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Abstract
Background Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. 
The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), 
which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 
upregulation in KIRC remain unknown.

Methods Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, 
expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were 
evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, 
miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC 
database was utilized to discern differences in microRNAs and establish the association between microRNAs and 
ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration.

Results It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-
Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival 
rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk 
model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-
138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments.

Conclusions Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 
and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
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Introduction
Renal cell carcinoma (RCC), which constitutes roughly 
90% of renal malignancies and 2–3% of adult malignant 
diseases [1], is a neoplasm that arises from renal tubular 
epithelial cells [2]. Among the various histological sub-
types of RCC, KIRC represents 70–80% of cases [3]. Due 
to its asymptomatic nature, a considerable proportion 
of KIRC patients, approximately 30%, are diagnosed at 
an advanced stage. The inherent resistance of advanced 
KIRC to radiate and chemical therapy underscores the 
importance of understanding the molecular mechanisms 
underlying early-stage diagnosis and prognostic analysis, 
as this knowledge can inform therapeutic strategies [4].

The preservation of tissue structure in human epi-
thelial cells is achieved through cellular adhesion and 
interaction with the extracellular matrix [5]. Through 
anoikis, which is a form of programmed apoptosis, dis-
placed cells within a tissue are eliminated as a result of 
a loss of cell-to-cell adhesion and matrix interaction [6]. 
Furthermore, Anoikis functions as a protective mecha-
nism that impedes the metastasis of cancer cells. The 
survival of a cancer cell is reliant on its ability to resist 
anoikis through various signaling pathways, ultimately 
resulting in distant metastasis [7].The research has dem-
onstrated that IL1RAP (IL-1 receptor accessory protein) 
plays a role in suppressing anoikis and impeding the 
spread of Ewing sarcoma. This is achieved by regulating 
the levels of cysteine and glutathione, thereby maintain-
ing redox homeostasis and promoting resistance to anoi-
kis [8]. Additionally, the downregulation of miR-30a in 
metastatic HCC promotes Beclin 1 and Atg5-dependent 
autophagy, leading to anoikis resistance [9].

Zinc finger E-box binding homeobox transcription fac-
tors (ZEBs) are a group of DNA-binding motifs found in 
eukaryotes, encompassing two distinct family members, 
specifically ZEB1 and ZEB2 [10]. The human ZEB1 gene 
is located on chromosome 10p11.22 and encodes a pro-
tein consisting of 1117 amino acids, while the human 
ZEB2 gene is situated on chromosome 2q22.3 and 
encodes a protein consisting of 1214 amino acids [11]. 
ZEB proteins are characterized by the presence of a cen-
trally located homeodomain, along with several exter-
nally situated protein binding domains including the zinc 
finger domain, SMAD interaction domain, p300-CBP-
associated factor binding domain, CtBP interaction 
domain, and coactivator binding domain. These domains 
play a crucial role in the regulation of tumor metastasis 
and progression through the process of epithelial-mesen-
chymal transition (EMT) [12].

There is a wealth of evidence indicating that immune 
infiltration is a crucial factor in the development and 
advancement of both oncogenesis and cancer progres-
sion. The microenvironment of KIRC, a highly immuno-
genic cancer, is distinguished by a significant presence of 

T cells and other immune cells [13]. To further explore 
the relationship between ZEB1/2 and immune infiltra-
tion in KIRC, we conducted an extensive investigation 
utilizing The Tumor and Immune System Interaction 
Database (TISIDB), The Tumor Immune Estimation 
Resource (TIMER2.0), and The Tumor Immune Single-
cell Hub (TISCH).

To elucidate the mechanism of ZEB1 and ZEB2 in 
KIRC, we integrated multiple bioinformatics databases. 
Our study systematically delineated the roles of ZEB1 
and ZEB2 in the progression, metastasis, and clinical 
prognosis of KIRC. Notably, ZEB1 and ZEB2 exert pleio-
tropic effects on various metabolic pathways, underscor-
ing their significance in KIRC. This flow chart describes 
the study’s procedures (Fig. 1).

Materials and methods
The analysis using the cancer genome atlas (TCGA)
Over 20,000 matched tumor samples and normal samples 
were included in TCGA, an important cancer genom-
ics initiative for identifying more than 33 cancer types 
(http://cancergenome.nih.gov/).

The analysis using GEO
In 2000, the National Center for Biotechnology Informa-
tion created the GEO database (https://www.ncbi.nlm.
nih.gov/) to store high-throughput gene expression data. 
Scientists from around the world upload various types 
of high-throughput genomics data, such as microarrays 
and next-generation sequencings, to the GEO database. 
This database effectively collects and organizes data per-
taining to both tumor and non-tumor diseases. Relevant 
data was obtained by searching the GEO database. We 
obtained the GSE40435 dataset from the GEO reposi-
tory and performed differential analysis using R pack-
ages: ggplot2 [3.3.6], stats [4.2.1], and car [3.1-0]. In the 
GSE40435 dataset, there were 101 sets of ccRCC tumors 
and neighboring non-tumor renal tissue. In addition, 
WGCNA analysis was performed on the GSE66270 data-
set with 14 groups of ccRCC tumors and adjacent non-
tumor kidney tissue.

XIANTAO platform
The XIANTAO platform, accessible at https://www.
xiantaozi.com/, serves as a comprehensive database that 
consolidates TCGA tumor microarray data along with 
R software and its associated packages. This platform is 
predominantly utilized for conducting research on gene 
expression, correlation, enrichment, interaction net-
works, clinical significance, and localization analysis. 
The XIANTAO was employed to examine the expression 
of ZEB1 and ZEB2, as well as the correlations between 
ZEB1, ZEB2, and various clinicopathological indices 
of TCGA-KIRC. To assess the overall survival (OS), 
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disease-specific survival (DSS), and progress-free interval 
(PFI) using hazard ratio (HR) with 95% confidence inter-
vals (CIs) and log-rank P values, the patient samples were 
stratified into two groups based on the median expres-
sion levels of ZEB1 and ZEB2 (high expression vs. low 
expression). Using the XIANTAO platform, we evaluated 
the forecast-worth of ZEB1 and ZEB2 in KIRC.

The identification of co-expressed genes of ZEB1 and 
ZEB2 was accomplished by employing spearman corre-
lation coefficients (p < 0.001, r > 0.7). Subsequently, the 
clusterProfiler package was utilized to perform Kyoto 
Encyclopedia of Genes and Genome (KEGG) and Gene 
ontology (GO) analyses, aiming to explore the poten-
tial signal pathways and biological functions regu-
lated by ZEB1 and ZEB2. The gene ontology analysis 

encompassed the categorizations of molecular function 
(MF), cellular component (CC), and biological process 
(BP). The TCGA gene expression data was analyzed 
using GSEA.A false discovery rate (FDR) < 0.25 and a 
p.adjustment < 0.05 were the criteria used to determine 
significant enrichment.

