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Abstract

Background Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due
to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regu-
lated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They
are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model
for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA).

Methods RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were ana-
lyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival
analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Addi-
tionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database.
GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC.

Results A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients
was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group

exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune

cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were

also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing
between the two groups.

Conclusions Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized
therapeutic approaches.
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lack high accuracy due to the limitation of relying solely
on a single biomarker. The integration of two biomark-
ers enhances the accuracy of the prognostic model [7].
Increasing evidence supports results derived from prog-
nostic models constructed with the integration of two
biomarkers [8, 9]. Incorporating additional biomarkers is
deemed necessary to construct more accurate prognostic
models.

Cuproptosis is a distinctive form of copper-induced
programmed cell death discovered by Tsvetkov in 2022
and follows distinct mechanisms independent of conven-
tional cell death pathways. Copper is an essential trace
element in many biological processes. However, excess
copper binds directly to lipoylated proteins in the tri-
carboxylic acid (TCA) cycle, leading to the aggregation
of lipoylated proteins and subsequent loss of iron-sulfur
clusters. This process induces proteotoxic stress and ulti-
mately triggers cuproptosis [10]. Additionally, cupropto-
sis-related signatures have shown the ability to predict
the prognosis and immune response in various types
of cancers, including bladder cancer and breast cancer
[11, 12]. N6-methyladenosine (m6A) represents one of
the most prevalent internal RNA modifications, play-
ing a vital role in various cellular processes such as RNA
synthesis, transport, and translation [13]. M6A exhibits
promising potential in regulating cell proliferation and
cancer immunity in tumors [14, 15], serving as a crucial
indicator [16]. Notably, there exists a close association
between m6A and various modes of programmed cell
death [17, 18]. However, studies on cuproptosis-associ-
ated m6A in HNSCC are limited. Further studies into the
role of cuproptosis and m6A in HNSCC are imperative.

In this study, we conducted comprehensive bioinfor-
matic analyses and identified a close relationship between
mRNAs associated with m6A regulators and cuproptosis
genes, with implications for the survival outcomes and
immune landscape of HNSCC patients. Hence, we aimed
to construct a prognostic model for HNSCC based on
mRNA related to m6A and cuproptosis (mcrmRNA).

Materials and methods

Data extraction and processing

Figure 1 illustrates the research process of this study. We
obtained 494 data files containing HNSCC transcriptome
data and clinical characteristics data from the TCGA
database (TCGA, https://portal.gdc.cancer.gov/). Addi-
tionally, we acquired the GSE41613 dataset, comprising
97 HNSCC patients from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Patients with missing clinical information, such as sur-
vival data, were excluded from the analysis. Ensembl IDs
were converted to official gene symbols using the R lan-
guage (version 4.2.1, https://www.rproject.org/) and the
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“limma” package. The RNA was then categorized, result-
ing in 18,192 mRNAs.

Screening of mcrmRNA

First, a univariate Cox regression analysis was conducted
on the mRNA gene data from a cohort of 494 patients,
resulting in the identification of 2,721 genes that exhib-
ited significant associations with prognosis. Subse-
quently, 19 genes related to cuproptosis were extracted
from the latest literature [11], while 602 m6A regulators
were retrieved from the RM2Target database (http://
rm2target.canceromics.org/).  Spearman  correlation
analysis was then performed, with a correlation coef-
ficient threshold of Cor>0.50 and a significance level
of p<0.001, to explore the relationships between the
prognosis-related genes and cuproptosis-related genes
and m6A regulators, respectively. The intersection of
these analyses yielded a distinct set of mRNA molecules
(referred to as mcrmRNA) that were significantly asso-
ciated not only with prognosis but also with both m6A
regulators and cuproptosis. Finally, the co-expression
network of these identified genes was constructed using
Cytoscape software (version 3.9.0).

Construction of the mcrmRNA prognostic risk model

A cohort of 494 patients with HNSCC was randomly
allocated into a training set and a testing set at a ratio of
2:1. The training set comprised 329 patients, while the
testing set consisted of 165 patients. In the training set,
the LASSO Cox regression method was performed using
the “glmnet” R package to identify the prognostic model
based on the expression of mermRNA. Specifically, we
utilized tenfold cross-validation to select the optimal
lambda value. During each fold of cross-validation, the
lambda values were tuned to maximize the model’s per-
formance metrics. The lambda value that yielded the best
average performance across all folds was chosen for the
final model. Subsequently, 32 mcrmRNA were selected for
developing the prognostic risk model. The risk score for
each HNSCC patient was calculated using the following
equation: Risk score=Coefi mcrmRNA1 X mcrmRNA1
expression + Coefi mcrmRNA2 X mcrmRNA?2 expres-
sion+...+Coefi mcrmRNAn X mcrmRNAn expression.

