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Abstract
Background Thoracic aortic aneurysm/dissection (TAAD) and patent ductus arteriosus (PDA) are serious autosomal-
dominant diseases affecting the cardiovascular system. They are mainly caused by variants in the MYH11 gene, which 
encodes the heavy chain of myosin 11. The aim of this study was to evaluate the genotype–phenotype correlation of 
MYH11 from a distinctive perspective based on a pair of monozygotic twins.

Methods The detailed phenotypic characteristics of the monozygotic twins from the early fetal stage to the infancy 
stage were traced and compared with each other and with those of previously documented cases. Whole-exome and 
Sanger sequencing techniques were used to identify and validate the candidate variants, facilitating the analysis of 
the genotype–phenotype correlation of MYH11.

Results The monozygotic twins were premature and presented with PDA, pulmonary hypoplasia, and pulmonary 
hypertension. The proband developed heart and brain abnormalities during the fetal stage and died at 18 days after 
birth, whereas his sibling was discharged after being cured and developed normally post follow-up. A novel variant 
c.766 A > G p. (Ile256Val) in MYH11 (NM_002474.2) was identified in the monozygotic twins and classified as a likely 
pathogenic variant according to the American College of Medical Genetics/Association for Molecular Pathology 
guidelines. Reviewing the reported cases (n = 102) showed that the penetrance of MYH11 was 82.35%, and the most 
common feature was TAAD (41.18%), followed by PDA (22.55%), compound TAAD and PDA (9.80%), and other vascular 
abnormalities (8.82%). The constituent ratios of null variants among the cases with TAAD (8.60%), PDA (43.8%), or 
compound TAAD and PDA (28.6%) were significantly different (P = 0.01). Further pairwise comparison of the ratios 
among these groups showed that there were significant differences between the TAAD and PDA groups (P = 0.006).

Conclusion This study expands the mutational spectrum of MYH11 and provides new insights into the genotype–
phenotype correlation of MYH11 based on the monozygotic twins with variable clinical features and outcomes, 
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Introduction
Thoracic aortic aneurysm/dissection (TAAD) is a disease 
with an extremely high mortality rate [1] and is divided 
into three types: sporadic, syndromic, and hereditary 
non-syndromic [2]. The major risk factor for sporadic 
TAAD is hypertension, which typically occur in older 
adults [3]. Syndromic TAAD is often observed in syn-
dromes of connective tissue diseases, such as vascular 
Ehlers–Danlos syndrome and aneurysms osteoarthri-
tis syndrome [2, 4, 5]. The main molecular and genetic 
mechanisms of hereditary non-syndromic TAAD are 
unclear. Hereditary non-syndromic TAAD is partly 
caused by variants in genes that encode the contractile 
proteins of vascular smooth muscle cells (SMCs) [6]. 
Various genes, including ACTA2, MYH11, MYLK, and 
PRKG1, have been identified to be responsible for heredi-
tary non-syndromic TAAD, which is typically accom-
panied by patent ductus arteriosus (TAAD/PDA) [6]. 
Hereditary TAAD/PDA is genetically heterogeneous and 
inherited in an autosomal-dominant manner [7].

MYH11 (OMIM:160,745) is on chromosome 16p13.11 
and encodes the heavy chain of myosin 11 protein [8]. 
This contractile protein is found in arterial vascular 
SMCs and plays a critical role in maintaining vascu-
lar wall stability [9]. variants in MYH11 result in incor-
rect assembly of the myosin filament and microfilament, 
thereby affecting the synthetic and contractile functions 
of SMCs [10, 11]. Pathogenic variants in MYH11 may 
result in hereditary TAAD/PDA, visceral myopathy 2, or 
megacystis–microcolon–intestinal hypoperistalsis syn-
drome [12]. The proliferation and migration of SMCs 
leads to the formation of intimal cushions in the ductus 
arteriosus after birth, and constriction of SMCs results 
in ductal contraction and permanent ductus closure [13, 
14]. variants of MYH11 that disrupt the formation of 
smooth muscle myosin heavy chains and SMC contrac-
tile function lead to hereditary TAAD/PDA [15].

