010 Project of 
Clinical Trial of Sun Yat-sen University (2007016), the National Natural Science 
Foundation of China (81570140), and the Science and Technology Project of 

Guangzhou (201803010032). grants from the Bethune Medicine Scientific 
Research Fund Project (No. SCE111DS).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The study was approved by the Institutions’ Ethical Committee (No. 2020-
KY-004), and informed consent was obtained from the patient’s parents 
according to the Declaration of Helsinki of Sun Yat-sen Memorial Hospital 
of Sun Yat-sen University. The research protocol and informed consent were 
approved by the ethics committee of Sun Yat-sen Memorial Hospital of Sun 
Yat-sen University. Consent to participate was obtained from the participants 
and the parents/guardians of the children under the age of 18.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 December 2023 / Accepted: 25 April 2024

References
1. Li XY, Li JQ, Luo XQ, et al. Reduced intensity of early intensification does not 

increase the risk of relapse in children with standard risk acute lymphoblas-
tic leukemia - a multi-centric clinical study of GD-2008-ALL protocol. BMC 
Cancer. 2021;21(1):59.

2. Borowitz MJ, Wood BL, Devidas M, et al. Prognostic significance of minimal 
residual disease in high risk B-ALL: a report from Children’s Oncology Group 
study AALL0232. Blood. 2015;126(8):964–71.

3. Li JF, Dai YT, Lilljebjorn H, et al. Transcriptional landscape of B cell precursor 
acute lymphoblastic leukemia based on an international study of 1,223 cases. 
Proc Natl Acad Sci U S A. 2018;115(50):E11711–20.

4. Brown LM, Lonsdale A, Zhu A, et al. The application of RNA sequencing for 
the diagnosis and genomic classification of pediatric acute lymphoblastic 
leukemia. Blood Adv. 2020;4(5):930–42.

5. Mukherjee S, Kar A, Paul P, et al. In Silico Integration of Transcriptome and 
Interactome predicts an ETP-ALL-Specific transcriptional footprint that 
decodes its Developmental Propensity. Front Cell Dev Biol. 2022;10:899752.

6. Dai YT, Zhang F, Fang H, et al. Transcriptome-wide subtyping of pediatric and 
adult T cell acute lymphoblastic leukemia in an international study of 707 
cases. Proc Natl Acad Sci U S A. 2022;119(15):e2120787119.

7. Wang Q, Cai WZ, Wang QR, et al. Integrative genomic and transcriptomic 
profiling reveals distinct molecular subsets in adult mixed phenotype acute 
leukemia. Am J Hematol. 2023;98(1):66–78.

8. Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL1-like 
acute lymphoblastic leukemia treated with risk-directed therapy based on 
the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20.

9. Mullighan CG, Jeha S, Pei D, et al. Outcome of children with hypodip-
loid ALL treated with risk-directed therapy based on MRD levels. Blood. 
2015;126(26):2896–9.

10. Kurosu T, Ohki M, Wu N, et al. Sorafenib induces apoptosis specifically in cells 
expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic 
mitochondrial pathway. Cancer Res. 2009;69(9):3927–36.

11. Pratz KW, Cho E, Levis MJ, et al. A pharmacodynamic study of sorafenib 
in patients with relapsed and refractory acute leukemias. Leukemia. 
2010;24(8):1437–44.

12. Borthakur G, Kantarjian H, Ravandi F, et al. Phase I study of sorafenib in 
patients with refractory or relapsed acute leukemias. Haematologica. 
2011;96(1):62–8.