Validation of the mcrmRNA prognostic risk model

The patients in the training set were categorized into
high- and low-risk groups based on the median risk
score. Risk score distribution plots were then generated
to visualize the distribution of risk scores. In addition, a
comparison was conducted between high- and low-risk
groups in terms of survival time and status.
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Principal Component Analysis (PCA) is a com-
monly employed technique for downscaling and feature
extraction, facilitating the investigation of disparities
within these subgroups. The “ggplot2” package in the
R language was utilized to independently conduct PCA
analysis on the training set, testing set, and the entire
patient population to investigate potential differences
between high- and low-risk groups.

Subsequently, Kaplan—Meier analysis was performed
between high- and low-risk patients to establish the
risk score as an independent prognostic indicator in
clinical practice. Calibration plots of risk scores for the
training set, test set, and entire patient cohort were
generated using the “riskRegression” package in the R
language to validate the agreement between the risk
score produced by the model and the actual clinical
outcomes of the patients. We also compared risk scores
with other clinical characteristics using univariate and
multivariate Cox regression analyses. Additionally, we
generate time-dependent receiver operating character-
istic (ROC) curves to measure the performance of the
risk model.

Utilizing the GSE41613 dataset as the external valida-
tion set, this study applied the risk score calculation for-
mula derived from the training cohort. The cases were
then divided into low- and high-risk groups based on an
optimal threshold. Subsequently, ROC survival analysis
was conducted on the validation set to evaluate the pre-
dictive accuracy of the risk model.

Construction of the nomogram

A nomogram was constructed using the “rms” pack-
age to incorporate clinical factors and the risk model.
It was then utilized to assess the 1-, 3-, and 5-year sur-
vival rates of HNSCC patients. The consistency between
the expected and observed survival rates was verified
through calibration curves. Additionally, the predic-
tive value of the nomogram was evaluated using time-
dependent ROC curves.

Immune infiltrate analysis

The proportion of 22 immune cells between high- and
low-risk groups was estimated using CIBERSORT to
assess immune infiltration. We examined differences in
immune cells and immune-related functions between
high- and low-risk groups using single-sample Gene Set
Enrichment Analysis (ssGSEA). The ESTIMATE was uti-
lized to assess tumor purity based on analysis of stromal
and immune cells between high- and low-risk groups.
Lastly, we explored the expression of immune checkpoint
genes in high- and low-risk groups.
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Tumor mutation burden analysis

Furthermore, we retrieved somatic mutation profiles of
HNSCC samples from the TCGA somatic mutation data-
base. We analyzed the tumor mutational burden (TMB)
of HNSCC samples in high- and low-risk groups, using
the “M AFTOOLS” R package.

Drug sensitivity analysis

The IC50 values of conventional chemotherapeutic drugs
in HNSCC were predicted using the “oncoPredict” pack-
age in R to identify potential antitumor drugs for the
treatment of HNSCC.

Function enrichment analysis

We conducted Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses
respectively, to investigate the molecular mechanisms
and biological processes underlying the mcrmRNA prog-
nostic risk model between high- and low-risk groups.
Additionally, we selected the annotated gene set file
c5.all.v7.0.entrez.gmt and performed Gene Set Enrich-
ment Analysis (GSEA) with a significance level of p <0.05
to identify the top ten important pathways between high-
and low-risk groups.

Results

Construction of the mcrmRNA prognostic risk model

A univariate Cox regression analysis was performed on
494 patients, and 2,721 mRNAs (p<0.05) were found
to be significantly associated with patient prognosis.
Based on the Pearson co-expression analysis, we ulti-
mately selected 346 prognosis-related mRNAs specific
to cuproptosis (crmRNA) and 297 prognosis-related
mRNAs specific to m6A regulators (mrmRNA) (Fig. 2A,
B). The intersection of these sets yielded 297 prognosis-
related mRNA (mcrmRNA), which includes mRNAs
associated with prognosis and correlated with m6A regu-
lators and cuproptosis-related genes.

Following this, 32 prognostic mRNAs were identified in
the training set for the construction of the prognostic risk
model using LASSO analysis (Fig. 3A, B). Accordingly, we
computed the risk score of each patient by calculating the
expression of each prognostic mRNA multiplied by its
corresponding coefficient. The forest plot illustrates the
results of Cox regression analysis for these 32 prognos-
tic mRNAs (p<0.05) (Fig. 3C). Cases in the training set,
testing set, and entire cohort were divided into high- and
low-risk groups according to the median value of the risk
score. The risk distribution, survival status, PCA, calibra-
tion plot, and Kaplan—Meier analyses were validated in
the training set, testing set, and overall cohort (Fig. 4A-
R). The results of the analysis for the three groups had the
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Fig. 2 Co-expression network of 12 copper death-related genes and 346 copper death-related prognostic MRNAs (crmRNAs) (Cor>0.5, p<0.001)
(A). B Co-expression network of 601 m6A-related genes and 297 m6A-related prognostic mRNAs (mrmRNAs) (Cor>0.5, p<0.001)
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Fig. 3 LASSO algorithm analysis identified 32 mcrmRNA for the construction of the prognostic risk model (A, B). The tuning parameter (lambda)
in the LASSO model was selected via tenfold cross-validation. The relationship between the partial likelihood deviation (binomial deviation)