Hereditary TAAD/PDA may result from pathogenic 
variants of MYH11. However, the mechanism of MYH11 
is quite complex and has not yet been completely under-
stood. The genotype–phenotype correlation of MYH11 
has not been definitively determined. Herein, we per-
formed phenotypic and genetic analysis of monozygotic 
twins in detail and further analyzed the complex geno-
type–phenotype association of MYH11.

Materials and methods
Whole-exome sequencing and analysis
Blood samples were collected from the proband and his 
parents into tubes containing EDTA for whole-exome 
sequencing, and genomic DNA was extracted from the 
blood according to the standard protocols of the DNeasy 
Blood & Tissue kit (Qiagen GmbH, Hilden, Germany). 
Human exome sequencing libraries were constructed 
using IDT xGen Exome Hyb Panel v2 (Integrated DNA 
Technologies, Coralville, IA, USA), and the generated 
amplicons were sequenced on an Illumina NovaSeq 
platform (San Diego, CA, USA) following the manufac-
turers’ instructions. The whole-exome sequences were 
analyzed and annotated using the Genome Analysis 
Toolkit. The sequencing fragments were compared with 
the reference genome of University of California Santa 
Cruz Genome Browser on Human (GRCh37/hg19) by 
Genome Analysis Toolkit HaplotypeCaller. The varia-
tion with frequency ≥ 3% in Genome Aggregation Data-
base (gnomAD), Exome Sequencing Projec (ESP), 1000 
Genomes Projec (1000G) databases and in-house data-
base and the nonfunctional variation (such as synony-
mous variation and variation in non-coding region) were 
removed. According to the American College of Medical 
Genetics/Association for Molecular Pathology (ACMG/
AMP) guidelines [16], the inclusion criteria for candi-
date variants were: [1] the phenotype of the patient was 
likely associated with the dominant Mendelian disease 
resulting from a heterozygous variant in an established 
causative gene; [2] the frequency of variants in the East 
Asian population in the databases of 1000 G, gnomAD, 
ESP, and our in-house database were below 0.5%; and [3] 
multiple in silico tools, such as CADD, Rare Exome Vari-
ant Ensemble Learner, Sorting Intolerant from Tolerant, 
and Polymorphism Phenotyping v2, indicated the variant 
to be deleterious.

Sanger sequencing and analysis
Sanger sequencing was conducted to validate the candi-
date variants. We designed a pair of primers (5′- A C T T 
G A C C T G T G G G G T T C T G-3′ (forward) and 5′- T A A C C 
A C T G C A C C A C A A T G C-3′ (reverse)) to amplify the cor-
responding DNA fragment with the identified MYH11 
variant, and the generated amplicons were sequenced 
on an ABI 3500xLDX platform (Applied Biosystems, 
Foster City, CA, USA). The sequencing chromatograms 
analyzed using Chromas confirmed the presence of the 
variant.

indicating that cryptic modifiers and complex mechanisms beside the genetic variants may be involved in the 
condition.
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Analysis of the genotype–phenotype correlation of MYH11
Data on the genotypes and phenotypes of MYH11 were 
obtained from databases including Clinvar (https://www.
ncbi.nlm.nih.gov/clinvar/), Human Gene Mutation Data-
base (https://www.hgmd.cf.ac.uk/ac/index.php), and 
PubMed (https://pubmed.ncbi.nlm.nih.gov/). The inclu-
sion criteria of the variants were as follows: pathogenic 
variants of MYH11 that were associated with TAAD/
PDA or wherein the result of functional studies sup-
ported classification as a deleterious variant. Phenotypic 
data were derived from the pedigrees of the reported 
cases. The Fisher’s exact test was applied to evaluate dif-
ferences in constituent ratios of specific type of varia-
tion among cases with different phenotypes using IBM 
SPSS Statistics 26. Statistical significance was defined 
as P < 0.05. The Bonferroni correction with an adjusted 
P value (P < 0.0167) was further applied to the pairwise 
comparison.

