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Abstract 

Background Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due 
to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regu-
lated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They 
are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model 
for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA).

Methods RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were ana-
lyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival 
analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Addi-
tionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. 
GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC.

Results A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients 
was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group 
exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune 
cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were 
also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing 
between the two groups.

Conclusions Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized 
therapeutic approaches.
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Background
Head and neck squamous cell carcinoma (HNSCC) is a 
prevalent malignancy on a global scale [1]. The preva-
lence of HNSCC is rising, with an anticipated surge of 
30% by 2030 [2]. Despite advancements in various ther-
apeutic strategies, the 5-year overall survival rate for 
patients with HNSCC remains below 50% [3]. In recent 
years, the construction of biomarker-based prognos-
tic models for cancer has received increasing attention 
[4–6]. However, the prognostic predictive results still 
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lack high accuracy due to the limitation of relying solely 
on a single biomarker. The integration of two biomark-
ers enhances the accuracy of the prognostic model [7]. 
Increasing evidence supports results derived from prog-
nostic models constructed with the integration of two 
biomarkers [8, 9]. Incorporating additional biomarkers is 
deemed necessary to construct more accurate prognostic 
models.

Cuproptosis is a distinctive form of copper-induced 
programmed cell death discovered by Tsvetkov in 2022 
and follows distinct mechanisms independent of conven-
tional cell death pathways. Copper is an essential trace 
element in many biological processes. However, excess 
copper binds directly to lipoylated proteins in the tri-
carboxylic acid (TCA) cycle, leading to the aggregation 
of lipoylated proteins and subsequent loss of iron-sulfur 
clusters. This process induces proteotoxic stress and ulti-
mately triggers cuproptosis [10]. Additionally, cupropto-
sis-related signatures have shown the ability to predict 
the prognosis and immune response in various types 
of cancers, including bladder cancer and breast cancer 
[11, 12]. N6-methyladenosine (m6A) represents one of 
the most prevalent internal RNA modifications, play-
ing a vital role in various cellular processes such as RNA 
synthesis, transport, and translation [13]. M6A exhibits 
promising potential in regulating cell proliferation and 
cancer immunity in tumors [14, 15], serving as a crucial 
indicator [16]. Notably, there exists a close association 
between m6A and various modes of programmed cell 
death [17, 18]. However, studies on cuproptosis-associ-
ated m6A in HNSCC are limited. Further studies into the 
role of cuproptosis and m6A in HNSCC are imperative.

In this study, we conducted comprehensive bioinfor-
matic analyses and identified a close relationship between 
mRNAs associated with m6A regulators and cuproptosis 
genes, with implications for the survival outcomes and 
immune landscape of HNSCC patients. Hence, we aimed 
to construct a prognostic model for HNSCC based on 
mRNA related to m6A and cuproptosis (mcrmRNA).

Materials and methods
Data extraction and processing
Figure 1 illustrates the research process of this study. We 
obtained 494 data files containing HNSCC transcriptome 
data and clinical characteristics data from the TCGA 
database (TCGA, https:// portal. gdc. cancer. gov/). Addi-
tionally, we acquired the GSE41613 dataset, comprising 
97 HNSCC patients from the Gene Expression Omnibus 
(GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/). 
Patients with missing clinical information, such as sur-
vival data, were excluded from the analysis. Ensembl IDs 
were converted to official gene symbols using the R lan-
guage (version 4.2.1, https:// www. rproj ect. org/) and the 

“limma” package. The RNA was then categorized, result-
ing in 18,192 mRNAs.

Screening of mcrmRNA
First, a univariate Cox regression analysis was conducted 
on the mRNA gene data from a cohort of 494 patients, 
resulting in the identification of 2,721 genes that exhib-
ited significant associations with prognosis. Subse-
quently, 19 genes related to cuproptosis were extracted 
from the latest literature [11], while 602 m6A regulators 
were retrieved from the RM2Target database (http:// 
rm2ta rget. cance romics. org/). Spearman correlation 
analysis was then performed, with a correlation coef-
ficient threshold of Cor > 0.50 and a significance level 
of p < 0.001, to explore the relationships between the 
prognosis-related genes and cuproptosis-related genes 
and m6A regulators, respectively. The intersection of 
these analyses yielded a distinct set of mRNA molecules 
(referred to as mcrmRNA) that were significantly asso-
ciated not only with prognosis but also with both m6A 
regulators and cuproptosis. Finally, the co-expression 
network of these identified genes was constructed using 
Cytoscape software (version 3.9.0).

Construction of the mcrmRNA prognostic risk model
A cohort of 494 patients with HNSCC was randomly 
allocated into a training set and a testing set at a ratio of 
2:1. The training set comprised 329 patients, while the 
testing set consisted of 165 patients. In the training set, 
the LASSO Cox regression method was performed using 
the “glmnet” R package to identify the prognostic model 
based on the expression of mcrmRNA. Specifically, we 
utilized tenfold cross-validation to select the optimal 
lambda value. During each fold of cross-validation, the 
lambda values were tuned to maximize the model’s per-
formance metrics. The lambda value that yielded the best 
average performance across all folds was chosen for the 
final model. Subsequently, 32 mcrmRNA were selected for 
developing the prognostic risk model. The risk score for 
each HNSCC patient was calculated using the following 
equation: Risk score = Coefi mcrmRNA1 × mcrmRNA1 
expression + Coefi mcrmRNA2 × mcrmRNA2 expres-
sion + … + Coefi mcrmRNAn × mcrmRNAn expression.