and log(lambda) was visualized. Dotted vertical lines were positioned at the optimal lambda values determined by the minimum criteria and the 1
standard error (SE) of the minimum criteria (the 1-SE criteria). A coefficient profile plot was generated against the log(lambda) sequence. A vertical
line was drawn at the lambda value selected through tenfold cross-validation, resulting in 32 features with non-zero coefficients under the optimal

lambda. C The forest plot reveals that the 32 mcrmRNA used in the prognostic risk model has significant prognostic value

same trend. Risk curves and scatter plots demonstrated
a significant increase in mortality with increasing levels
of risk. The results of PCA showed a clear distinction
between the high- and low-risk groups. Kaplan—Meier
curves revealed a higher survival rate in the low-risk
group compared to the high-risk group (p<0.001). Cali-
bration plots indicated area under the curve (AUC)
values of the prognostic model were 0.781 in the train-
ing set, 0.633 in the testing set, and 0.734 in the entire
cohort. These results demonstrated the favorable predic-
tive ability of the prognostic risk model.

To validate the accuracy of our constructed prognos-
tic risk model, we utilized transcriptomic and clini-
cal data of 97 HNSCC patients sourced from the GEO
database. The patients were divided into high- and low-
risk groups using the same risk calculation formula as
applied in the training set, with risk scores based on the

median value serving as the threshold. Specifically, 48
patients were categorized as high-risk and 49 as low-
risk. Similar to the training set, we observed that higher
risk scores were associated with lower survival rates in
this validation cohort (Fig. 5A-C). The survival analysis
depicted in Fig. 5D revealed a significantly lower sur-
vival rate in high-risk cases compared to low-risk cases
(p<0.001). Additionally, time-dependent ROC analy-
sis demonstrated the strong predictive performance of
our model, with AUC values of 0.698 for 1-year, 0.683
for 3-year, and 0.701 for 5-year survival (Fig. 5F). Cali-
bration plots also supported the reliability of the prog-
nostic model, showing an AUC value of 0.700 (Fig. 5E).
These findings collectively underscore the robust-
ness and accuracy of our model in predicting HNSCC
prognosis.
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Independent Indicator for the mcrmRNA prognostic risk
model

To determine whether the prognostic risk model based
on mcrmRNA is an independent predictor of prognosis
for patients with HNSCC, the Cox regression analysis
was performed. The univariate Cox regression analy-
sis performed on the entire cohort revealed that age,
stage, T stage, and risk score were directly associated
with the prognosis of HNSCC (p<0.001) (Fig. 6A).
Additionally, the multivariate Cox regression analy-
sis showed that the risk score was still an independ-
ent indicator in the prognosis of HNSCC (p<0.001)
(Fig. 6B). ROC curve analysis was used to evaluate the
predictive ability of the risk model for overall survival
(OS) in HNSCC patients. The risk score exhibited the
highest AUC compared to other clinical and pathologi-
cal features (Fig. 6C). Moreover, the risk score demon-
strated good predictive performance (AUC=0.722 for
1-year, 0.771 for 3-year, and 0.775 for 5-year survival)
(Fig. 6D). In conclusion, these findings suggested that
the risk score derived from the prognostic risk model
based on mcrmRNA was an effective tool for assessing
prognosis.

Construction and validation of the nomogram

The nomogram is a statistical predictive model that
creates a simple graphical representation by integrat-
ing multiple correlates and then generates numerical
probabilities of clinical events. It has been used as an
excellent tool for predicting the individual outcomes
of patients with a wide range of cancers. To facilitate
the application of the mcrmRNA prognostic risk model
in clinical settings, a nomogram chart (Fig. 7A) was
developed to integrate both the risk score and clini-
cal pathological information. The calibration curve
(Fig. 7B) demonstrated that the nomogram accurately
predicted the probability of OS at 1, 3, and 5 years,
which closely matched the observed OS. Additionally,
the time-dependent ROC curve (Fig. 7C) indicated
that the nomogram exhibited a good predictive ability
for 1-year, 3-year, and 5-year survival (AUC=0.753 for
1-year, 0.769 for 3-year, and 0.768 for 5-year survival).
These findings provided strong evidence of the capabil-
ity of the nomogram chart to predict the prognosis of
HNSCC patients.
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Immune infiltration in the mcrmrna prognostic risk model