We conducted a study utilizing the XIANTAO resource 
to examine the infiltration patterns of the immune sys-
tem within tumors. Various immunocytes were identified 
by employing a combination of 24 immunological mark-
ers. The Spearman correlations between immunocyte 
biomarkers and the expression levels of ZEB1 and ZEB2 
were calculated using the single-sample GSEA (ssGSEA) 
method.

Fig. 1 Article flowchart. The expression of ZEB1 and ZEB2 in KIRC is correlated with unfavorable prognosis. The flow chart comprehensively illustrates the 
various analyses conducted in this study. It is observed that microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p) play a regulatory role in modulating the 
expression of ZEB1 and ZEB2. The upregulation of ZEB1 and ZEB2 mRNA in KIRC significantly affects anoikis, immune cell infiltration, and patient survival. 
These findings offer valuable insights into the molecular mechanisms and clinical relevance of ZEB1 and ZEB2 in the context of KIRC
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Weighted gene co-expression network analysis (WGCNA)
WGCNA facilitates the extraction of biologically relevant 
module information through the examination of pair-
wise correlations among genes in high-throughput data, 
utilizing the WGCNA package [14, 15]. The co-expres-
sion network was established by selecting the top 25% 
of genes with the greatest expression variance, and adja-
cency matrices were computed based on Pearson’s cor-
relation coefficients to store comprehensive information 
on the entire co-expression network. The average link-
age hierarchical clustering method was utilized to cluster 
dendrograms with a minimum module size of 20, using 
topological overlap measure (TOM) matrices. Subse-
quently, gene modules exhibiting similarity were merged 
with a threshold of 0.25, and the significantly distinct 
modules in tumor tissues as compared to normal tissues 
were analyzed to identify key genes.

The University of Alabama at Birmingham cancer data 
analysis portal (UALCAN)
Researchers have the ability to thoroughly analyze tran-
scriptome data from the TCGA, MET500, and Clinical 
Proteomic Tumor Analysis Consortium using UALCAN 
(http://ualcan.path.uab.edu/analysis.html).UALCAN was 
utilized in KIRC to examine the protein composition and 
levels of promoter methylation in ZEB1 and ZEB2.

A web of genes that interact with ZEB1 and ZEB2, as well as 
protein-protein interactions (PPIs)
The GeneMANIA database (http://www.genemania.org/) 
was employed to construct the ZEB1 and ZEB2 gene-
gene interaction networks, thereby generating hypoth-
eses regarding gene function and identifying genes with 
comparable functions. Additionally, the STRING data-
base (https://string-db.org/) was utilized to construct, 
visualize, and analyze the protein-protein interaction 
networks associated with ZEB1 and ZEB2.

CBioPortal
The cBioPortal for Cancer Genomics (https://www.cbio-
portal.org/) enables the visualization, abstraction, and 
assessment of extensive cancer genomics datasets. Muta-
tions in ZEB1 and ZEB2 were examined in 1496 KIRC 
patients sourced from the cBioPortal database.

Acquisition of data and screening of anoikis-related genes
By using GeneCards database (https://www.genecards.
org/), 338 genes associated with anoikis were selected, 
and only relevance score exceeding 1.0 genes were con-
sidered [16]. Further analyses were conducted by com-
bining ZEB1 and ZEB2 with the selected differentially 
expressed genes related to anoikis in KIRC.

Resource for estimating immune response in tumors
TIMER2.0 online tool (http://timer.cistrome.org/) was 
used to analyze immune infiltrates in different cancer 
type. In this study, the Exploration-Gene DE module of 
TIMER2.0 was used to evaluate the expressions of ZEB1 
and ZEB2 in various malignancies. Specifically, in the 
KIRC dataset, TIMER2.0 was employed to investigate 
the relationship between ZEB1 and ZEB2 expressions 
and the infiltration of immune cells. The “Immune-Gene” 
module was investigated the correlation between ZEB1, 
ZEB2 and the invasion levels of immune cells (CD4 + T 
cells, CD8 + T cells, B cells, neutrophils, dendritic cells, 
and macrophages).

Database for the interaction between tumors and the 
immune system (TISIDB)
The TISIDB (http://cis.hku.hk/TISIDB/index.php) holds 
comprehensive information on the relationship between 
the immune system and tumors. The ZEB1 and ZEB2 
interactions with T-cell checkpoints were examined in 
the ‘Immunomodulator’ module using Spearman’s corre-
lation coefficient.

Analysis of the Kaplan-Meier plotter database
The KM Plotter data resource (https://kmplot.com/anal-
ysis/) contains collection of immune cell infiltration data, 
survival information and gene expression data from 530 
patients with KIRC. The information from particular data 
source was utilized to evaluate predictions for associated 
immune cell subcategories depending on the presence of 
ZEB1 or ZEB2 in KIRC.

Levels of ZEB1 and ZEB2 expression in individual cells
Tumor immune single-cell hub (TISCH) offers an inter-
active visualization of tumor microenvironments through 
its website (http://tisch.comp-genomics.org/home/) [17]. 
For instance, we employed the dataset module to visual-
ize the expression levels of ZEB1 and ZEB2 at the single-
cell level in the KIRC_GSE111360 and KIRC_GSE139555 
datasets, respectively [18, 19].

Single-cell function in cancer
The Cancer Single-cell Atlas (CancerSEA) database 
(http://biocc.hrbmu.edu.cn/CancerSEA/) allows the 
functional state of specific genes to be observed at the 
single-cell level, thereby overcoming the limitations of 
traditional approaches to gene expression analysis [20].

MiRNA prediction
The current research employed a fairly extensive 
approach for miRNA prediction. To predict targeted 
miRNAs of mRNAs, three databases were utilized: 
miRDB (http://www.mirdb.org/), TargetScan (https://

http://ualcan.path.uab.edu/analysis.html).UALCA
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www.targetscan.org/), and miRTarBase (https://www.
mirbase.org/).

Statistical analysis
For non-paired samples, the Shapiro-Wilk test is used 
to check the normality of the data. If the data follows a 
normal distribution, the Student’s t-test is used to assess 
the differences between the two groups; if the data does 
not follow a normal distribution, a rank sum test is used 
for comparison. In addition, for paired samples, either a 
paired t-test or Wilcoxon signed-rank test is used, with 
the Shapiro-Wilk test employed to examine the normality 
assumption of the paired differences. A P-value less than 

0.05 is considered statistically significant. A significant 
difference was considered when the P value was below 
0.05 in all analyses. To perform the analysis, the analy-
sis was conducted using the R project website (https://
www.r-project.org/) and the R online tool.