Validation of the mcrmRNA prognostic risk model
The patients in the training set were categorized into 
high- and low-risk groups based on the median risk 
score. Risk score distribution plots were then generated 
to visualize the distribution of risk scores. In addition, a 
comparison was conducted between high- and low-risk 
groups in terms of survival time and status.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.rproject.org/
http://rm2target.canceromics.org/
http://rm2target.canceromics.org/
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Fig. 1 Flowchart
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Principal Component Analysis (PCA) is a com-
monly employed technique for downscaling and feature 
extraction, facilitating the investigation of disparities 
within these subgroups. The “ggplot2” package in the 
R language was utilized to independently conduct PCA 
analysis on the training set, testing set, and the entire 
patient population to investigate potential differences 
between high- and low-risk groups.

Subsequently, Kaplan–Meier analysis was performed 
between high- and low-risk patients to establish the 
risk score as an independent prognostic indicator in 
clinical practice. Calibration plots of risk scores for the 
training set, test set, and entire patient cohort were 
generated using the “riskRegression” package in the R 
language to validate the agreement between the risk 
score produced by the model and the actual clinical 
outcomes of the patients. We also compared risk scores 
with other clinical characteristics using univariate and 
multivariate Cox regression analyses. Additionally, we 
generate time-dependent receiver operating character-
istic (ROC) curves to measure the performance of the 
risk model.

Utilizing the GSE41613 dataset as the external valida-
tion set, this study applied the risk score calculation for-
mula derived from the training cohort. The cases were 
then divided into low- and high-risk groups based on an 
optimal threshold. Subsequently, ROC survival analysis 
was conducted on the validation set to evaluate the pre-
dictive accuracy of the risk model.

Construction of the nomogram
A nomogram was constructed using the “rms” pack-
age to incorporate clinical factors and the risk model. 
It was then utilized to assess the 1-, 3-, and 5-year sur-
vival rates of HNSCC patients. The consistency between 
the expected and observed survival rates was verified 
through calibration curves. Additionally, the predic-
tive value of the nomogram was evaluated using time-
dependent ROC curves.

Immune infiltrate analysis
The proportion of 22 immune cells between high- and 
low-risk groups was estimated using CIBERSORT to 
assess immune infiltration. We examined differences in 
immune cells and immune-related functions between 
high- and low-risk groups using single-sample Gene Set 
Enrichment Analysis (ssGSEA). The ESTIMATE was uti-
lized to assess tumor purity based on analysis of stromal 
and immune cells between high- and low-risk groups. 
Lastly, we explored the expression of immune checkpoint 
genes in high- and low-risk groups.

Tumor mutation burden analysis
Furthermore, we retrieved somatic mutation profiles of 
HNSCC samples from the TCGA somatic mutation data-
base. We analyzed the tumor mutational burden (TMB) 
of HNSCC samples in high- and low-risk groups, using 
the “MAFTOOLS” R package.

Drug sensitivity analysis
The IC50 values of conventional chemotherapeutic drugs 
in HNSCC were predicted using the “oncoPredict” pack-
age in R to identify potential antitumor drugs for the 
treatment of HNSCC.

Function enrichment analysis
We conducted Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses 
respectively, to investigate the molecular mechanisms 
and biological processes underlying the mcrmRNA prog-
nostic risk model between high- and low-risk groups. 
Additionally, we selected the annotated gene set file 
c5.all.v7.0.entrez.gmt and performed Gene Set Enrich-
ment Analysis (GSEA) with a significance level of p < 0.05 
to identify the top ten important pathways between high- 
and low-risk groups.

Results
Construction of the mcrmRNA prognostic risk model
A univariate Cox regression analysis was performed on 
494 patients, and 2,721 mRNAs (p < 0.05) were found 
to be significantly associated with patient prognosis. 
Based on the Pearson co-expression analysis, we ulti-
mately selected 346 prognosis-related mRNAs specific 
to cuproptosis (crmRNA) and 297 prognosis-related 
mRNAs specific to m6A regulators (mrmRNA) (Fig. 2A, 
B). The intersection of these sets yielded 297 prognosis-
related mRNA (mcrmRNA), which includes mRNAs 
associated with prognosis and correlated with m6A regu-
lators and cuproptosis-related genes.

Following this, 32 prognostic mRNAs were identified in 
the training set for the construction of the prognostic risk 
model using LASSO analysis (Fig. 3A, B). Accordingly, we 
computed the risk score of each patient by calculating the 
expression of each prognostic mRNA multiplied by its 
corresponding coefficient. The forest plot illustrates the 
results of Cox regression analysis for these 32 prognos-
tic mRNAs (p < 0.05) (Fig. 3C). Cases in the training set, 
testing set, and entire cohort were divided into high- and 
low-risk groups according to the median value of the risk 
score. The risk distribution, survival status, PCA, calibra-
tion plot, and Kaplan–Meier analyses were validated in 
the training set, testing set, and overall cohort (Fig. 4A-
R). The results of the analysis for the three groups had the 
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Fig. 2 Co-expression network of 12 copper death-related genes and 346 copper death-related prognostic mRNAs (crmRNAs) (Cor > 0.5, p < 0.001) 
(A). B Co-expression network of 601 m6A-related genes and 297 m6A-related prognostic mRNAs (mrmRNAs) (Cor > 0.5, p < 0.001)



Page 6 of 21Xing et al. BMC Medical Genomics          (2024) 17:137 

same trend. Risk curves and scatter plots demonstrated 
a significant increase in mortality with increasing levels 
of risk. The results of PCA showed a clear distinction 
between the high- and low-risk groups. Kaplan–Meier 
curves revealed a higher survival rate in the low-risk 
group compared to the high-risk group (p < 0.001). Cali-
bration plots indicated area under the curve (AUC) 
values of the prognostic model were 0.781 in the train-
ing set, 0.633 in the testing set, and 0.734 in the entire 
cohort. These results demonstrated the favorable predic-
tive ability of the prognostic risk model.