The tumor microenvironment (TME) consists of a large
number of non-tumor cells, including immune cells and
stromal cells, which strongly modulate cancer growth and
invasion. To elucidate the relationship between immune
infiltration and the high- and low-risk groups, we quan-
tified the concentration fraction of 22 immune cells in
the TME of each group. The results of the CIBERSORT
and ssGSEA analyses (Fig. 8A, B) demonstrated higher
enrichment of CD8" T cells, CD4" T cells, macrophages,
plasma-like dendritic cells, and regulatory T cells (Tregs)
in the low-risk group. Additionally, the ESITTMATE analy-
sis indicated that the low-risk group had a higher stromal
score than the high-risk group (Fig. 8C, p<0.001). Con-
versely, the high-risk group exhibited higher tumor purity
than the low-risk group (Fig. 8D, p<0.001), while the low-
risk group had a higher immune score than the high-risk
group (Fig. 8E, p<0.001). Moreover, immune checkpoint
blockade is an effective cancer immunotherapy. We fur-
ther investigated expressions of immune checkpoint genes

in the two risk groups to determine whether the prognos-
tic model could serve as a potential marker to distinguish
HNSCC patients suitable for immune checkpoint block-
ade therapy. The results revealed that the low-risk group
displayed higher activity in immune checkpoint gene
expression, including LAG3, CTLA4, IDO1, PDCDI,
CD274, TNFRSF25, and IDO2 (Fig. 8F). These findings
suggested that low-risk patients might exhibit increased
responsiveness to immune therapy.

Tumor mutation burden in the mcrmrna prognostic risk
model

Additionally, we investigated mutation profiles of
HNSCC patients in the high- and low-risk groups
from the TCGA cohort. Waterfall plots showed the
20 most mutated genes in the two groups (Fig. 9A, B).
The higher TMB was observed in the high-risk group.
The high-risk group had TP53 (80%), TTN (39%),
FAT1 (22%), CSMD3 (20%), and CDKN2A (19%) as
the top five most frequently mutated genes (Fig. 9D).
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Conversely, in the low-risk group, TP53 (61%), TTN
(36%), CDKN2A (20%), SYNE1l (19%), and PIK3CA
(19%) were the genes with the highest mutation

frequencies (Fig. 9C). These findings suggest that our
model has the potential to identify patient candidates
for immunotherapy and enhance therapeutic outcomes.
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Fig. 8 Immune infiltration characteristics based on the mcrmRNA prognostic risk model. A Immune cell infiltration of 22 immune cell types

in high- and low-risk populations based on CIBERSORT analysis. B Differential analysis of 29 immune features between high- and low-risk
populations based on ssGSEA analysis. C Differential analysis of stromal score, tumor purity, and immune score between high-risk and low-risk
populations based on ESTIMATE analysis. D Boxplots comparing immune checkpoint genes between high- and low-risk groups of HNSCC patients
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Fig. 9 The analysis of somatic mutations in HNSCC patients. The waterfall plots (A, B) and the MAF (Mutation Annotation Format) summary plots
(C, D) illustrate the somatic mutation profiles in the high- and low-risk groups of HNSCC patients

high risk for HNSCC (Fig. 10A-T). These drugs included
Vorinostat_1012, 5-Fluorouracil 1073, Axitinib_1021,
Bortezomib_1191, Cisplatin_1005, Cytarabine_1006,
Docetaxel_1819, Doramapimod_1042, Fulvestrant_1200,
KU-55933_1030, Navitoclax_1011, Nilotinib_1013,
Niraparib_1177, NU7441_1038, Olaparib_1017, Oxali-
platin_1089, PLX-4720_1036, SB216763_1025, Talazo-
parib_1259, and Tamoxifen_1199.

The sensitivity of the two risk groups to clinical drugs

Chemotherapy remains widely recognized as one of the
primary and effective treatment approaches for can-
cer. Additionally, the risk model was utilized to calcu-
late the IC50 value, a crucial parameter for evaluating
the effectiveness of a drug and analyzing how a sample
responds to treatment. In our study, several therapeutic
agents had significantly higher IC50 values in patients at
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GO, KEGG, and GSEA pathway enrichment analysis

Based on transcriptomic data from the TCGA database,
GO, KEGG, and GSEA enrichment analyses were used
to further explore differences in biological functions and
signaling pathways between high- and low-risk groups.
Log2|FC|>1 and FDR <0.05 were selected as cutoff crite-
ria for differentially expressed genes (DEGs) in the high-
and low-risk groups. GO analysis (Fig. 11A) showed that
DEGs were involved in biological processes (BP) such as
leukocyte-mediated immunity, lymphocyte differentia-
tion, immune response regulation, cell surface receptor
signaling pathway, and o-BT cell activation. DEGs were
enriched in cell components (CC) categories, including
the extracellular side of the membrane, synaptic complex,
a-BT cell receptor complex, synaptic membrane struc-
ture, and neuronal cell body membrane. Furthermore,
DEGs were primarily associated with molecular func-
tion (MF) categories such as immune receptor activity,
monooxygenase activity, and cytokine receptor activity.
In KEGG analysis (Fig. 11B), these DEGs were enriched
in cytokine-cytokine receptor interaction, neuroactive
ligand-receptor interaction, phosphoinositide 3-kinase
(PI3K)/AKT signaling pathway, cell adhesion molecules,
RAS signaling pathway, and chemokine signaling path-
way. The biological functions and signaling pathways
enrichment between the two groups were validated
using GSEA, and the GSEA enrichment plot (Fig. 11C)
visualized the top 10 active pathways, demonstrating the
enrichment of DEGs in immune-related pathways. In
summary, the results of the functional enrichment analy-
sis uncovered activated pathways and mechanisms that
could be potentially involved in tumorigenesis and pro-
gression. This information offered valuable insights for
assessing the prognosis of patients with HNSCC.