Results
Variations in the expression levels of ZEB1 and ZEB2 
among patients diagnosed with KIRC
The expression of ZEB1 and ZEB2 in solid cancer of 
humans was initially evaluated using the TCGA data 
resource. The findings, illustrated in Fig. 2A and B, sug-
gest that ZEB1 and ZEB2 exhibit significant expression 

Fig. 2 Expression of ZEB1 and ZEB2 in Kidney Renal Clear Cell Carcinoma (KIRC). A, ZEB1 expression in various types of cancer was determined using the 
Tumor Immune Estimation Resource (TIMER) database. B, ZEB2 expression in different types of cancer. C, D, Expression levels of ZEB1 (C) and ZEB2 (D) 
were evaluated in KIRCs and their corresponding adjacent normal tissues using the GSE40435 dataset. E, Promoter methylation levels of ZEB1 and ZEB2 
in KIRC tissues and normal tissues were analyzed using UALCAN. F, The UALCAN database was utilized to examine the protein expressions of ZEB1 and 
ZEB2 in KIRC. Note: *P < 0.05; **P < 0.01; ***P < 0.001
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levels in KIRC. Supplementary Fig.  1A, B provide addi-
tional evidence of the pan-cancer expression of ZEB1 and 
ZEB2 in both tumor and normal tissues. Additionally, 
we performed a comparative examination of the expres-
sions of ZEB1 and ZEB2 in KIRC samples and neigh-
boring non-tumorous renal tissue using GSE40435. This 
analysis unveiled a noteworthy increase in the expression 
of both genes (Fig.  2C, D). Furthermore, the UALCAN 
data source exhibited a notable decrease in the methyla-
tion levels of ZEB1 and ZEB2 promoters in tumor tissues 
when compared to normal tissues (Fig.  2E). Moreover, 
the analysis of the UALCAN database indicated a sig-
nificant decline in the expression of ZEB1 protein in 
KIRC tissues when compared to healthy tissues. This was 
accompanied by a marked rise in the expression of ZEB2 
protein, as shown in Fig. 2F. Furthermore, elevated levels 
of ZEB1 and ZEB2 were observed in both tumor and nor-
mal tissues (Supplementary Fig. 1). The WGCNA analy-
sis of GSE66270 revealed a positive correlation between 
the blue and red modules and tumor discovery (Supple-
mentary Fig.  2). ZEB1 is a member of the red module, 
while ZEB2 is associated with the blue module (Supple-
mentary Fig.  2C). Additionally, ZEB1 plays a significant 
role within the red module (Supplementary Fig. 2D). The 
results indicate that ZEB1 and ZEB2 might have signifi-
cant functions in the advancement of KIRC.

Examining the correlation between the expressions of 
ZEB1 and ZEB2 and the clinical parameters of patients 
diagnosed with KIRC
We utilized the XIANTAO platform’s online tool to 
examine the unique manifestations of ZEB1 and ZEB2 in 
various patient groups categorized by clinical parameters 
(Supplementary Tables 1, 2). Significantly lower expres-
sion levels of ZEB1 and ZEB2 were observed in patients 
with pathologic stages II, III, and IV in comparison to 
those with stage I, as indicated by our analysis of KIRC 
patients categorized by their pathologic stage (Fig.  3A 
and E). The levels of ZEB1 and ZEB2 were notably 
decreased in KIRC patients with T2, T3, and T4 stages 
in comparison to those with T1 stage, as depicted in 
Fig. 3B and F. During the M0 stages, it was observed that 
the level of ZEB1 expression was greater compared to 
the M1 stages (Fig. 3C), whereas the expression of ZEB2 
remained unchanged (Fig. 3G). In addition, patients with 
G3 and G4 stages exhibited a notable reduction in the 
expression of ZEB1 and ZEB2, as observed in the histo-
logic grade of KIRC, in contrast to those with G1 and G2 
stages (Fig. 3D and H). The evidence presented suggests 
that ZEB1 and ZEB2 might have important functions in 
the initial phases of KIRC formation and influence the 
entire progression of KIRC expansion.

A decreased ZEB1 and ZEB2 mRNA level is associated with 
poor prognosis in KIRC
The above-mentioned results suggest a link between 
ZEB1 and ZEB2 and the advancement of KIRC. As a 
result, we proceeded to examine their predictive impor-
tance in KIRC (Tables 1 and 2). By analyzing the TCGA 
database, we found that decreased ZEB1 and ZEB2 
expression levels were associated with worse overall sur-
vival (OS), disease-specific survival (DSS), and progress-
free interval (PFI) (Fig.  3I, K). The results indicate that 
lower amounts of ZEB1 and ZEB2 are associated with an 
adverse prognosis in patients with KIRC. Following that, 
we performed Cox univariate analyses to validate the 
importance of ZEB1, ZEB2, and various clinical factors 
including age, sex, ethnicity, TNM stage, pathological 
stage, histological stage, primary therapy outcome, later-
ality, and hemoglobin levels (Supplementary Fig. 3). Fur-
thermore, the AUC values of KIRC were 0.726 and 0.777 
(Fig. 3J, L).

Analysis of genetic alterations, gene set enrichment 
analysis (GSEA), and interactions in ZEBs among patients 
with KIRC
The genetic changes of ZEBs in patients with KIRC were 
examined using the online tool cBioPortal. A scrutiny 
was conducted on three datasets, consisting of 1496 
patients, to examine mutations in ZEB1 and ZEB2.The 
mutation rates of ZEB1 and ZEB2 were found to be 1.3% 
and 1%, respectively. In ZEB1, truncating mutation was 
the most prevalent mutation, while in ZEB2, missense 
mutation was the most frequently observed mutation 
(Supplementary Fig. 4).

By using the STRING data resource, a network of pro-
tein-protein interaction (PPI) was created for ZEB1 and 
ZEB2. This network includes 22 nodes and 143 edges, 
as shown in Fig. 4A. GeneMania was utilized to build a 
network of gene-gene interactions involving ZEB1, ZEB2, 
and the neighboring altered genes. In Fig.  4B, it can be 
observed that there were 20 genes in the resulting net-
work that showed significant connections with ZEB1 
and ZEB2. CTBP1, SMARCA4, SMAD2, and SMAD3 
were prominent genes and proteins identified in the 
top 20 predictions of both GeneMania and STRING, 
as shown by the overlap illustrated in Fig.  4C. The four 
genes mentioned above are linked to the Wnt signaling 
pathway [21–23]. Furthermore, the TCGA data resource 
was utilized to conduct an inquiry into the association 
between ZEB1 and ZEB2 and genes associated with the 
Wnt signaling pathway. The results showed a notable and 
straight connection between ZEB1 and ZEB2 with APC, 
CTNNB1, TP53, LRP6, TCF7L2, LRP5, SFRP1, AXIN2, 
CCND1, CTBP1, SMAD3, SMARCA4, and SMAD2, 
as illustrated in Fig.  4D. After analyzing the enrich-
ment of ZEB1 and ZEB2 in a single gene GSEA, we have 
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discovered two vital pathways that display notable dis-
parities. Illustrated in Fig. 4E-F are the pathways known 
as Wnt Signaling in Cancer and the Complement Cas-
cade. Moreover, we have discovered a significant associa-
tion between anoikis and immune infiltration with these 
pathways.

Perform GO and KEGG enrichment analysis on ZEB1 and 
ZEB2, as well as their co-expressed genes within the TCGA-
KIRC cohort
Initially, a Venn diagram was utilized to display the 588 
intersections between genes that co-express ZEB1 and 
ZEB2 from the TCGA transcriptome data (Fig.  5A). 