To validate the accuracy of our constructed prognos-
tic risk model, we utilized transcriptomic and clini-
cal data of 97 HNSCC patients sourced from the GEO 
database. The patients were divided into high- and low-
risk groups using the same risk calculation formula as 
applied in the training set, with risk scores based on the 

median value serving as the threshold. Specifically, 48 
patients were categorized as high-risk and 49 as low-
risk. Similar to the training set, we observed that higher 
risk scores were associated with lower survival rates in 
this validation cohort (Fig. 5A-C). The survival analysis 
depicted in Fig.  5D revealed a significantly lower sur-
vival rate in high-risk cases compared to low-risk cases 
(p < 0.001). Additionally, time-dependent ROC analy-
sis demonstrated the strong predictive performance of 
our model, with AUC values of 0.698 for 1-year, 0.683 
for 3-year, and 0.701 for 5-year survival (Fig. 5F). Cali-
bration plots also supported the reliability of the prog-
nostic model, showing an AUC value of 0.700 (Fig. 5E). 
These findings collectively underscore the robust-
ness and accuracy of our model in predicting HNSCC 
prognosis.

Fig. 3 LASSO algorithm analysis identified 32 mcrmRNA for the construction of the prognostic risk model (A, B). The tuning parameter (lambda) 
in the LASSO model was selected via tenfold cross-validation. The relationship between the partial likelihood deviation (binomial deviation) 
and log(lambda) was visualized. Dotted vertical lines were positioned at the optimal lambda values determined by the minimum criteria and the 1 
standard error (SE) of the minimum criteria (the 1-SE criteria). A coefficient profile plot was generated against the log(lambda) sequence. A vertical 
line was drawn at the lambda value selected through tenfold cross-validation, resulting in 32 features with non-zero coefficients under the optimal 
lambda. C The forest plot reveals that the 32 mcrmRNA used in the prognostic risk model has significant prognostic value
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Fig. 4 Validation of the prognostic risk model for HNSCC patients based on mcrmRNA using data from TCGA database. Risk score distribution (A-C), 
survival status (D-F), PCA (G-I), survival status box plots (J-L), Kaplan–Meier survival analysis for overall survival (OS) in the training, testing, and entire 
sets for high- and low-risk groups (M–O), and calibration plots (P-R)
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Independent Indicator for the mcrmRNA prognostic risk 
model
To determine whether the prognostic risk model based 
on mcrmRNA is an independent predictor of prognosis 
for patients with HNSCC, the Cox regression analysis 
was performed. The univariate Cox regression analy-
sis performed on the entire cohort revealed that age, 
stage, T stage, and risk score were directly associated 
with the prognosis of HNSCC (p ≤ 0.001) (Fig.  6A). 
Additionally, the multivariate Cox regression analy-
sis showed that the risk score was still an independ-
ent indicator in the prognosis of HNSCC (p < 0.001) 
(Fig. 6B). ROC curve analysis was used to evaluate the 
predictive ability of the risk model for overall survival 
(OS) in HNSCC patients. The risk score exhibited the 
highest AUC compared to other clinical and pathologi-
cal features (Fig. 6C). Moreover, the risk score demon-
strated good predictive performance (AUC = 0.722 for 
1-year, 0.771 for 3-year, and 0.775 for 5-year survival) 
(Fig.  6D). In conclusion, these findings suggested that 
the risk score derived from the prognostic risk model 
based on mcrmRNA was an effective tool for assessing 
prognosis.

Construction and validation of the nomogram
The nomogram is a statistical predictive model that 
creates a simple graphical representation by integrat-
ing multiple correlates and then generates numerical 
probabilities of clinical events. It has been used as an 
excellent tool for predicting the individual outcomes 
of patients with a wide range of cancers. To facilitate 
the application of the mcrmRNA prognostic risk model 
in clinical settings, a nomogram chart (Fig.  7A) was 
developed to integrate both the risk score and clini-
cal pathological information. The calibration curve 
(Fig.  7B) demonstrated that the nomogram accurately 
predicted the probability of OS at 1, 3, and 5  years, 
which closely matched the observed OS. Additionally, 
the time-dependent ROC curve (Fig.  7C) indicated 
that the nomogram exhibited a good predictive ability 
for 1-year, 3-year, and 5-year survival (AUC = 0.753 for 
1-year, 0.769 for 3-year, and 0.768 for 5-year survival). 
These findings provided strong evidence of the capabil-
ity of the nomogram chart to predict the prognosis of 
HNSCC patients.