Discussion

HNSCC ranks as the sixth most prevalent cancer globally,
with Asia exhibiting the highest incidence rate. However,
the intricate pathogenesis of HNSCC remains unclear
and more research is needed. The proposal of cupropto-
sis and m6A provides a new theoretical foundation for
tumor development and anti-tumor therapies. A study
has identified a genetic model based on the association of
cuproptosis to predict the prognosis of HNSCC [19]. The
results indicate that this model demonstrates superior
prognostic value compared to other clinical features such
as the STAGE staging and tumor GRADE grading. In
another study on the relationship between an RNA mod-
ification-associated factor model and HNSCC prognosis
[20], the model achieved an AUC value of 0.652, slightly
better than other clinical features, and time-dependent
ROC curves of the model indicated AUC values of 0.652,
0.688, and 0.683 at years 1, 3, and 5, respectively. While
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these models show promise in clinical settings, they still
lack high accuracy. Therefore, more accurate prognostic
models are needed to predict the prognosis of HNSCC.
This study combines cuproptosis and m6A, two biomark-
ers, to construct a prognostic model aimed at improving
the accuracy of the prognostic model.

To elucidate the roles of m6A and cuproptosis in
HNSCC and the potential link between them, our study
first performed univariate Cox regression analysis, fol-
lowed by correlation analysis of prognosis-related genes
and cuproptosis as well as m6A, respectively. A 32 mcrm-
RNA model was successfully established by LASSO Cox
regression analysis based on prognosis-related genes.
These 32 mcrmRNA demonstrated significant correla-
tions with both m6A and cuproptosis, with several of
these genes already validated through in vitro and in vivo
experiments. The loss of Cyclin-dependent kinase inhibi-
tor 2A (CDKN2A) gene expression has been identified
as a mechanism associated with oral squamous cell car-
cinoma [21]. CDKN2A, located on chromosome 9p21,
encodes two distinct tumor suppressor proteins, p14ARF
and p16INK4a, which play critical roles in regulating key
pathways involved in tumor suppression, particularly the
P53 pathway [22]. CDKN2A functions in tumorigenesis
by controlling cell division, apoptosis, and maintaining
cellular homeostasis through inhibition of cell cycle pro-
gression at the G1/S phase transition [23, 24]. The m6A
modification is catalyzed by a methyltransferase com-
plex composed of methyltransferase-like 3 (METTL3),
methyltransferase-like 14 (METTL14), and Wilms tumor
1 associated protein (WTAP) [25]. The knockdown of
METTL3 and METTL14 has been demonstrated to
reduce mRNA m6A levels and downregulate the expres-
sion of tumor suppressor genes, including CDKN2A
[26]. This decrease in mRNA m6A levels has been asso-
ciated with enhanced in vitro growth and self-renewal
of glioblastoma stem cells, along with an increase in the
formation of brain tumors in vivo [27, 28]. Conversely,
overexpression of METTL3 can elevate m6A levels in
glioblastoma stem cells and suppress their growth. More-
over, studies have shown that CDKN2A sensitizes the
cells to cuproptosis [10, 29]. Our investigation has rec-
ognized CDKN2A as a safeguarding gene in determin-
ing the prognosis of HNSCC patients. Given the strong
correlation between CDKN2A, m6A, and cuproptosis,
further exploration of CDKN2A’s role in the intricate
interplay of m6A and cuproptosis in HNSCC is war-
ranted. Cytotoxic T lymphocyte-associated antigen 4
(CTLA4), functioning as a negative immune checkpoint,
exhibits high expression levels in various solid tumors.
CTLAA4 primarily suppresses T cell responses by attenu-
ating the signaling amplitude of co-stimulatory molecule
CD28. The phenotype observed in CTLA4 knockout
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mice, characterized by lethal systemic immune hyperac-
tivation, underscores the pivotal role of CTLA4 in damp-
ening T cell activation and maintaining immunologic
homeostasis [30]. Targeting CTLA4 has been reported to
effectively reverse immunosuppression and improve out-
comes in HNSCC patients by inhibiting myeloid-derived
suppressor cell and M2 macrophage recruitment, while
concurrently promoting T cell activation [31]. Protein
Kinase C Eta (PRKCH), a member of the protein kinase
C family, is involved in regulating both apoptosis and
anti-apoptosis processes [32]. Studies have shown that
PRKCH is linked to improved survival rates in individuals
with head and neck cancer, which is consistent with the
results of our research [33]. Matrix metalloproteinase-19
(MMP19) plays critical roles in various physiological and
pathological processes, including inflammation, wound
healing, and the progression of vascular [34]. Notably,
MMP19, which is expressed in the tumor-invasive fronts,
has been implicated in facilitating the invasiveness of
HNSCC [35]. Thrombospondin 1 (THBS1), identified as
an oncogene in oral squamous cell carcinoma (OSCC),
acts as a tumor-specific extracellular matrix (ECM) pro-
tein induced by TGFBL1 [36, 37]. THBS1 promotes cancer
cell migration and stimulates matrix metalloproteinases
(MMPs) through integrin signaling, facilitating OSCC
invasion. Additionally, THBS1 mediates the PI3K/AKT
signaling pathway to regulate OSCC cell proliferation,
migration, and invasion [38]. While the roles of other
genes in this risk model in HNSCC are not extensively
studied, our research suggests that these genes play sig-
nificant roles in HNSCC tumorigenesis and could be
potential targets for cancer therapy. However, further
investigation is necessary to fully comprehend their spe-
cific mechanisms and functions in HNSCC.