Fig. 3 Relationship between Gene Expression and Clinical Characteristics, Kaplan-Meier Survival Analysis and ROC analysis. A, E, Pathologic stage of ZEB1 
and ZEB2. B, F, respectively showing the tumor stage of ZEB1 and ZEB2 expressions in KIRC. C, G, metastasis stage of ZEB1 and ZEB2. D, H Histologic grade 
of ZEB1 and ZEB2 expressions. I, Survival curves of overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) between ZEB1-high 
and -low patients with KIRC. K, OS, DSS, and PFI between ZEB2-high and -low patients with KIRC. J, L, Receiver operating characteristic curve of ZEBs in 
diagnosis of KIRC. Note: ns (not significant); **P < 0.01; ***P < 0.001
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Subsequently, the top 20 genes that are most closely asso-
ciated with ZEB1 in KIRC were selected and presented 
in Fig. 5B, while Fig. 5C displayed the top 20 genes that 
are most closely associated with ZEB2. Further analy-
sis was conducted through KEGG and GO enrichment 
analyses of the 588 genes that co-expressed with ZEB1 
and ZEB2. The results of the top 20 vital terms of BP, 
MF, and CC enrichment were presented in Fig.  5D-F. 
Finally, the KEGG analysis of ZEB1 and ZEB2 was pre-
sented in Fig.  5G. As previously indicated, the enrich-
ment analysis revealed that ZEB1 and ZEB2 were 

significantly associated with BP related to anoikis, spe-
cifically in the regulation of cell-substrate junction orga-
nization, cell-substrate junction assembly, Ras protein 
signal transduction, regulation of focal adhesion assem-
bly, ameboidal-type cell migration, cell-matrix adhesion, 
cell-substrate adhesion, and focal adhesion assembly. 
Additionally, the KEGG analysis demonstrated that ZEB1 
and ZEB2 were enriched for anoikis-related processes, 
including Regulation of actin cytoskeleton, Focal adhe-
sion, and Proteoglycans in cancer.

The association between ZEB1 and ZEB2 with genes 
related to anoikis in KIRC
In previous studies, a total of 338 genes associated with 
anoikis were acquired from the GeneCards database 
(https//www.genecards.org/). Only genes with a rele-
vance score higher than 1.0 were included. Through inte-
gration with the TCGA-KIRC database, 42 genes linked 
to anoikis were found to exhibit significant differences 
compared to the normal controls. These differences were 
determined based on a P-value below 0.05 and an abso-
lute logarithmic (base 2) fold-change value surpassing 2. 
Out of these genes, 32 showed upregulation, whereas 10 
exhibited downregulation (Fig. 6A). According to Fig. 6D, 
ZEB1 was linked to 28 genes while ZEB2 was associated 
with 31 genes. Afterwards, a protein-protein interaction 
(PPI) study was performed on the 42 genes associated 
with anoikis. The results indicated that ZEB1 and ZEB2 
exhibited associations with CCND1, BIRC5, MMP9, 
GRHL2, EGF, VEGFA, CDH3, CDKN2A, and CXCR4 
(Fig. 6E).

The potential biological functions of 42 genes, ZEB1 
and ZEB2 were investigated through the utilization of 
the XIANTAO platform. GO enrichment analyses and 
KEGG enrichment analyses were performed. The results 
showed that the important GO terms were connected to 
processes related to inhibiting cadherin-mediated cell-
cell adhesion (biological processes), as well as platelet 
alpha granule, collagen-containing extracellular matrix, 
and membrane microdomain (cellular component). 
Furthermore, the signaling receptor activator ac tivity’s 
molecular function was identified (Supplementary Fig. 5). 
In Fig.  6B-C, the KEGG enrichment analysis indicated 
that Proteoglycans in cancer, Hippo signaling pathway, 
FoxO signaling pathway, Focal adhesion and microRNAs 
were associated with ZEB1, ZEB2, and 42 genes. The 
results indicate a potential correlation between ZEB1 and 
ZEB2 and anoikis in KIRC.

Prediction of microRNAs targeting ZEB1 or ZEB2
Following this, by employing the overlap of three sepa-
rate microRNA databases, a sum of 13 microRNAs were 
anticipated to aim at ZEB1, whereas 17 microRNAs were 
projected to target ZEB2, as illustrated in Fig.  7A-B. 

Table 1 ZEB1 single-gene logistic regression
Characteristics Total 

(N)
OR (95% CI) P 

value
Pathologic T stage (T3&T4&T2 
vs. T1)

532 0.513 (0.363–0.724) < 0.001

Pathologic N stage (N1 vs. N0) 256 0.600 (0.211–1.703) 0.337
Pathologic M stage (M1 vs. M0) 500 0.457 (0.276–0.755) 0.002
Pathologic stage (Stage 
III&Stage IV&Stage II vs. Stage I)

529 0.507 (0.359–0.716) < 0.001

Primary therapy outcome 
(PR&CR vs. PD&SD)

138 1.259 (0.444–3.574) 0.665

Gender (Male vs. Female) 532 0.730 (0.511–1.044) 0.085
Race (White vs. Asian&Black or 
African American)

525 1.233 (0.730–2.085) 0.434

Age (> 60 vs. <= 60) 532 0.718 (0.510–1.010) 0.057
Histologic grade (G3&G4 vs. 
G1&G2)

524 0.430 (0.302–0.611) < 0.001

Serum calcium (Normal vs. 
Low&Elevated)

364 0.596 (0.390–0.909) 0.016

Hemoglobin (Normal vs. 
Low&Elevated)

452 0.971 (0.667–1.413) 0.876

Laterality (Right vs. Left) 531 1.137 (0.808–1.599) 0.462

Table 2 ZEB2 single-gene logistics regression
Characteristics Total 

(N)
OR (95% CI) P 

value
Pathologic T stage (T3&T4&T2 
vs. T1)

532 0.616 (0.438–0.868) 0.006

Pathologic N stage (N1 vs. N0) 256 1.374 (0.496–3.810) 0.541
Pathologic M stage (M1 vs. M0) 500 0.855 (0.528–1.383) 0.523
Pathologic stage (Stage III&Stage 
IV&Stage II vs. Stage I)

529 0.620 (0.440–0.873) 0.006

Primary therapy outcome 
(PR&CR vs. PD&SD)

138 1.329 (0.465–3.795) 0.596

Gender (Male vs. Female) 532 0.952 (0.667–1.359) 0.785
Race (White vs. Asian&Black or 
African American)

525 2.091 (1.210–3.615) 0.008

Age (> 60 vs. <= 60) 532 0.655 (0.466–0.922) 0.015
Histologic grade (G3&G4 vs. 
G1&G2)

524 0.639 (0.452–0.902) 0.011

Serum calcium (Normal vs. 
Low&Elevated)

364 0.672 (0.441–1.023) 0.064

Hemoglobin (Normal vs. 
Low&Elevated)

452 1.201 (0.825–1.749) 0.338

Laterality (Right vs. Left) 531 1.137 (0.808–1.599) 0.462

http://www.genecards.org/
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Figure 7C and D depict the correlation between ZEB1/2 
and microRNA. Furthermore, a boxplot examination 
demonstrated a notable decrease in seven microRNAs 
that target ZEBs among KIRC patients, while 12 microR-
NAs targeting ZEBs showed a significant increase. Nota-
bly, four microRNAs exhibited no discernible impact 
(Fig.  7E). Supplemental Table 3 shows P-values and 

confidence intervals for microRNAs targeting ZEB1/2. 
The study findings suggest that ZEB1 showed a posi-
tive association with hsa-miR-139-5p and hsa-miR-
23b-3p, while displaying a negative association with 
hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-96-5p, hsa-
miR-130b-3p, hsa-miR-200b-3p, hsa-miR-200a-3p, hsa-
miR-200c-3p, and hsa-miR-429 (Supplementary Fig. 6A). 