Fig. 5 Validation of the prognostic risk model for HNSCC patients using data from the GEO database. The distribution of risk scores 
among the patient groups categorized as high-risk and low-risk (A, B). The box plots the survival status of patients across the risk groups (C). The 
Kaplan–Meier curves for survival status and survival time between high-risk and low-risk HNSCC patients (D). The calibration plots of the prognostic 
model (E). The time-dependent ROC curve of the risk score (F)
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Immune infiltration in the mcrmrna prognostic risk model
The tumor microenvironment (TME) consists of a large 
number of non-tumor cells, including immune cells and 
stromal cells, which strongly modulate cancer growth and 
invasion. To elucidate the relationship between immune 
infiltration and the high- and low-risk groups, we quan-
tified the concentration fraction of 22 immune cells in 
the TME of each group. The results of the CIBERSORT 
and ssGSEA analyses (Fig.  8A, B) demonstrated higher 
enrichment of  CD8+ T cells,  CD4+ T cells, macrophages, 
plasma-like dendritic cells, and regulatory T cells (Tregs) 
in the low-risk group. Additionally, the ESITMATE analy-
sis indicated that the low-risk group had a higher stromal 
score than the high-risk group (Fig.  8C, p < 0.001). Con-
versely, the high-risk group exhibited higher tumor purity 
than the low-risk group (Fig. 8D, p < 0.001), while the low-
risk group had a higher immune score than the high-risk 
group (Fig. 8E, p < 0.001). Moreover, immune checkpoint 
blockade is an effective cancer immunotherapy. We fur-
ther investigated expressions of immune checkpoint genes 

in the two risk groups to determine whether the prognos-
tic model could serve as a potential marker to distinguish 
HNSCC patients suitable for immune checkpoint block-
ade therapy. The results revealed that the low-risk group 
displayed higher activity in immune checkpoint gene 
expression, including LAG3, CTLA4, IDO1, PDCD1, 
CD274, TNFRSF25, and IDO2 (Fig.  8F). These findings 
suggested that low-risk patients might exhibit increased 
responsiveness to immune therapy.

Tumor mutation burden in the mcrmrna prognostic risk 
model
Additionally, we investigated mutation profiles of 
HNSCC patients in the high- and low-risk groups 
from the TCGA cohort. Waterfall plots showed the 
20 most mutated genes in the two groups (Fig. 9A, B). 
The higher TMB was observed in the high-risk group. 
The high-risk group had TP53 (80%), TTN (39%), 
FAT1 (22%), CSMD3 (20%), and CDKN2A (19%) as 
the top five most frequently mutated genes (Fig.  9D). 

Fig. 6 Independent prognostic value of risk score. A Univariate and (B) Multivariate Cox Regression Analysis results for HNSCC. C ROC curve 
for prognostic indicators in HNSCC. (D) Time-dependent ROC curve for HNSCC risk score
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Conversely, in the low-risk group, TP53 (61%), TTN 
(36%), CDKN2A (20%), SYNE1 (19%), and PIK3CA 
(19%) were the genes with the highest mutation 

frequencies (Fig.  9C). These findings suggest that our 
model has the potential to identify patient candidates 
for immunotherapy and enhance therapeutic outcomes.

Fig. 7 Construction of the nomogram incorporating clinical factors and the mcrmRNA prognostic risk model. A Nomogram for predicting 
the survival outcomes of HNSCC patients. B Calibration plots to assess the concordance between predicted and actual survival probabilities at 1, 3, 
and 5 years. C Time-dependent ROC curve for the nomogram
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Fig. 8 Immune infiltration characteristics based on the mcrmRNA prognostic risk model. A Immune cell infiltration of 22 immune cell types 
in high- and low-risk populations based on CIBERSORT analysis. B Differential analysis of 29 immune features between high- and low-risk 
populations based on ssGSEA analysis. C Differential analysis of stromal score, tumor purity, and immune score between high-risk and low-risk 
populations based on ESTIMATE analysis. D Boxplots comparing immune checkpoint genes between high- and low-risk groups of HNSCC patients
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The sensitivity of the two risk groups to clinical drugs
Chemotherapy remains widely recognized as one of the 
primary and effective treatment approaches for can-
cer. Additionally, the risk model was utilized to calcu-
late the IC50 value, a crucial parameter for evaluating 
the effectiveness of a drug and analyzing how a sample 
responds to treatment. In our study, several therapeutic 
agents had significantly higher IC50 values in patients at 

high risk for HNSCC (Fig. 10A-T). These drugs included 
Vorinostat_1012, 5-Fluorouracil_1073, Axitinib_1021, 
Bortezomib_1191, Cisplatin_1005, Cytarabine_1006, 
Docetaxel_1819, Doramapimod_1042, Fulvestrant_1200, 
KU-55933_1030, Navitoclax_1011, Nilotinib_1013, 
Niraparib_1177, NU7441_1038, Olaparib_1017, Oxali-
platin_1089, PLX-4720_1036, SB216763_1025, Talazo-
parib_1259, and Tamoxifen_1199.

Fig. 9 The analysis of somatic mutations in HNSCC patients. The waterfall plots (A, B) and the MAF (Mutation Annotation Format) summary plots 
(C, D) illustrate the somatic mutation profiles in the high- and low-risk groups of HNSCC patients
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Fig. 10 Drug sensitivity analysis. (A-T) Many therapeutic drugs exhibited higher IC50 values in HNSCC patients with high-risk scores compared 
to those with low-risk scores