The risk scores calculated by the 32 mcrmRNA model
can serve as independent prognostic indicators for the
survival of HNSCC patients. The Kaplan—Meier analy-
sis showed that a higher risk score was associated with
a poorer prognosis. The ROC curve showed that the
performance of our predictive model exhibited a more
reliable and prominent performance compared to other
clinical indicators. The risk model exhibited more favora-
ble predictive ability with AUC values of 0.722, 0.771, and
0.775 for 1-year, 3-year, and 5-year survival, respectively.
Moreover, various clinical features, including age, gender,
tumor grade, TNM stage, and treatment, have been uti-
lized in the construction of a nomogram chart for pre-
dicting the survival of HNSCC patients [39]. Thus, we
established a brand-new nomogram chart that incorpo-
rates risk scores and clinical pathological information for
HNSCC patients. The calibration curve exhibited a nota-
ble agreement between the predicted outcomes derived
from the nomogram chart and the corresponding actual
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results. Collectively, these findings demonstrated the
high accuracy and sensitivity displayed by our prognos-
tic model. In comparison to existing prediction models,
our prognostic risk score model combined two biomark-
ers that are critical to cancer, resulting in a more precise
evaluation of the prognosis for patients with HNSCC. It
established a foundation for further research on the spe-
cific roles of cuproptosis and m6A in HNSCC. Moreover,
the mcrmRNA model possessed a notable advantage in
facilitating the risk stratification of HNSCC patients, a
critical aspect for patients and clinical practice. Tailor-
ing treatments based on different risk levels not only
improves patient prognosis but also optimizes the utiliza-
tion of limited medical resources [40]. In conclusion, the
mcrmRNA model exhibited higher reliability in predict-
ing the prognosis of HNSCC patients than other clinical
or pathologic variables.

The tumor immune microenvironment plays a pivotal
role in the development and progression of HNSCC by
promoting invasive tumor growth and treatment resist-
ance, which subsequently negatively impacts prognosis
[41, 42]. Within the immunosuppressive tumor micro-
environment, HNSCC cells evade immune surveillance
through various mechanisms [43]. To further investi-
gate the potential connection between risk score and
immune-related features, we conducted CIBERSORT
and ssGSEA analyses to quantify immune cell infiltration
in high- and low-risk groups. The results demonstrated
enrichment of B cells naive, B cells memory, plasma cells,
T cells CD8, T cells CD4 memory activated, T cells fol-
licular helper, Tregs, T cells gamma delta, mast cells rest-
ing, and eosinophils in the low-risk group. Conversely,
macrophages MO and activated mast cells were enriched
in the high-risk group. Macrophages play a crucial role
in the tumor microenvironment, with a high presence of
MO macrophages being associated with a poor progno-
sis in early-stage lung cancer [44]. Moreover, activated
mast cells induce neovascularization through the release
of angiogenic factors and contribute to tumor aggres-
siveness by releasing various matrix metalloprotein-
ases [45]. However, intratumor mast cells also exhibit a
protective effect against prostate cancer recurrence and
may serve as a prognostic biomarker following prostate
cancer resection [46]. In patients with oral squamous
cell carcinoma, tumor-draining lymph nodes (TDLNs)
show a higher percentage of B cells compared to non-
TDLNSs, and are strongly linked to HNSCC progression
[47]. However, our study revealed that patients in the
low-risk group exhibit enrichment of naive B cells and
memory B cells. This inconsistency may be attributed to
the inherent constraints of the CIBERSORT algorithm,
which has a tendency to either over- or under-estimate
certain cell types systematically, despite demonstrating