Fig. 4 Explore the interaction genes and proteins of ZEBs, and GSEA analysis of ZEBs. A, Using GeneMania explored the gene-gene interaction network of 
ZEB1 and ZEB2. B, Using STRING constructed the protein-protein interaction (PPI) network of ZEB1 and ZEB2. C, the overlap of top 20 genes and proteins 
separately predicted by GeneMania and STRING database. D, A circos diagram revealed the wnt- pathway associated genes relation with ZEB1 and ZEB2 
in KIRC. E, Reactome pathway analysis of ZEB1 using GSEA. F, Reactome pathway analysis of ZEB2 using GSEA
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Fig. 5 KEGG and GO enrichment analysis for ZEB1 and ZEB2 in TCGA database about KIRC. A, Intersection co-expression genes of ZEB1 and ZEB2. B, the 
top 20 co-expression genes positively correlated with ZEB1 in KIRC were shown by heat map. C, the top 20 co-expression genes positively correlated 
with ZEB2. D–G, Top 20 enrichment terms about ZEB1 and ZEB2 in BP (D), CC (E), and MF (F) categories in KIRC. G, A chord diagram showed KEGG enrich-
ment in KIRC. Note: GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell 
carcinoma; BP, biological process; CC, cellular component; MF, molecular function
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Furthermore, ZEB2 exhibited a positive association 
with hsa-miR-153-3p, hsa-miR-181a-5p, and hsa-miR-
335-5p, while demonstrating a negative association with 
hsa-miR-429, hsa-miR-215-5p, hsa-miR-205-5p, hsa-
miR-200b-3p, hsa-miR-200a-3p, hsa-miR-30e-5p, and 
hsa-miR-30c-5p (Supplementary Fig. 6B).

Developing a predictive model for assessing risk in 
the TCGA cohort by utilizing microRNAs that target 
either ZEB1 or ZEB2.

By univariate Cox regression analysis, Fig. 8A demon-
strates the identification of eight microRNAs that target 
ZEB1 or ZEB2 with a significance level of P < 0.05. Out 
of these, four microRNAs (hsa-miR-153-3p, hsa-miR-
130b-3p, hsa-miR-138-5p, and hsa-miR-96-5p) were 

recognized as potential hazards, whereas the other four 
(hsa-miR-144-3p, hsa-miR-139-5p, hsa-miR-215-5p, and 
hsa-miR-23b-3p) were identified as potential safeguards. 
Following the outcomes of the univariate Cox regression, 
we preformed LASSO regression analysis (Fig.  8B, C). 
Ultimately, a predictive model concerning microRNAs 
was built utilizing hsa-miR-138-5p and hsa-miR-130b-3p 
via LASSO regression. Following this, a regression analy-
sis using multiple variables was performed, which indi-
cated that hsa-miR-130b-3p and hsa-miR-138-5p were 
recognized as genes with potential risk (Fig. 8D). A pre-
dictive indicator was subsequently created for every can-
cer sample, using the subsequent equation: Risk score 
= (hsa-miR-130b-3p expression level × 0.096293506) + 

Fig. 6 Correlation analysis of ZEB1, ZEB2 expression with anoikis-related genes in TCGA-KIRC database. A, Volcano plot presented the different expres-
sions of anoikis-related genes and normal control genes. B, A bubble chart shows top 20 KEGG enrichment pathways for ZEB1, ZEB2 and the 42 genes in 
KIRC. C, A bubble chart shows top 20 KEGG enrichment pathways with z-score for ZEB1, ZEB2 and the 42 genes. D, The correlations of ZEB1, ZEB2 and the 
42 genes. E, The PPI network of ZEB1, ZEB2 and the differently expressed 42 genes. *P < 0.05; **P < 0.01
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(hsa-miR-138-5p expression level × 0.124749346). To 
verify the prognostic ability of the microRNAs model for 
KIRC patients, 266 individuals were separated into two 
groups, the low-risk group (n = 133) and the high-risk 
group (n = 133), by using the median risk score thresh-
old. In comparison to the low-risk group, the high-risk 
group displayed a higher fatality rate and shorter lifespan. 
Higher scores were a sign of a worse outlook for patients 
diagnosed with KIRC. Figure 8E depicts the distribution 
of risk scores and highlights the elevated mortality rate 
observed in the higher risk group when compared to 
the lower risk group. The heatmap analysis reveals that 
hsa-miR-138-5p and hsa-miR-130b-3p exhibit higher 
expression levels in individuals classified as high risk, 

as opposed to those classified as low risk. Furthermore, 
Kaplan-Meier analysis demonstrates that patients cat-
egorized as low risk exhibit a longer overall survival com-
pared to those classified as high risk (Fig.  8F). Finally, 
the sensitivity and specificity of the 2-microRNA sig-
nature model were assessed using a receiver operating 
characteristic (ROC) curve. The ROC curves (AUCs) for 
the model at one, three, and five years were found to be 
0.700, 0.715, and 0.717, respectively, indicating a favor-
able predictive ability (Fig.  8G, left panel). Additionally, 
the testing group consisting of 133 patients (Fig.  8G, 
middle panel) and the entire group of 266 patients were 
subjected to the risk score ROC analysis (Fig.  8G, right 
panel). Based on the aforementioned analysis, it can be 

Fig. 7 Prediction of microRNAs targeting ZEB1 or ZEB2. A, B, Venn results of microRNAs which could bind with ZEB1 (A) and ZEB2 (B) predicted by Tar-
getScan, miRTarBase and miRDB. C, D, Network of microRNAs targeting ZEB1(C) and ZEB2(D). E, The expressions of microRNAs targeting ZEB1 or ZEB2 
were shown. ***P < 0.001
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Fig. 8 Construction and validation of a risk prognostic model based on differential microRNAs targeting ZEB1 or ZEB2 in testing, training, and entire 
sets. A, Univariate Cox regression analysis was performed for all differential microRNAs targeting ZEB1 or ZEB2. A value of P < 0.05 was considerated 
statistically signifcant. B, LASSO regression of the 8 OS-related microRNAs. C, Cross-validation for tuning the parameter selection in the LASSO regression. 
D, Multivariate Cox regression analysis was performed on the genes derived from the LASSO regression analysis. E-G, The distribution of overall survival 
risk scores, survival status, heatmaps of microRNA expression (E), Kaplan-Meier curves for survival status and survival time in the training, validation, and 
overall groups(F), time-dependent ROC curves are used to show whether microRNA signatures are predictive of 1-, 3-, and 5-year overall survival (OS) in 
the training, validation, and overall groups(G)
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concluded that this risk prognosis model is both feasible 
and dependable. In addition, supplementary Tables 4 
and 5 describe the relationship between the expression 
of hsa-miR-130b-3p and hsa-miR-138-5p in KIRC with 
clinical characteristics. hsa-miR-130b-3p and hsa-miR-
138-5p are closely related to the progression of KIRC.