Page 14 of 21Xing et al. BMC Medical Genomics          (2024) 17:137 

GO, KEGG, and GSEA pathway enrichment analysis
Based on transcriptomic data from the TCGA database, 
GO, KEGG, and GSEA enrichment analyses were used 
to further explore differences in biological functions and 
signaling pathways between high- and low-risk groups. 
Log2|FC|> 1 and FDR < 0.05 were selected as cutoff crite-
ria for differentially expressed genes (DEGs) in the high- 
and low-risk groups. GO analysis (Fig. 11A) showed that 
DEGs were involved in biological processes (BP) such as 
leukocyte-mediated immunity, lymphocyte differentia-
tion, immune response regulation, cell surface receptor 
signaling pathway, and α-βT cell activation. DEGs were 
enriched in cell components (CC) categories, including 
the extracellular side of the membrane, synaptic complex, 
α-βT cell receptor complex, synaptic membrane struc-
ture, and neuronal cell body membrane. Furthermore, 
DEGs were primarily associated with molecular func-
tion (MF) categories such as immune receptor activity, 
monooxygenase activity, and cytokine receptor activity. 
In KEGG analysis (Fig. 11B), these DEGs were enriched 
in cytokine-cytokine receptor interaction, neuroactive 
ligand-receptor interaction, phosphoinositide 3-kinase 
(PI3K)/AKT signaling pathway, cell adhesion molecules, 
RAS signaling pathway, and chemokine signaling path-
way. The biological functions and signaling pathways 
enrichment between the two groups were validated 
using GSEA, and the GSEA enrichment plot (Fig.  11C) 
visualized the top 10 active pathways, demonstrating the 
enrichment of DEGs in immune-related pathways. In 
summary, the results of the functional enrichment analy-
sis uncovered activated pathways and mechanisms that 
could be potentially involved in tumorigenesis and pro-
gression. This information offered valuable insights for 
assessing the prognosis of patients with HNSCC.

Discussion
HNSCC ranks as the sixth most prevalent cancer globally, 
with Asia exhibiting the highest incidence rate. However, 
the intricate pathogenesis of HNSCC remains unclear 
and more research is needed. The proposal of cupropto-
sis and m6A provides a new theoretical foundation for 
tumor development and anti-tumor therapies. A study 
has identified a genetic model based on the association of 
cuproptosis to predict the prognosis of HNSCC [19]. The 
results indicate that this model demonstrates superior 
prognostic value compared to other clinical features such 
as the STAGE staging and tumor GRADE grading. In 
another study on the relationship between an RNA mod-
ification-associated factor model and HNSCC prognosis 
[20], the model achieved an AUC value of 0.652, slightly 
better than other clinical features, and time-dependent 
ROC curves of the model indicated AUC values of 0.652, 
0.688, and 0.683 at years 1, 3, and 5, respectively. While 

these models show promise in clinical settings, they still 
lack high accuracy. Therefore, more accurate prognostic 
models are needed to predict the prognosis of HNSCC. 
This study combines cuproptosis and m6A, two biomark-
ers, to construct a prognostic model aimed at improving 
the accuracy of the prognostic model.

To elucidate the roles of m6A and cuproptosis in 
HNSCC and the potential link between them, our study 
first performed univariate Cox regression analysis, fol-
lowed by correlation analysis of prognosis-related genes 
and cuproptosis as well as m6A, respectively. A 32 mcrm-
RNA model was successfully established by LASSO Cox 
regression analysis based on prognosis-related genes. 
These 32 mcrmRNA demonstrated significant correla-
tions with both m6A and cuproptosis, with several of 
these genes already validated through in vitro and in vivo 
experiments. The loss of Cyclin-dependent kinase inhibi-
tor 2A (CDKN2A) gene expression has been identified 
as a mechanism associated with oral squamous cell car-
cinoma [21]. CDKN2A, located on chromosome 9p21, 
encodes two distinct tumor suppressor proteins, p14ARF 
and p16INK4a, which play critical roles in regulating key 
pathways involved in tumor suppression, particularly the 
P53 pathway [22]. CDKN2A functions in tumorigenesis 
by controlling cell division, apoptosis, and maintaining 
cellular homeostasis through inhibition of cell cycle pro-
gression at the G1/S phase transition [23, 24]. The m6A 
modification is catalyzed by a methyltransferase com-
plex composed of methyltransferase-like 3 (METTL3), 
methyltransferase-like 14 (METTL14), and Wilms tumor 
1 associated protein (WTAP) [25]. The knockdown of 
METTL3 and METTL14 has been demonstrated to 
reduce mRNA m6A levels and downregulate the expres-
sion of tumor suppressor genes, including CDKN2A 
[26]. This decrease in mRNA m6A levels has been asso-
ciated with enhanced in  vitro growth and self-renewal 
of glioblastoma stem cells, along with an increase in the 
formation of brain tumors in  vivo [27, 28]. Conversely, 
overexpression of METTL3 can elevate m6A levels in 
glioblastoma stem cells and suppress their growth. More-
over, studies have shown that CDKN2A sensitizes the 
cells to cuproptosis [10, 29]. Our investigation has rec-
ognized CDKN2A as a safeguarding gene in determin-
ing the prognosis of HNSCC patients. Given the strong 
correlation between CDKN2A, m6A, and cuproptosis, 
further exploration of CDKN2A’s role in the intricate 
interplay of m6A and cuproptosis in HNSCC is war-
ranted. Cytotoxic T lymphocyte-associated antigen 4 
(CTLA4), functioning as a negative immune checkpoint, 
exhibits high expression levels in various solid tumors. 
CTLA4 primarily suppresses T cell responses by attenu-
ating the signaling amplitude of co-stimulatory molecule 
CD28. The phenotype observed in CTLA4 knockout 
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Fig. 11 Biological function and pathway enrichment analysis of DEGs based on the mcrmRNA prognostic risk model (A) GO Enrichment Analysis. 
BP, biological process; CC, cellular component; and MF, molecular function. B KEGG Pathway Analysis. C GSEA Enrichment Analysis showing 
the activation status of biological pathways in the high- and low-risk groups
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mice, characterized by lethal systemic immune hyperac-
tivation, underscores the pivotal role of CTLA4 in damp-
ening T cell activation and maintaining immunologic 
homeostasis [30]. Targeting CTLA4 has been reported to 
effectively reverse immunosuppression and improve out-
comes in HNSCC patients by inhibiting myeloid-derived 
suppressor cell and M2 macrophage recruitment, while 
concurrently promoting T cell activation [31]. Protein 
Kinase C Eta (PRKCH), a member of the protein kinase 
C family, is involved in regulating both apoptosis and 
anti-apoptosis processes [32]. Studies have shown that 
PRKCH is linked to improved survival rates in individuals 
with head and neck cancer, which is consistent with the 
results of our research [33]. Matrix metalloproteinase-19 
(MMP19) plays critical roles in various physiological and 
pathological processes, including inflammation, wound 
healing, and the progression of vascular [34]. Notably, 
MMP19, which is expressed in the tumor-invasive fronts, 
has been implicated in facilitating the invasiveness of 
HNSCC [35]. Thrombospondin 1 (THBS1), identified as 
an oncogene in oral squamous cell carcinoma (OSCC), 
acts as a tumor-specific extracellular matrix (ECM) pro-
tein induced by TGFB1 [36, 37]. THBS1 promotes cancer 
cell migration and stimulates matrix metalloproteinases 
(MMPs) through integrin signaling, facilitating OSCC 
invasion. Additionally, THBS1 mediates the PI3K/AKT 
signaling pathway to regulate OSCC cell proliferation, 
migration, and invasion [38]. While the roles of other 
genes in this risk model in HNSCC are not extensively 
studied, our research suggests that these genes play sig-
nificant roles in HNSCC tumorigenesis and could be 
potential targets for cancer therapy. However, further 
investigation is necessary to fully comprehend their spe-
cific mechanisms and functions in HNSCC.