Results
Variable clinical manifestations and outcomes of the 
monozygotic twins
The proband (Fig.  1, II-1) and his brother (Fig.  1, II-2) 
were dichorionic-sac and diamniotic-sac twins and were 
born by spontaneous delivery at 30+ 3 weeks from non-
consanguineous and healthy parents (Fig.  1). Scanning 
and analyzing multiple genetic markers (short tandem 
repeat) suggested that they were monozygotic twins (data 
were shown in Supplementary Material S1). Their karyo-
types were 46, X, inv(Y) (p11q11), which can be men-
tioned as polymorphism. And no abnormality was found 
in the noninvasive prenatal testing or prenatal copy num-
ber variation sequencing.

In II-1, intrauterine growth retardation was observed 
at 14 weeks of gestation. The enlarged bilateral lateral 
ventricles (Fig.  2A), hydrocephalus, and persistent left 
superior vena cava (Fig. 2B) were observed in II-1 at 28+ 4 
weeks of gestation. II-1 was delivered as an extremely low 
birth weight infant, weighing 650 g. The Apgar scores at 
1, 5, and 10  min were recorded as 4-6-6. Assessments 
of bodily systems were conducted within the first day 
of birth in order to exclude any concurrent congenital 

Fig. 2 Color doppler ultrasound of II-1 during the fetal period. (A) Enlarged bilateral lateral ventricles; the dashed line 1 shows that the diameter of the 
lateral ventricle is 1.17 cm. (B) Persistent left superior vena cava. L-SVC: left superior vena cava, 3VT: the three vessels and trachea view

 

Fig. 1 Pedigree chart and results of Sanger sequencing of the family including non-consanguineous parents and monozygotic twins. A de novo hetero-
zygous missense variant, NM_002474.2: c.766 A > G p. (Ile256Val) in MYH11 was identified in II-1 and II-2

 

https://www.ncbi.nlm.nih.gov/clinvar/
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conditions. He exhibited mild tricuspid insufficiency and 
pulmonary arterial hypertension as along with neonatal 
respiratory distress and asphyxia at birth and stayed alive 
on a life support machine. Furthermore, PDA (4.6  mm) 
and right atrioventricular enlargement (cross diameter, 
11 mm) were observed in II-1. At 18 days of age, the duc-
tus arteriosus of II-1 remained patent, his condition dete-
riorated, and he developed hemodynamic deterioration 
and multiorgan failure, from which he ultimately died. 
Immunohistochemical examination of the lung tissue of 
II-1 was performed, which indicated congenital pulmo-
nary fibrosis.

II-2’s prenatal ultrasound revealed evidence of intra-
uterine growth restriction. He was born with a weight 
of 1230 g and the Apgar scores at 1, 5, and 10 min were 
recorded as 6-6-8. II-2 also exhibited neonatal respira-
tory distress and asphyxia at birth and stayed alive on 
a life support machine. The color doppler echocardiog-
raphy results for II-2 revealed patent ductus arteriosus 

(approximately 4.7  mm) with horizontal bidirectional 
shunt, atrial horizontal bidirectional shunt (approxi-
mately 2.8  mm), mild tricuspid insufficiency resulting 
in moderate pulmonary hypertension, normal range 
measurement of left ventricular systolic function. Func-
tional closure of the arterial duct in II-2 was verified after 
administration of ibuprofen (10  mg/kg/d) for 3 days at 
the age of 15 days. Redundant sigmoid colon was found 
in II-2 during the neonatal period. Ultrasounds of the 
abdomen, urinary system, and craniocerebral system 
showed no further abnormalities. After 50 days of hospi-
talization, II-2 was discharged and showed no abnormal-
ity after a 12-month follow-up. All clinical manifestations 
of the twins are shown and compared in Table 1.