Correlation between ZEB1, ZEB2 with immunocyte 
infiltration
To obtain additional understanding regarding the cor-
relation between the manifestation of ZEB1, ZEB2 and 
infiltrating immune cells was carried out. The investiga-
tion involved six different categories of immune cells, 
which consisted of CD4 + T cells, CD8 + T cells, B cells, 
neutrophils, dendritic cells, and macrophages. In Supple-
mentary Fig. 7A-B, the findings suggest a strong correla-
tion between ZEB1 and the CD4 + T cells, CD8 + T cells, 
neutrophils, dendritic cells, macrophages, and with little 
impact on B cells. In contrast, ZEB2 showed a notewor-
thy association with each of the six categories of immune 
cells. We calculated the immune scores, stromal scores, 
and ESTIMATE scores for every KIRC patient using the 
ESTIMATE method. By conducting a Spearman cor-
relation analysis, we discovered a positive correlation 
between the expression of ZEB1 and both stromal scores 
and ESTIMATE scores. However, there was no correla-
tion observed with the immune score (Supplementary 
Fig.  7C). Moreover, the expression of ZEB2 showed a 
clear association with the immune score, stromal score, 
and ESTIMATE score in KIRC (Supplementary Fig. 7D). 
The correlation between the manifestation of ZEB1 and 
ZEB2 and widely recognized T-cell checkpoints was con-
firmed in the TISIDB database. Significantly, in KIRC, 
the levels of KDR, ADORA2A, PDCD1LG2, IL10RB, and 
PDCD1 showed a robust association with ZEB1 expres-
sion. Furthermore, ZEB2 exhibited a notable correlation 
with PDCD1LG2, IL10, KDR, CSF1R, and BTLA, as indi-
cated by the supporting data in Supplementary Fig. 7E-F.

Results for the analysis of immune cell infiltration for 
ZEB1 and ZEB2 are shown in Fig.  9A-B, respectively. 
Infiltration of CD8 T cells, DC, eosinophils, iDC, mast 
cells, neutrophils, NK CD 56bright cells, NK CD56dim 
cells, NK cells, pDC, T helper cells, Tcm, Tem, Tgd, Th2 
cells, and TReg varied between the high and low ZEB1 
groups (Fig. 9A). In the same way, the groups with high-
ZEB2 and low-ZEB2 showed varying levels of infiltration 
by the mentioned types of immune cells (Fig. 9B).

The primary focus of Fig. 9C is to showcase the pres-
ence of ZEB1 in the tumor microenvironment (TME) of 
KIRC. ZEB1 showed a favorable association with different 
types of immune cells, such as Tem cells, mast cells, NK 
cells, T helper cells, Tcm cells, pDCs, Tgd cells, neutro-
phils, DCs, Eosinophils, NK CD56dim cells, CD8 T cells, 
Th1 cells, iDCs, and Th2 cells. According to the research, 

ZEB1 showed an inverse relationship with NK CD56 
(bright) cells and regulatory T cells (TReg), whereas 
ZEB2 displayed a direct correlation with T helper cells, 
Tcm, Tem, mast cells, eosinophils, macrophages, Tgd, 
DC, neutrophils, NK cells, Th2 cells, Th1 cells, iDC, T 
cells, pDC, aDC, B cells, NK CD56dim cells, and CD8 T 
cells. Furthermore, ZEB2 demonstrated an inverse asso-
ciation with NK CD56bright cells, as depicted in Fig. 9D.

This study was to explore the possible influence of 
immune infiltration on the prognosis of KIRC by analyz-
ing ZEB1, ZEB2 expression. The examination uncovered 
the correlation between ZEB1, ZEB2 and unfavorable 
prognoses in KIRC. In order to explore the expression 
of ZEB1, ZEB2 effect on the prognosis of KIRC, we 
examined their levels in the respective subcategories of 
immune cells. The results shown in Fig. 9E suggest that 
KIRC patients with elevated ZEB1 expression demon-
strate limited infiltration of type 2 T-helper cells, natural 
killer T-cells and B-cell. Additionally, a noteworthy cor-
relation was found between ZEB1 levels and progno-
sis of KIRC in a cohort consisting of different levels of 
regulatory CD8 + T cells, CD4 + memory-T cells, T cells, 
basophils, eosinophils, macrophages, and Mesenchy-
mal stem cells (Fig.  9E). Significantly, KIRC individuals 
showing increased ZEB2 levels and limited infiltration of 
CD4 + memory-T cells and macrophages demonstrated a 
worse prognosis. Furthermore, a strong association was 
found between increased levels of Type 2 T-helper cells 
and elevated ZEB2 levels, which significantly impacted 
the prognosis of KIRC (Fig. 9F). The results indicate that 
the invasion of ZEB1 and ZEB2 into the immune system 
may have a potential effect on the prognosis of individu-
als diagnosed with KIRC. Furthermore, supplementary 
Table 6 presents the correlation between the expres-
sion levels of hsa-miR-130b-3p and hsa-miR-138-5p and 
immune evasion genes in KIRC. The findings suggest a 
potential association between hsa-miR-130b-3p and hsa-
miR-138-5p and immune evasion mechanisms.

In order to improve the thoroughness and strength of 
the results, analysis of two separate scRNA-seq datas-
ets indicated ZEB1 expression was principally detected 
in endothelial cells. Additionally, CD4 naive T cells 
(CD4Tn), B cells (B), natural killer cells (NK), Type 1 T 
helper cells (Th1), CD8 + T cells (CD8Tex), CD8 effector 
T cells (CD4Teff), and natural killer cells (NK) exhibited 
reduced levels of ZEB1 expression (Fig.  10A, B, E and 
F). Furthermore, ZEB2 exhibited prominent expression 
in diverse immune cell populations, such as M1 and M2 
macrophages, monocytes, fatigued pDCs, NK cells, Mast 
cells, cDC1, CD8Tex, CD8 Teff, Tprolif, B cells, and endo-
thelial cells (Fig. 10C, D, E, and F). The possible impor-
tance of ZEB1 and ZEB2 in the TME of KIRC expands to 
their influence on both stromal and immune cells.
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Functional analysis of ZEBs with CancerSEA
The application of single-cell sequencing technology 
offers an unmatched opportunity to accurately decipher 
the functional conditions of cancer cells at an individual 

cellular level. To determine the expression of the ZEB 
family in RCC, we analyzed the functional states of the 
ZEB family in RCC by examining published gene profil-
ing studies available on CancerSEA (http //biocc.hrbmu.