The risk scores calculated by the 32 mcrmRNA model 
can serve as independent prognostic indicators for the 
survival of HNSCC patients. The Kaplan–Meier analy-
sis showed that a higher risk score was associated with 
a poorer prognosis. The ROC curve showed that the 
performance of our predictive model exhibited a more 
reliable and prominent performance compared to other 
clinical indicators. The risk model exhibited more favora-
ble predictive ability with AUC values of 0.722, 0.771, and 
0.775 for 1-year, 3-year, and 5-year survival, respectively. 
Moreover, various clinical features, including age, gender, 
tumor grade, TNM stage, and treatment, have been uti-
lized in the construction of a nomogram chart for pre-
dicting the survival of HNSCC patients [39]. Thus, we 
established a brand-new nomogram chart that incorpo-
rates risk scores and clinical pathological information for 
HNSCC patients. The calibration curve exhibited a nota-
ble agreement between the predicted outcomes derived 
from the nomogram chart and the corresponding actual 

results. Collectively, these findings demonstrated the 
high accuracy and sensitivity displayed by our prognos-
tic model. In comparison to existing prediction models, 
our prognostic risk score model combined two biomark-
ers that are critical to cancer, resulting in a more precise 
evaluation of the prognosis for patients with HNSCC. It 
established a foundation for further research on the spe-
cific roles of cuproptosis and m6A in HNSCC. Moreover, 
the mcrmRNA model possessed a notable advantage in 
facilitating the risk stratification of HNSCC patients, a 
critical aspect for patients and clinical practice. Tailor-
ing treatments based on different risk levels not only 
improves patient prognosis but also optimizes the utiliza-
tion of limited medical resources [40]. In conclusion, the 
mcrmRNA model exhibited higher reliability in predict-
ing the prognosis of HNSCC patients than other clinical 
or pathologic variables.