A novel variant was identified in the monozygotic twins
A novel heterozygous missense variant in the MYH11 
gene [NM_002474.2: c.766 A > G p. (Ile256Val)] was iden-
tified in the proband (II-1). Sanger sequencing confirmed 
that the same variant was present in both II-1 and II-2, 
but not in the parents (Fig.  1). The variant was classi-
fied as a likely pathogenic variation according to ACMG/
AMP guidelines [16]. The variant was considered to be 
deleterious based on the following evidence: [1] this vari-
ant was not found in the parents and occurred de novo 
(PS2); [2] negative results were obtained in searches of 
the 1000 Genomes Project, Genome Aggregation Data-
base, Exome Sequencing Project, and Exome Aggrega-
tion Consortium (PM2); and [3] multiple in silico tools, 
for example the CADD phred-like score is 21.9, indicated 
a deleterious effect (PP3).

Phenotypes caused by pathogenic variants in MYH11 may 
be associated with the variant type
The penetrance of MYH11 is 82.35% (84/102) in the 
reported cases (n = 102). The most common manifes-
tation caused by MYH11 variants was TAAD (41.18%, 
42/102), followed by PDA (22.55%, 23/102), compound 
TAAD and PDA (TAAD + PDA) (9.80%, 10/102), and 
other vascular abnormalities (8.82%, 9/102) (Fig.  3). In 
the case with different phenotypes, 35 variants have 
been identified, including null variants (nonsense and 
splicing site, n = 10), missense variants (n = 22) and in-
frame deletion variants (n = 3, which was excluded in 
futher analyses). However, the analysis of the groups 
with TAAD, PDA, and TAAD + PDA showed that the 
constituent ratios of null or missense variants were sig-
nificantly different (P = 0.01). Further pairwise compari-
son among these three groups with various phenotypes 
showed that the constituent ratios of null variants were 
significantly different between groups of TAAD (8.60%) 
and PDA (43.8%, P = 0.006), but there were no differences 
between the TAAD and TAAD + PDA (28.6%) groups 
(P = 0.188), or PDA and TAAD + PDA groups (P = 0.657) 

Table 1 Clinical phenotypes of the twins and previously 
reported cases with MYH11 variants
Clinical phenotypes II-1 II-2 Previously 

reported 
cases

Prenatal stage
Intrauterine growth retardation + -
Bilateral lateral ventricle dilation + -  [26]
Persistent left superior vena cava + -
Neonatal stage
Premature infant + +  [26, 27]
Twin-to-twin transfusion syndrome + +
Neonatal respiratory distress 
syndrome

+ +  [26, 27]

Neonatal asphyxia + +
Neonatal pneumonia + +
Neonatal anemia + +
Persistent pulmonary hypertension + +  [26]
Hyperbilirubinemia + +
Patent ductus arteriosus + +  [12, 14, 19, 

21, 26]
Hypocalcemia + +
Congenital pulmonary fibrosis + -
Mixed acid–base imbalance + +
Neonatal septicemia + -
Respiratory failure of newborn + -
Cardiac failure + -
Bronchopulmonary dysplasia - +  [26]
Redundant sigmoid colon - +  [26]
Other common phenotypes
Visceral myopathy 2 - -  [14, 15, 28]
Thoracic aortic aneurysm/dilation - -  [19]
Megacystis–microcolon–intestinal 
hypoperistalsis syndrome

- -  [26]

Intracranial vascular malformations - -  [12, 21]
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(Fig. 4). These identified variants of MYH11 were distrib-
uted separately in the coiled-coil domain (74.3%, 26/35) 
and myosin motor domain (25.7%, 9/35) (Fig.  5). How-
ever, the constituent ratios of the variant located in dif-
ferent domains of MYH11 were not significantly different 
among the groups with TAAD, PDA, and TAAD + PDA 
(P = 0.778). Moreover, we noticed that individuals with 

some specific variants show highly variable clinical fea-
tures even asymptomatic, indicating interfamilial or 
intrafamilial variable expressivity.