Xing et al. BMC Medical Genomics (2024) 17:137

a relatively lower estimation bias. The ESTIMATE scor-
ing results revealed inadequate immune efficacy in the
high-risk group. In this study, the low-risk group exhib-
ited abundant immune cell infiltration, including CD8*
T cells and Tregs, and showed more favorable prognosis
outcomes. Previous research has demonstrated that a
direct interaction between abundant tumor-infiltrating
B-cells (TIL-B) and a higher density of B cells/CD8*
T cells leads to better prognoses for patients [48], and
increased infiltration of CD8" T cells has been closely
associated with improved OS and local control (LRC)
[42]. Tregs play a crucial role in maintaining a balance
between self-immunity and immune suppression. More-
over, they have diverse functions within the TME, with
a particular emphasis on inhibiting T cell activation
[49]. Additionally, several studies have reported a cor-
relation between Treg infiltration and improved OS and
disease-free survival (DFS) in HNSCC patients [50, 51].
Discrepancies in immune cell infiltration between high-
and low-risk groups may account for the varying progno-
ses observed in HNSCC patients. A notable correlation
was found between immune infiltration, m6A modifica-
tion, and cuproptosis. The m6A regulators are crucial
in pathological and physiological immune cell infiltra-
tion and immune responses, essential for maintaining
homeostasis and tumor immunosurveillance functions
[52]. YTHDF]1, a specific m6A regulator, enhances lyso-
somal cathepsin translation in dendritic cells, facilitating
antigen presentation to CD8" T cells [53]. This process
impacts the cross-presentation of tumor neoantigens and
the cross-priming of CD8* T cells, aiding tumor immune
evasion. Furthermore, METTL3 has been implicated
in bladder cancer by promoting resistance to CD8" T
cell cytotoxic effects through the upregulation of pro-
grammed death ligand 1 (PD-L1) expression, under-
scoring the importance of m6A methylation in tumor
immunity modulation [54]. Jin proposed that the m6A
regulator ALKBH5 may suppress tumor progression
within the immune microenvironment via the RIG-1/
IFNA axis [55]. Moreover, Yi demonstrated the potential
role of m6A in regulating the immune microenvironment
of HNSCC in conjunction with the PI3K/AKT/mTOR
signaling pathway [56]. High-mobility group box 1
(HMGB1), a common non-histone nuclear protein found
in cells, is crucial for maintaining nucleosome structure
and function, influencing gene transcription, DNA dam-
age repair, and chromosomal rearrangement [57]. Studies
have shown that in non-small cell lung cancer (NSCLC),
cells undergoing cuproptosis release HMGBI1, which
subsequently binds to the advanced glycosylation end
product-specific receptor (AGER) [58]. This interaction
activates macrophages and triggers the production of
inflammatory cytokines, initiating a cascade of immune
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responses. The cGMP-AMP synthase (cGAS)-stimulator
of interferon genes (STING) pathway is a crucial compo-
nent of innate immunity by responding to DNA triggers
and orchestrating diverse immune responses that impact
different stages of cancer development, including initia-
tion and metastasis [59]. Cuproptosis has been shown to
enhance cancer immunity by activating the cGAS-STING
signaling pathway in clear cell renal cell carcinoma cells
[60]. Moreover, in mouse tumor models, the combined
use of cuproptosis inducers (elesclomol and CuCl2) with
anti-PD-1 therapy synergistically increases levels of cir-
culating CD8* T cells. In summary, immune infiltration
appears to be linked to m6A modification and cupropto-
sis in HNSCC, but further research is required to under-
stand the specific mechanisms involved.

In addition, cancer cells evade immune surveillance
and facilitate tumor progression through the modulation
of immune checkpoint genes. As a result, immune check-
point inhibitors have emerged as a promising approach
to enhance treatment outcomes for cancer patients.
Consequently, these inhibitors have become a vital com-
ponent in the field of cancer treatment. We investigated
the differential expression of common immune check-
point genes between the high- and low-risk groups. The
findings revealed an upregulation of CD276 in the high-
risk group, while other immune checkpoints, including
LAG3, CTLA4, IDO1, PDCD1, CD274, TNFRSF25, and
IDO2, were upregulated in the low-risk group. These
results suggested that low-risk patients might demon-
strate enhanced responsiveness to immunotherapy. A
recent study has demonstrated the significant involve-
ment of CD276 in the proliferation, invasion, and migra-
tion processes of cancer cells [61]. HNSCC cells with
high CD276 expression have a greater stemness capacity
as well as metastatic ability, and in vivo experiments also
showed that CD276 antibody monotherapy could effec-
tively inhibit HNSCC growth and metastasis [62]. Our
study suggests a potential therapeutic avenue for high
risk HNSCC patients by targeting the immune check-
point CD276. Moreover, the TMB has been confirmed as
a promising predictive indicator of immunotherapy effi-
cacy [63, 64]. For example, TMB serves as a unique and
complementary biomarker for predicting the response to
anti-programmed death 1 (anti-PD-1) therapy in HNSCC
[65]. Therefore, we assessed the TMB status in high- and
low-risk groups and found higher TMB in the high-risk
group. These findings highlight the potential of our prog-
nostic model in guiding treatment decisions regarding
the use of immunotherapy. Specifically, the high-risk
group exhibits a higher mutation rate of the P53 gene.
The P53 gene is also strongly associated with cupropto-
sis. Recent studies have identified an association between
the P53 gene and mutations in CDKN2A, a key gene of
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cuproptosis [66, 67]. Overall, cuproptosis is likely to have
a significant influence on the effectiveness of immuno-
therapy in HNSCC, particularly through its involvement
in the P53 pathway. Therefore, our prognostic model
serves as a reliable biomarker for predicting the response
to immunotherapy and as a guide for exploring the role
of cuproptosis in HNSCC immunotherapy.