13. Wakim JJ, Tirado CA, Chen W et al. t(8;22)/BCR-FGFR1 myeloproliferative disor-
der presenting as B-acute lymphoblastic leukemia: report of a case treated with 
sorafenib and review of the literature Leuk Res, 2011. 35(9): pp. e151-3.

https://doi.org/10.1186/s12920-024-01892-w
https://doi.org/10.1186/s12920-024-01892-w


Page 18 of 19Li et al. BMC Medical Genomics          (2024) 17:149 

14. Walz C, Erben P, Ritter M, et al. Response of ETV6-FLT3-positive myeloid/lym-
phoid neoplasm with eosinophilia to inhibitors of FMS-like tyrosine kinase 3. 
Blood. 2011;118(8):2239–42.

15. Usuki K, Tojo A, Maeda Y, et al. Efficacy and safety of nilotinib in Japanese 
patients with imatinib-resistant or -intolerant Ph + CML or relapsed/refrac-
tory Ph + ALL: a 36-month analysis of a phase I and II study. Int J Hematol. 
2012;95(4):409–19.

16. Ottosson-Wadlund A, Ceder R, Preta G, et al. Requirement of apoptotic 
protease-activating factor-1 for bortezomib-induced apoptosis but not 
for Fas-mediated apoptosis in human leukemic cells. Mol Pharmacol. 
2013;83(1):245–55.

17. Shimoni A, Volchek Y, Koren-Michowitz M, et al. Phase 1/2 study of nilotinib 
prophylaxis after allogeneic stem cell transplantation in patients with 
advanced chronic myeloid leukemia or Philadelphia chromosome-positive 
acute lymphoblastic leukemia. Cancer. 2015;121(6):863–71.

18. Papadantonakis N, Advani AS. Recent advances and novel treatment para-
digms in acute lymphocytic leukemia. Ther Adv Hematol. 2016;7(5):252–69.

19. Bataller A, Garrote M, Oliver-Caldes A et al. Early T-cell precursor lympho-
blastic leukaemia: response to FLAG-IDA and high-dose cytarabine with 
sorafenib after initial refractoriness. Br J Haematol, 2018.

20. Pavlovic S, Kotur N, Stankovic B et al. Pharmacogenomic and pharmacotrans-
criptomic profiling of Childhood Acute Lymphoblastic Leukemia: paving the 
way to Personalized Treatment. Genes (Basel), 2019. 10(3).

21. Amos W, Driscoll E, Hoffman JI. Candidate genes versus genome-wide asso-
ciations: which are better for detecting genetic susceptibility to infectious 
disease? Proc Biol Sci. 2011;278(1709):1183–8.

22. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26(12):1572–3.

23. Janczar K, Janczar S, Pastorczak A, et al. Preserved global histone H4 acetyla-
tion linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with 
favorable outcome in pediatric B-cell progenitor acute lymphoblastic leuke-
mia. Leuk Res. 2015;39(12):1455–61.

24. Masuda T, Maeda S, Shimada S, et al. RUNX1 transactivates BCR-ABL1 expres-
sion in Philadelphia chromosome positive acute lymphoblastic leukemia. 
Cancer Sci. 2022;113(2):529–39.

25. Mian AA, Zafar U, Ahmed SMA, et al. Oncogene-independent resistance in 
Philadelphia chromosome - positive (Ph(+)) acute lymphoblastic leuke-
mia (ALL) is mediated by activation of AKT/mTOR pathway. Neoplasia. 
2021;23(9):1016–27.

26. Gu J, Reynolds A, Fang L, et al. Coexistence of iAMP21 and ETV6-RUNX1 
fusion in an adolescent with B cell acute lymphoblastic leukemia: literature 
review of six additional cases. Mol Cytogenet. 2016;9:84.

27. Lee JW, Kim S, Jang PS, et al. Differing outcomes of patients with high Hyper-
diploidy and ETV6-RUNX1 rearrangement in Korean Pediatric Precursor B Cell 
Acute Lymphoblastic Leukemia. Cancer Res Treat. 2021;53(2):567–75.

28. Dun KA, Vanhaeften R, Batt TJ, et al. BCR-ABL1 gene rearrangement as a sub-
clonal change in ETV6-RUNX1-positive B-cell acute lymphoblastic leukemia. 
Blood Adv. 2016;1(2):132–8.