Fig. 4 The component ratios of null variants in MYH11 among groups of TAAD, PDA, and TAAD + PDA. The component ratios of null variants were signifi-
cantly different between groups TAAD and PDA (P = 0.006), but there were no differences between the TAAD and TAAD + PDA groups, or between PDA 
and TAAD + PDA groups

 

Fig. 3 The distribution of phenotypes of the hereditary TAAD/PDA family with MYH11 variants
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Discussion
TAAD/PDA caused by variants in genes that encode the 
contractile proteins of vascular SMCs presents variable 
expressivity and penetrance. MYH11 encodes a con-
tractile protein in arterial vascular SMCs which plays an 
important role in maintaining the stability of the vascu-
lar wall. However, the genotype–phenotype correlation 
of MYH11 is still unclear. We describe a pair of mono-
zygotic twins with highly variable clinical features and 
outcomes. Both of the monozygotic twins presented with 
PDA, pulmonary hypoplasia, and pulmonary hyperten-
sion. The proband developed heart and brain abnormali-
ties during the fetal stage and died in the neonatal period, 
whereas his twin sibling was cured and continued to grow 
normally. The same novel heterozygous missense vari-
ant in MYH11 was identified in the monozygotic twins. 
Based on the phenotypic and genetic analysis of the 
monozygotic twins, further genotype-phenotype asso-
ciation analysis of MYH11 was performed by comparing 
previously reported cases. The analysis of the genotype-
phenotype correlation of MYH11 indicated that the phe-
notypes caused by pathogenic variants in MYH11 may be 
related to different types of variants. The missense vari-
ants in MYH11 were more frequent in the group with 
TAAD, whereas the null variants in MYH11 were more 
frequent in the group with PDA.

MYH11 was the first gene defect reported in the gene 
family of smooth muscle contraction-associated vascu-
lopathy. The pathogenic variant in MYH11 usually con-
tributes to TAAD/PDA with variable expressivity and 
penetrance. Marked aortic stiffness was found in indi-
viduals (including asymptomatic) with the heterozygous 
variant, indicating that haploinsufficiency may be the 
mechanism of the variants in MYH11 [9, 17]. The inter-
action of wild-type and mutant proteins in co-immuno-
precipitation testing suggested that the mechanism of the 

variants in MYH11 can also be explained by dominant 
negative effect [9]. Compound heterozygotic variants 
(L1264P and R1275L) on the same allele of MYH11 were 
identified in a TAAD/PDA family, wherein two members 
displayed TAAD + PDA, whereas the other two members 
displayed isolated TAAD [15]. The L1264P variant was 
also identified in another family, wherein five individu-
als bearing this variant presented with isolated TAAD 
[18]. Several possible mechanisms, including potential 
genetic modifiers co-operate with the variant to regulate 
the expression of MYH11, were proposed to explain that 
the same L1264P variant resulted in different phenotypes 
[15]. Moreover, Harakalova M et al. [19] had reported 
two TAAD/PDA families with various phenotypes, pre-
senting incomplete co-segregation of TAAD/PDA with 
variants in MYH11. The mechanism of such phenom-
enon could be explained by the oligogenic model [19]. 
Markedly decreased cell apoptosis and increased prolif-
eration were found in the aortic SMCs of Myh11−/− mice 
[20], and the case with arterial stenosis in the intracra-
nial vessel involvement caused by variants of MYH11 
has been reported recently [21], indicating that there are 
other potential mechanisms of variants in MYH11 which 
remain to be explored. The mechanism by which vari-
ants in MYH11 result in TAAD/PDA is complex, and the 
genotype–phenotype correlation of MYH11 has not been 
clearly determined.