Fig. 9 The correlations of ZEB1, ZEB2 and immune infiltration in KIRC tissues by using TCGA dataset. A, B, Differences in immune cell infiltration in ZEB1 (A) 
and ZEB2 (B) high and low expression groups through ssGSEA. C, D, lollipop charts showed the correlation of ZEB1 (C) and ZEB2 (D) with all 24 types of im-
mune cells. E, F, Forest plots show the prognostic value of ZEB1 (E) and ZEB2 (F) expression according to different immune cell subgroups in KIRC patients
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edu.cn/CancerSEA/). The analysis uncovered a strong 
association between ZEB1 and ZEB2 with RCC. In renal 
cell carcinoma (RCC), the expression of ZEBs shows 
a positive correlation with four functional conditions: 
angiogenesis, hypoxia, differentiation, and stemness. This 
correlation is supported by Spearman’s coefficients of 
0.24, 0.28, 0.30, and 0.40, respectively, and a significance 
level below 0.05 (P < 0.05). In contrast, ZEBs expression 
shows a negative correlation with EMT and invasion. The 

Spearman’s coefficients for both are − 0.26 and − 0.29, 
respectively, with a significance level of P < 0.05, as illus-
trated in Fig. 11A, C. Using t-SNE, the analysis was con-
ducted on the distribution of ZEBs expression in renal 
carcinoma cells, which unveiled that cells demonstrating 
elevated ZEBs expression had a propensity to form clus-
ters. The aforementioned observation suggests that this 
distribution pattern could potentially aid in the malig-
nant advancement of RCC, as illustrated in Fig. 11B.

Fig. 10 Expression of ZEB1 and ZEB2 in scRNA-seq landscapes by TISCH. A, B, Heatmaps of ZEB1 (A) and ZEB2 (B) expression displayed heterogeneity in 
different clusters of cells in KIRC_GSE111360 and KIRC_GSE139555 datasets. C, D, Violin diagrams depict the ZEB1 (C) and ZEB2. (D) expression in different 
immune cells across each dataset analyzed. E, F, Expression of ZEB1 (E) and ZEB2 (F) in GSE111360 and in GSE139555 datasets after Uniform Manifold Ap-
proximation and Projection (UMAP) processing
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Discussion
It was found that RCC is the second-most frequently 
occurring urological malignancy, and kidney renal clear 
cell carcinoma (KIRC) is most prevalent [24]. The clini-
cal management of RCC involves the use of different 
treatment approaches, such as targeted therapy, chemo-
therapy, radiofrequency ablation, surgical procedures, 
and immunotherapy [25]. The uncertainty surrounding 
the predictive significance of a signature or indicator for 
ccRCC patients persists. Although medical profession-
als have made significant progress in treating ccRCC, the 
prognosis for individuals with advanced and metastatic 
conditions remains unsatisfactory [26]. Over a span of 

three years, the approximate survival rate for individuals 
with lymph node metastases is around 20–30%. Patients 
with advanced RCC often receive targeted therapies, 
like sunitinib, but resistance to these treatments usually 
emerges within 6–15 months, leading to an overall unsat-
isfactory survival rate [27–29]. Hence, it is crucial to pur-
suit possible mechanism that contribute to RCC and to 
establish reliable indicators for prognosis.

By conducting bioinformatics analyses on publicly 
accessible data sources like TIMER2.0, UALCAN, and 
TCGA, we have noticed increased expressions of ZEB1 
and ZEB2 in KIRC when compared to normal kidneys. 
Previous reports have indicated that ZEB1 and ZEB2 

Fig. 11 The expression levels of ZEB1 and ZEB2 at single-cell levels in RCC. A, The relationship between ZEBs expression and different functional states 
in RCC was explored by the CancerSEA tool. B, ZEBs expression profiles were shown at single cells from RCC by T-SNE diagram. C, Detailed functional cor-
relations in RCC. *p < 0.05; **p < 0.01; ***p < 0.001
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might function as oncogenes, contributing to the devel-
opment of ccRCC [30, 31]. Furthermore, our inquiry 
uncovered that the undermethylation of ZEB1 and ZEB2 
might contribute to their increased expression in KIRC 
tumors. Following this, a study was performed on KIRC 
patients to determine the clinical prognostic importance 
of ZEB1 and ZEB2.Significantly, in patients with KIRC, 
increased levels of ZEB1 and ZEB2 showed notable cor-
relations with gender, histological grade, age, TNM stage, 
and clinical stage. Moreover, the Kaplan-Meier analysis 
revealed a considerably higher rate of survival among 
KIRC individuals exhibiting elevated ZEB1 or ZEB2 lev-
els in contrast to those displaying lower expression. The 
results indicate that ZEB1 and ZEB2 could potentially 
function as prognostic indicators in KIRC and promote 
the progress of precision oncology targeting.

In both GO and KEGG, the TCGA-KIRC cohort dem-
onstrates a concentration of co-expressed genes related 
to ZEB1 and ZEB2.According to the GO analysis, ZEB1 
and ZEB2 are involved in multiple biological processes, 
such as Ras protein signaling, controlling the assembly of 
focal adhesion, ameboidal-type cell migration, actin cyto-
skeleton, focal adhesion, and binding to cadherin. Anoikis 
has also been associated with these processes in previous 
studies [32]. In the context of integrin-mediated adhe-
sion, the activation of focal adhesion kinase (FAK) has 
been observed to inhibit anoikis, indicating the crucial 
role of focal adhesion in this process [33, 34]. Moreover, 
a GSEA investigation has revealed a noteworthy correla-
tion between ZEB1 and ZEB2 with Signaling by Wnt in 
Cancer and Complement Cascade pathways, which are 
strongly connected to both anoikis and immune infiltra-
tion [35, 36].

The mechanism of anoikis defense aims to hinder the 
abnormal growth of shed cells and stop their improper 
attachment to a matrix [37]. The occurrence of anoi-
kis is strongly linked to the development of tumors and 
the ability to resist treatment [38]. The manifestation 
of anoikis is highly associated with tumor formation 
and resistance to treatment [39]. As tumors dissemi-
nate, cancerous cells migrate from their primary site 
and acclimate to anomalous growth in distant locations. 
Numerous techniques have been exhibited to attain 
resistance to anoikis in tumors, such as the regulation of 
the expression of cell adhesion molecules and the man-
agement of oxidative stress [40]. However, additional 
research is necessary to determine the exact process 
through which KIRC evade anoikis. Previous research 
has suggested that ccRCC cells resistant to anoikis 
exhibit uncontrolled growth and a lack of responsiveness 
to detachment-induced apoptosis. In addition, the stud-
ied population exhibited an increase of Tyrosine receptor 
kinase B (TrkB) compared to the parental ccRCCs [41]. 
According to a recent study, the use of quinazoline-based 

medications to activate focal adhesion survival signaling 
has been found to trigger anoikis in RCC. This discovery 
presents a hopeful treatment strategy for addressing this 
illness [42].