The sensitivity of common chemotherapeutic agents to
HNSCC differed between the two risk groups. Patients
with HNSCC in the high-risk group exhibited higher
IC50 values for multiple chemotherapy drugs. Notably,
patients in the high-risk group may exhibit resistance to
various chemotherapeutic agents including 5-fluoroura-
cil, cisplatin, and oxaliplatin, which are recommended
chemotherapy drugs for HNSCC according to clinical
practice guidelines [68]. Therefore, more comprehensive
studies are needed to reverse resistance and improve
patient prognosis. Currently, 5-fluorouracil is utilized in
the treatment of multiple cancers and has demonstrated
remarkable advancements in various tumor therapies
with the aid of nanocarriers [69]. Platinum-based drugs
like cisplatin, carboplatin, and oxaliplatin are extensively
employed in chemotherapy to eliminate cancer [70, 71].
However, the clinical application of platinum-based
drugs is severely limited due to their lack of selectivity,
systemic toxicity, and development of drug resistance
[72, 73]. The development of new platinum-based drugs
and their targeted modifications undeniably holds great
potential for enhancing current anticancer treatments
[74]. Overall, this study indicates that HNSCC patients
with high risk scores may have an increased susceptibility
to chemotherapy resistance. These findings have impor-
tant implications for guiding the treatment of HNSCC
patients.

To further explore the differences between the high-
and low-risk groups, GO, KEGG, and GSEA analyses
were performed to explore biological functions and
pathways associated with risk scores. The results of the
GO analysis revealed that the DEGs between the high-
and low-risk groups were enriched in various immune
response pathways, including leukocyte-mediated immu-
nity. This suggests that there may be differences in the
immune responses against cancer and responses to ther-
apy between the two groups. KEGG analysis revealed
the involvement of DEGs in multiple signaling such
as PIBK/AKT signaling pathway, RAS signaling path-
way, and chemokine signaling pathway. The PI3K path-
way offers a new direction for the development of PI3K
inhibitors due to its vital role in cancer recurrence [75].
For instance, the tumor suppressor gene PER1 inhibits
glycolysis-mediated cell proliferation by regulating PI3K
stability and PI3K/AKT pathway dependence, thereby
inhibiting oral squamous cell carcinoma progression [63].

Page 18 of 21

These findings indicate that PER1 may serve as a valu-
able therapeutic target for oral squamous cell carcinoma.
In addition, GSEA showed that the rRNA metabolism
pathway associated with RNA processing was signifi-
cantly different in the two groups. This implies that these
m6A and cuproptosis-related genes of the prognostic
model may play a role in influencing HNSCC at the pro-
tein synthesis level. Interestingly, significant enrichment
was observed in several metabolic pathways between
the two groups, including mitochondrial gene expres-
sion and mitochondrial translation. Mitochondria are
critical in the development and progression of cancer as
a source of energy and in regulating oncogenic signaling
[76]. Therefore, targeted therapies against mitochondria
have shown effectiveness. For example, a previous study
has shown that Triptolide (TPL) induces apoptosis in
HNSCC cells by inhibiting mitochondrial hexokinase
[77]. Several studies have highlighted the significant role
of melatonin in the treatment of HNSCC by regulating
mitochondrial function [78, 79]. The utilization of GO,
KEGG, and GSEA analyses in this study provides valu-
able insights into the role of m6A and cuproptosis in the
progression of HNSCC. It is important to acknowledge
the limitations of each analysis method, such as statistical
threshold selection and pathway annotation quality [80].
Collectively, these findings indicate that the differences
between the high- and low-risk groups are closely related
to mitochondrial function and the TCA cycle, while the
TCA cycle was identified as a direct target for the onset
of cuproptosis. Further experimental and clinical studies
are required to confirm these results.

Conclusion

In summary, the risk model based on 32 mcrmRNA
represents a valuable tool for guiding the individual-
ized treatment and improving the prognosis of HNSCC
patients. It also provides important insights into the
potential mechanisms of cuproptosis and m6A in
HNSCC. However, some limitations of our study need to
be considered. First, there is a lack of sufficient HNSCC
samples and clinical follow-up data within our institu-
tion to validate the prognostic prediction model thor-
oughly. Further research in the subsequent clinical phase
is necessary. Moreover, the specific impact of the identi-
fied mcrmRNA on HNSCC cell death and the underlying
mechanisms of m6A remain inconclusive. Consequently,
conducting additional in vivo and in vitro experiments is
imperative.
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