The analysis of the genotype-phenotype correla-
tion of MYH11 indicated that phenotypes caused by 
pathogenic variants in MYH11 may be associated with 
the type of variant. Missense variations of MYH11 are 
highly likely to be associated with TAAD, whereas PDA 
is mostly caused by null variations. In general, TAAD is 
found in older adults, whereas PDA occurs immediately 
after birth. According to the results of our analysis of 
genotype–phenotype correlation, we speculate that the 

Fig. 5 Schematic representation of the protein structure of MYH11 (NM_002474.2). The distribution of different types of pathogenic variants in MYH11 
was shown. The variant (I256V) was identified in our monozygotic twins
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distinct phenotypes caused by variants in MYH11 are due 
to various effects from different types of variants. Since 
the missense variant has a relatively minor negative effect 
on MYH11, it mainly causes TAAD, which requires a cer-
tain amount of time to accumulate before disease onset. 
In contrast, the null variant, which strongly disrupts the 
function of MYH11, results in PDA, an early-onset dis-
ease. However, TAAD associated with variants in MYH11 
probably present variable disease onset and progression; 
thus, there may have been an insufficient amount of time 
for noticeable defects to occur in our patients. The risk 
of occurrence of TAAD suggests that II-2 should undergo 
regular cardiovascular surveillance in the future. Rare 
pathogenic variants mainly affect the myosin head and 
coiled-coil domain of MYH11.

Phenotypes caused by different variants located in 
different domains of MYH11 were not significantly dif-
ferent. Whether the domains of MYH11 are completely 
unrelated or potentially associated remains to be eluci-
dated. Further research is necessary to reveal the corre-
lation between domains of MYH11 and TAAD/PDA. We 
cannot exclude the influence of confounding factors, such 
as the age of patients in the analysis of genotype–pheno-
type correlations. Moreover, bias could not be avoided 
in the statistical analysis owing to the limited number of 
cases collected and the high pedigree weight among the 
patients. However, we found in more than one case, that 
the same variant caused a scattered distribution of phe-
notypes in the same family [18]. A genetic predisposition 
to PDA has been demonstrated by some studies with ani-
mal and human models [22, 23]. The monozygotic twins 
also remind us that genetic factors should not be over-
looked due to the possibility of a genetic link to PDA in 
premature infants.

The interfamilial or intrafamilial variable expressivity of 
MYH11 has been primarily studied. Several likely factors, 
including allelic variation, oligogenic models, environ-
mental factors, modifier genes, and complex genetic and 
environmental interaction variability have been proposed 
to explain phenotypic variability of MYH11 [9, 18, 19]. 
Surprisingly, despite the similar environmental effects 
and genetic backgrounds in the monozygotic twins, 
different phenotypes and variable expressivity were 
observed. It indicates that there are other potential modi-
fiers and complex mechanisms beside the genetic vari-
ants that influence the expression of MYH11. A previous 
study showed that the random monoallelic expression of 
dosage-sensitive genes may play a crucial role in pheno-
typic variability [24]. Random monoallelic expression of 
MYH11 may explain the complex phenotypic variability 
in our patients. Mosaic expression may have emerged, 
owing to the expression of random and dynamic monoal-
lelic genes. The expression ratios of wild-type and mutant 
alleles differ in the cells of different tissues or organs. 

Moreover, different spatio-temporal expression patterns 
may confer diverse function for specific genes [25]; spe-
cific expression of MYH11 in different organs or tissues 
at different developmental stages may also be the cause 
of highly variable clinical features and outcomes in our 
monozygotic twins.

In conclusion, this study expands the mutational 
and phenotype spectra of MYH11, thereby speculating 
that the phenotypes caused by pathogenic variants in 
MYH11 may be associated with variant type. Moreover, 
we believe that different random monoallelic expression 
and spatio-temporal expression are the possible reasons 
for the complex penetrance and variable expressivity of 
MYH11. However, the genotype–phenotype correlations 
of MYH11 could not be completely established, owing to 
the limited number of reported cases. Further investiga-
tion is required to reveal the complex genotype–pheno-
type correlation of MYH11.
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