29. Kaczmarska A, Sliwa P, Zawitkowska J et al. Genomic analyses of Pediatric 
Acute Lymphoblastic Leukemia Ph + and Ph-Like-recent progress in treat-
ment. Int J Mol Sci, 2021. 22(12).

30. Schieck M, Lentes J, Thomay K, et al. Implementation of RNA sequencing and 
array CGH in the diagnostic workflow of the AIEOP-BFM ALL 2017 trial on 
acute lymphoblastic leukemia. Ann Hematol. 2020;99(4):809–18.

31. Zhang Z, Chen Z, Jiang M, et al. Heterogeneous BCR-ABL1 signal patterns 
identified by fluorescence in situ hybridization are associated with leukemic 
clonal evolution and poorer prognosis in BCR-ABL1 positive leukemia. BMC 
Cancer. 2019;19(1):935.

32. Zhang L, Ramjit RT, Hill CE, et al. Clinical significance of quantitative monitor-
ing and mutational analysis of BCR-ABL1 transcript in Philadelphia chromo-
some positive B lymphoblastic leukemia. Leuk Lymphoma. 2016;57(2):364–9.

33. Soverini S, Albano F, Bassan R, et al. Next-generation sequencing for BCR-
ABL1 kinase domain mutations in adult patients with Philadelphia chromo-
some-positive acute lymphoblastic leukemia: a position paper. Cancer Med. 
2020;9(9):2960–70.

34. Burmeister T, Gokbuget N, Schwartz S, et al. Clinical features and prognostic 
implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic 
leukemia. Haematologica. 2010;95(2):241–6.

35. Hoffmann J, Krumbholz M, Gutierrez HP, et al. High sensitivity and clonal 
stability of the genomic fusion as single marker for response monitoring in 

ETV6-RUNX1-positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 
2019;66(8):e27780.

36. Bhojwani D, Pei D, Sandlund JT, et al. ETV6-RUNX1-positive childhood acute 
lymphoblastic leukemia: improved outcome with contemporary therapy. 
Leukemia. 2012;26(2):265–70.

37. King AC, Pappacena JJ, Tallman MS, et al. Blinatumomab administered 
concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated 
consolidation strategy and eradicates measurable residual disease in adults 
with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk 
Res. 2019;79:27–33.

38. Liang DC, Chen SH, Liu HC et al. Mutational status of NRAS, KRAS, and PTPN11 
genes is associated with genetic/cytogenetic features in children with 
B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer, 2018. 65(2).

39. Zhang G, Luo Y, Li G, et al. DHRSX, a novel non-classical secretory pro-
tein associated with starvation induced autophagy. Int J Med Sci. 
2014;11(9):962–70.

40. Wu X, Feng X, Zhao X, et al. Role of beclin-1-Mediated autophagy in the 
Survival of Pediatric Leukemia cells. Cell Physiol Biochem. 2016;39(5):1827–36.

41. Neri LM, Cani A, Martelli AM, et al. Targeting the PI3K/Akt/mTOR signaling 
pathway in B-precursor acute lymphoblastic leukemia and its therapeutic 
potential. Leukemia. 2014;28(4):739–48.

42. Zhang J, Liu X, Yin C, et al. hnRNPK/Beclin1 signaling regulates autophagy 
to promote imatinib resistance in Philadelphia chromosome-positive acute 
lymphoblastic leukemia cells. Exp Hematol. 2022;108:46–54.

43. Vrooman LM, Blonquist TM, Harris MH, et al. Refining risk classification in 
childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium 
Protocol 05 – 001. Blood Adv. 2018;2(12):1449–58.

44. Short NJ, Kantarjian H, Jabbour E. Optimizing the treatment of acute lym-
phoblastic leukemia in younger and older adults: new drugs and evolving 
paradigms. Leukemia. 2021;35(11):3044–58.