Genes linked to anoikis include ZEB1 and ZEB2. In 
particular, the ZEB1 gene has been discovered to con-
tribute to the development of resistance to anoikis, while 
also facilitating migration and invasion in reaction to 
TrkB37 [43]. Furthermore, studies have indicated that 
excessive expression of RARA results in an elevation of 
ZEB2, a crucial element in promoting epithelial-mesen-
chymal transition (EMT) and facilitating the evasion of 
anoikis and proliferation of breast cancer cells [44]. Anoi-
kis resistance and oncogenic EMT are closely related. 
Breakdown of E-cadherin expression or function is a 
characteristic of EMT [45–47]. Anoikis can be avoided 
in certain contexts by targeting the E-cadherin gene [48]. 
For example, a mouse mammary tumor model or a mam-
mary epithelial cell line expressing E-cadherin knockout 
confer anoikis resistance [49]. This finding suggests that 
EMT-promoting transcription factors such as ZEB1 and 
ZEB2 may potentially block anoikis by directly regulating 
apoptosis control genes and suppressing the expression 
of E-cadherin. ZEB1 and ZEB2, in relation to KIRC, have 
been discovered to have a strong association with 42 dis-
tinct genes and proteins that play a role in anoikis. More-
over, the examination of KEGG enrichment has indicated 
that the process of MicroRNAs in cancer is predomi-
nantly linked to ZEB1, ZEB2, and the 42 genes related 
to anoikis. The imbalance of miRNAs plays a major role 
in cancer cell survival strategies, such as resistance to 
anoikis, which is essential for facilitating metastasis [35]. 
An example of this is when microRNA-6744-5p induces 
anoikis in breast cancer by specifically targeting the 
NAT1 enzyme [50]. On the other hand, diminished lev-
els of miR-30a in metastatic HCC promote Beclin 1 and 
Atg5-mediated autophagy, leading to increased resis-
tance against anoikis [9]. The results of our study suggest 
that the prognostic value for KIRC patients can be deter-
mined by the signatures of hsa-miR-130b-3p and hsa-
miR-138-5p. Previous studies have shown that exosome 
miR-130b-3p, which specifically targets SIK1, has the 
ability to hinder the advancement of medulloblastoma 
[51]. Furthermore, early lupus nephritis patients with 
kidney damage have shown increased levels of serum 
miR-130b-3p [52]. In the case of endometrial cancer, the 
increase in miR-130b levels has been demonstrated to 
decrease the expression of ZEB1 and weaken the pro-
cess of EMT [53]. Moreover, there is a notable correla-
tion between RCC and hsa-miR-138-5p, which has a vital 
function in advancing cancer growth through the regula-
tion of ZEB2 [54]. Furthermore, viruses have been asso-
ciated with the regulation of apoptosis, autophagy, and 
anoikis pathways through the modulation of miRNAs 
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[55]. Promoting anoikis, the miR-200 family, specifically 
miR-200c, directly targets ZEB1 and ZEB2 [56].Within 
KIRC, hsa-miR-130b-3p and hsa-miR-138-5p have been 
identified as inhibitors of the expression of ZEB1 and 
ZEB2, respectively. These microRNAs may play a role in 
the regulation of anoikis in KIRC by targeting ZEB1 and 
ZEB2.

ZEB1 and ZEB2 are expressed by myeloid and lym-
phoid immune cells, including dendritic cells, mac-
rophages, monocytes, B cells, T cells, and NK cells, 
according to the present knowledge [57]. The dissemi-
nation of this knowledge has been extensive. ZEB1 has 
been discovered to promote the generation of immune-
suppressive cells and chemokines within the tumor 
microenvironment (TME), leading to the formation of 
an immunosuppressive barrier around infiltrating can-
cer cells by activating immune checkpoints, leading to 
an immunosuppressive microenvironment [58, 59]. In 
the context of colon cancer, ZEB2 has been recognized 
as a crucial participant in the immune microenvironment 
[60]. Through GSEA enrichment analyses, the current 
investigation has revealed the participation of ZEB1 and 
ZEB2 in various pathways, specifically the complement 
cascade. It is worth mentioning that the upregulation of 
ZEB1 expression is caused by the activation of p38 mito-
gen-activated protein kinase (MAPK) through C5a secre-
tion from mesenchymal stem-like cells [61]. Complement 
systems, being ancient and indispensable constituents of 
innate immunity, impede immune responses that rely on 
cellular proliferation [36, 62]. Furthermore, the initiation 
of the traditional complement pathway by MUC1 pos-
sesses the capability to regulate the immune response 
within the clear cell renal cell carcinoma (ccRCC) micro-
environment and control immune infiltration, ultimately 
leading to the promotion of an immunosuppressive 
microenvironment [63]. It is still not clear how ZEB1/2 
interacts with complement to affect KIRC immunoinfil-
tration. According to our study, diminished amounts of 
ZEB1 and ZEB2 in kidney cancer are associated with a 
decline in the infiltration of different immune cells, such 
as B cells, neutrophils, CD4 + T cells, dendritic cells, 
CD8 + T cells, and macrophages. The results of our study 
indicate that ZEB1 and ZEB2 have the potential to be 
effective targets for immune-related treatment in KIRC. 
Nevertheless, additional inquiry is required to clarify 
the exact way in which ZEB1 and ZEB2 engage with the 
tumor-immune microenvironment.

Although there has been advancement in current stud-
ies regarding the connection between ZEB1, ZEB2, anoi-
kis, and immune infiltration in KIRC, there are still some 
existing constraints. Despite investigating the associa-
tion between these factors in KIRC patients, the precise 
mechanisms through which ZEB1 and ZEB2 trigger anoi-
kis and immune infiltration remain uncertain. Another 

observation indicated that the presence of ZEB1 and 
ZEB2 was weak among KIRC patients, and their expres-
sion was associated with immune infiltration. However, 
further investigation is crucial to clarify the evident regu-
latory processes that control the growth of tumors, their 
spread, and the invasion of the immune system, which 
involve ZEB1 and ZEB2. In current research, there have 
been multiple examinations conducted on the mRNA 
makeup of ZEB1 and ZEB2, which is the third point of 
analysis. However, a more comprehensive inquiry based 
on protein composition may enhance the persuasiveness 
of the findings. Furthermore, our investigation uncovered 
a noteworthy correlation between ZEB1 and ZEB2 with 
both detachment-induced cell death and immune cell 
infiltration. Nonetheless, the exact association between 
immune infiltration and anoikis, along with the possible 
participation of ZEB1 and ZEB2 in these interconnected 
mechanisms, is yet to be clarified. Furthermore, a sub-
sequent inquiry uncovered that ZEB1 and ZEB2 have a 
vital function in enhancing anoikis and the invasion of 
immune cells in the tumor microenvironment among 
patients with KIRC. As a result, these findings contribute 
to our understanding of the characteristics of ZEB1 and 
ZEB2, as well as their practical implications in predicting 
and treating KIRC.

Conclusion
In summary, in this systematic bioinformatics analysis 
of KIRC, our research has revealed that the ZEB fam-
ily serves as a prognostic marker for KIRC, exhibiting a 
strong association with anoikis and immune infiltration, 
primarily under the regulation of microRNA.
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