The tumor immune microenvironment plays a pivotal 
role in the development and progression of HNSCC by 
promoting invasive tumor growth and treatment resist-
ance, which subsequently negatively impacts prognosis 
[41, 42]. Within the immunosuppressive tumor micro-
environment, HNSCC cells evade immune surveillance 
through various mechanisms [43]. To further investi-
gate the potential connection between risk score and 
immune-related features, we conducted CIBERSORT 
and ssGSEA analyses to quantify immune cell infiltration 
in high- and low-risk groups. The results demonstrated 
enrichment of B cells naive, B cells memory, plasma cells, 
T cells CD8, T cells CD4 memory activated, T cells fol-
licular helper, Tregs, T cells gamma delta, mast cells rest-
ing, and eosinophils in the low-risk group. Conversely, 
macrophages M0 and activated mast cells were enriched 
in the high-risk group. Macrophages play a crucial role 
in the tumor microenvironment, with a high presence of 
M0 macrophages being associated with a poor progno-
sis in early-stage lung cancer [44]. Moreover, activated 
mast cells induce neovascularization through the release 
of angiogenic factors and contribute to tumor aggres-
siveness by releasing various matrix metalloprotein-
ases [45]. However, intratumor mast cells also exhibit a 
protective effect against prostate cancer recurrence and 
may serve as a prognostic biomarker following prostate 
cancer resection [46]. In patients with oral squamous 
cell carcinoma, tumor-draining lymph nodes (TDLNs) 
show a higher percentage of B cells compared to non-
TDLNs, and are strongly linked to HNSCC progression 
[47]. However, our study revealed that patients in the 
low-risk group exhibit enrichment of naive B cells and 
memory B cells. This inconsistency may be attributed to 
the inherent constraints of the CIBERSORT algorithm, 
which has a tendency to either over- or under-estimate 
certain cell types systematically, despite demonstrating 
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a relatively lower estimation bias. The ESTIMATE scor-
ing results revealed inadequate immune efficacy in the 
high-risk group. In this study, the low-risk group exhib-
ited abundant immune cell infiltration, including  CD8+ 
T cells and Tregs, and showed more favorable prognosis 
outcomes. Previous research has demonstrated that a 
direct interaction between abundant tumor-infiltrating 
B-cells (TIL-B) and a higher density of B cells/CD8+ 
T cells leads to better prognoses for patients [48], and 
increased infiltration of  CD8+ T cells has been closely 
associated with improved OS and local control (LRC) 
[42]. Tregs play a crucial role in maintaining a balance 
between self-immunity and immune suppression. More-
over, they have diverse functions within the TME, with 
a particular emphasis on inhibiting T cell activation 
[49]. Additionally, several studies have reported a cor-
relation between Treg infiltration and improved OS and 
disease-free survival (DFS) in HNSCC patients [50, 51]. 
Discrepancies in immune cell infiltration between high- 
and low-risk groups may account for the varying progno-
ses observed in HNSCC patients. A notable correlation 
was found between immune infiltration, m6A modifica-
tion, and cuproptosis. The m6A regulators are crucial 
in pathological and physiological immune cell infiltra-
tion and immune responses, essential for maintaining 
homeostasis and tumor immunosurveillance functions 
[52]. YTHDF1, a specific m6A regulator, enhances lyso-
somal cathepsin translation in dendritic cells, facilitating 
antigen presentation to  CD8+ T cells [53]. This process 
impacts the cross-presentation of tumor neoantigens and 
the cross-priming of  CD8+ T cells, aiding tumor immune 
evasion. Furthermore, METTL3 has been implicated 
in bladder cancer by promoting resistance to  CD8+ T 
cell cytotoxic effects through the upregulation of pro-
grammed death ligand 1 (PD-L1) expression, under-
scoring the importance of m6A methylation in tumor 
immunity modulation [54]. Jin proposed that the m6A 
regulator ALKBH5 may suppress tumor progression 
within the immune microenvironment via the RIG-1/
IFNA axis [55]. Moreover, Yi demonstrated the potential 
role of m6A in regulating the immune microenvironment 
of HNSCC in conjunction with the PI3K/AKT/mTOR 
signaling pathway [56]. High-mobility group box  1 
(HMGB1), a common non-histone nuclear protein found 
in cells, is crucial for maintaining nucleosome structure 
and function, influencing gene transcription, DNA dam-
age repair, and chromosomal rearrangement [57]. Studies 
have shown that in non-small cell lung cancer (NSCLC), 
cells undergoing cuproptosis release HMGB1, which 
subsequently binds to the advanced glycosylation end 
product-specific receptor (AGER) [58]. This interaction 
activates macrophages and triggers the production of 
inflammatory cytokines, initiating a cascade of immune 

responses. The cGMP-AMP synthase (cGAS)-stimulator 
of interferon genes (STING) pathway is a crucial compo-
nent of innate immunity by responding to DNA triggers 
and orchestrating diverse immune responses that impact 
different stages of cancer development, including initia-
tion and metastasis [59]. Cuproptosis has been shown to 
enhance cancer immunity by activating the cGAS-STING 
signaling pathway in clear cell renal cell carcinoma cells 
[60]. Moreover, in mouse tumor models, the combined 
use of cuproptosis inducers (elesclomol and CuCl2) with 
anti-PD-1 therapy synergistically increases levels of cir-
culating  CD8+ T cells. In summary, immune infiltration 
appears to be linked to m6A modification and cupropto-
sis in HNSCC, but further research is required to under-
stand the specific mechanisms involved.

In addition, cancer cells evade immune surveillance 
and facilitate tumor progression through the modulation 
of immune checkpoint genes. As a result, immune check-
point inhibitors have emerged as a promising approach 
to enhance treatment outcomes for cancer patients. 
Consequently, these inhibitors have become a vital com-
ponent in the field of cancer treatment. We investigated 
the differential expression of common immune check-
point genes between the high- and low-risk groups. The 
findings revealed an upregulation of CD276 in the high-
risk group, while other immune checkpoints, including 
LAG3, CTLA4, IDO1, PDCD1, CD274, TNFRSF25, and 
IDO2, were upregulated in the low-risk group. These 
results suggested that low-risk patients might demon-
strate enhanced responsiveness to immunotherapy. A 
recent study has demonstrated the significant involve-
ment of CD276 in the proliferation, invasion, and migra-
tion processes of cancer cells [61]. HNSCC cells with 
high CD276 expression have a greater stemness capacity 
as well as metastatic ability, and in vivo experiments also 
showed that CD276 antibody monotherapy could effec-
tively inhibit HNSCC growth and metastasis [62]. Our 
study suggests a potential therapeutic avenue for high 
risk HNSCC patients by targeting the immune check-
point CD276. Moreover, the TMB has been confirmed as 
a promising predictive indicator of immunotherapy effi-
cacy [63, 64]. For example, TMB serves as a unique and 
complementary biomarker for predicting the response to 
anti-programmed death 1 (anti-PD-1) therapy in HNSCC 
[65]. Therefore, we assessed the TMB status in high- and 
low-risk groups and found higher TMB in the high-risk 
group. These findings highlight the potential of our prog-
nostic model in guiding treatment decisions regarding 
the use of immunotherapy. Specifically, the high-risk 
group exhibits a higher mutation rate of the P53 gene. 
The P53 gene is also strongly associated with cupropto-
sis. Recent studies have identified an association between 
the P53 gene and mutations in CDKN2A, a key gene of 
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cuproptosis [66, 67]. Overall, cuproptosis is likely to have 
a significant influence on the effectiveness of immuno-
therapy in HNSCC, particularly through its involvement 
in the P53 pathway. Therefore, our prognostic model 
serves as a reliable biomarker for predicting the response 
to immunotherapy and as a guide for exploring the role 
of cuproptosis in HNSCC immunotherapy.