45. Hughes TP, Laneuville P, Rousselot P, et al. Incidence, outcomes, and risk fac-
tors of pleural effusion in patients receiving dasatinib therapy for Philadelphia 
chromosome-positive leukemia. Haematologica. 2019;104(1):93–101.

46. Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-Targeted 
therapies. Cancer Cell. 2020;37(4):530–42.

47. Bahjat M, de Wilde G, van Dam T, et al. The NEDD8-activating enzyme inhibi-
tor MLN4924 induces DNA damage in Ph + leukemia and sensitizes for ABL 
kinase inhibitors. Cell Cycle. 2019;18(18):2307–22.

48. Korfi K, Smith M, Swan J, et al. BIM mediates synergistic killing of B-cell acute 
lymphoblastic leukemia cells by BCL-2 and MEK inhibitors. Cell Death Dis. 
2016;7:e2177.

49. Piccaluga PP, Paolini S, Martinelli G. Tyrosine kinase inhibitors for the treat-
ment of Philadelphia chromosome-positive adult acute lymphoblastic 
leukemia. Cancer. 2007;110(6):1178–86.

50. Cario G, Leoni V, Conter V, et al. Relapses and treatment-related events 
contributed equally to poor prognosis in children with ABL-class fusion 
positive B-cell acute lymphoblastic leukemia treated according to AIEOP-BFM 
protocols. Haematologica. 2020;105(7):1887–94.

51. Montecchini O, Braidotti S, Franca R, et al. A novel ELISA-Based peptide 
Biosensor Assay for Screening ABL1 activity in vitro: a challenge for Preci-
sion Therapy in BCR-ABL1 and BCR-ABL1 like Leukemias. Front Pharmacol. 
2021;12:749361.

52. Takahashi Y, Ishida H, Imamura T, et al. JACLS ALL-02 SR protocol reduced-
intensity chemotherapy produces excellent outcomes in patients 
with low-risk childhood acute lymphoblastic leukemia. Int J Hematol. 
2022;115(6):890–7.

53. Usami I, Imamura T, Takahashi Y, et al. Discontinuation of L-asparaginase and 
poor response to prednisolone are associated with poor outcome of ETV6-
RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia. Int J 
Hematol. 2019;109(4):477–82.

54. Polak R, Bierings MB, van der Leije CS, et al. Autophagy inhibition as a poten-
tial future targeted therapy for ETV6-RUNX1-driven B-cell precursor acute 
lymphoblastic leukemia. Haematologica. 2019;104(4):738–48.

55. Serafin V, Porcu E, Cortese G et al. SYK Targeting represents a potential 
therapeutic option for relapsed resistant Pediatric ETV6-RUNX1 B-Acute 
lymphoblastic leukemia patients. Int J Mol Sci, 2019. 20(24).



Page 19 of 19Li et al. BMC Medical Genomics          (2024) 17:149 

56. Sharma G, Boby E, Nidhi T, et al. Diagnostic utility of IGF2BP1 and its targets 
as potential biomarkers in ETV6-RUNX1 positive B-Cell Acute Lymphoblastic 
Leukemia. Front Oncol. 2021;11:588101.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	The potential role of RNA sequencing in diagnosing unexplained insensitivity to conventional chemotherapy in pediatric patients with B-cell acute lymphoblastic leukemia
	Abstract
	Background
	Methods
	Patient characteristics
	Definitions
	RNA-seq
	Fusion detection
	Gene expression analysis
	Gene expression classifier
	Differential expression analysis
	Statistical analyses

	Results
	Clinical characteristics and cytogenetic features of the cohort
	Fusion genes identified in the cohort
	Comparison of fusion genes between the high-risk group and the non-high-risk group
	Elevated gene expression and low gene expression in the cohort
	New classifier for identifying subgroups in B-ALL patients

	Discussion
	Conclusions
	References