The sensitivity of common chemotherapeutic agents to 
HNSCC differed between the two risk groups. Patients 
with HNSCC in the high-risk group exhibited higher 
IC50 values for multiple chemotherapy drugs. Notably, 
patients in the high-risk group may exhibit resistance to 
various chemotherapeutic agents including 5-fluoroura-
cil, cisplatin, and oxaliplatin, which are recommended 
chemotherapy drugs for HNSCC according to clinical 
practice guidelines [68]. Therefore, more comprehensive 
studies are needed to reverse resistance and improve 
patient prognosis. Currently, 5-fluorouracil is utilized in 
the treatment of multiple cancers and has demonstrated 
remarkable advancements in various tumor therapies 
with the aid of nanocarriers [69]. Platinum-based drugs 
like cisplatin, carboplatin, and oxaliplatin are extensively 
employed in chemotherapy to eliminate cancer [70, 71]. 
However, the clinical application of platinum-based 
drugs is severely limited due to their lack of selectivity, 
systemic toxicity, and development of drug resistance 
[72, 73]. The development of new platinum-based drugs 
and their targeted modifications undeniably holds great 
potential for enhancing current anticancer treatments 
[74]. Overall, this study indicates that HNSCC patients 
with high risk scores may have an increased susceptibility 
to chemotherapy resistance. These findings have impor-
tant implications for guiding the treatment of HNSCC 
patients.

To further explore the differences between the high- 
and low-risk groups, GO, KEGG, and GSEA analyses 
were performed to explore biological functions and 
pathways associated with risk scores. The results of the 
GO analysis revealed that the DEGs between the high- 
and low-risk groups were enriched in various immune 
response pathways, including leukocyte-mediated immu-
nity. This suggests that there may be differences in the 
immune responses against cancer and responses to ther-
apy between the two groups. KEGG analysis revealed 
the involvement of DEGs in multiple signaling such 
as PI3K/AKT signaling pathway, RAS signaling path-
way, and chemokine signaling pathway. The PI3K path-
way offers a new direction for the development of PI3K 
inhibitors due to its vital role in cancer recurrence [75]. 
For instance, the tumor suppressor gene PER1 inhibits 
glycolysis-mediated cell proliferation by regulating PI3K 
stability and PI3K/AKT pathway dependence, thereby 
inhibiting oral squamous cell carcinoma progression [63]. 

These findings indicate that PER1 may serve as a valu-
able therapeutic target for oral squamous cell carcinoma. 
In addition, GSEA showed that the rRNA metabolism 
pathway associated with RNA processing was signifi-
cantly different in the two groups. This implies that these 
m6A and cuproptosis-related genes of the prognostic 
model may play a role in influencing HNSCC at the pro-
tein synthesis level. Interestingly, significant enrichment 
was observed in several metabolic pathways between 
the two groups, including mitochondrial gene expres-
sion and mitochondrial translation. Mitochondria are 
critical in the development and progression of cancer as 
a source of energy and in regulating oncogenic signaling 
[76]. Therefore, targeted therapies against mitochondria 
have shown effectiveness. For example, a previous study 
has shown that Triptolide (TPL) induces apoptosis in 
HNSCC cells by inhibiting mitochondrial hexokinase 
[77]. Several studies have highlighted the significant role 
of melatonin in the treatment of HNSCC by regulating 
mitochondrial function [78, 79]. The utilization of GO, 
KEGG, and GSEA analyses in this study provides valu-
able insights into the role of m6A and cuproptosis in the 
progression of HNSCC. It is important to acknowledge 
the limitations of each analysis method, such as statistical 
threshold selection and pathway annotation quality [80]. 
Collectively, these findings indicate that the differences 
between the high- and low-risk groups are closely related 
to mitochondrial function and the TCA cycle, while the 
TCA cycle was identified as a direct target for the onset 
of cuproptosis. Further experimental and clinical studies 
are required to confirm these results.

Conclusion
In summary, the risk model based on 32 mcrmRNA 
represents a valuable tool for guiding the individual-
ized treatment and improving the prognosis of HNSCC 
patients. It also provides important insights into the 
potential mechanisms of cuproptosis and m6A in 
HNSCC. However, some limitations of our study need to 
be considered. First, there is a lack of sufficient HNSCC 
samples and clinical follow-up data within our institu-
tion to validate the prognostic prediction model thor-
oughly. Further research in the subsequent clinical phase 
is necessary. Moreover, the specific impact of the identi-
fied mcrmRNA on HNSCC cell death and the underlying 
mechanisms of m6A remain inconclusive. Consequently, 
conducting additional in vivo and in vitro experiments is 
imperative.
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