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Abstract 

Background Immunoregulatory drugs regulate the ubiquitin‑proteasome system, which is the main treatment 
for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model 
and evaluate the prognostic value of ubiquitination‑related genes in MM.

Methods and results The data on ubiquitination‑related genes and MM samples were downloaded from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE 
algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single‑factor 
and multiple‑factor analysis. The ROC curve was plotted to compare the survival difference between high‑ and low‑
risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitina‑
tion‑related genes were obtained, with 47 genes showing high expression in the MM group. According to the consist‑
ent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly 
among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune 
score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells 
CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed 
in the high‑risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low‑risk group, whereas Bleo‑
mycin showed higher drug sensitivity in the high‑risk group. The nomogram of the risk model demonstrated good 
efficacy in predicting the survival of MM patients using TCGA and GEO datasets.

Conclusions The risk model constructed by ubiquitination‑related genes can be effectively used to predict the prog‑
nosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic 
targets and to combat drug resistance.
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Introduction
Multiple myeloma (MM) is a prevalent hematological 
malignancy characterized by the malignant prolifera-
tion of plasma cells in the bone marrow. This results in 
the secretion of monoclonal immunoglobulin or its frag-
ments, leading to bone marrow failure, multiple bone 
destruction, and damage to various organs or tissues 
[1]. The number of MM patients is increasing worldwide 
[2]. The incidence is about 1.03% in China, and there 
are more male patients than female patients [3]. How-
ever, the etiology of MM is still unclear. Most research-
ers agree that abnormal plasmacytes originate from 
memory B lymphocytes or proplasmacytes with C-myc 
gene recombination and high expression levels of certain 
N-ras genes.This leads to unrestricted plasmacyte prolif-
eration and abnormal increase of IL-6 in the bone mar-
row. The clinical manifestations include anemia, kidney 
impairment, hypercalcemia, and other symptoms, while 
severe cases may lead to death [4]. Therefore, exploring 
the genes associated with MM will help provide a theo-
retical basis for early diagnosis and treatment targets.

The ubiquitin-proteasome system (UPS) plays a criti-
cal role in the therapy of MM [5]. The inhibition of UPS 
has been considered a new strategy against MM. For 
example, the proteasome inhibitor (PI) can reduce the 
expression of TNF-α and NF-κB, induce apoptosis, and 
suppress drug efflux [6]. Immunomodulatory drugs are 
mainly applied to the treatment of MM, targeting the 
UPS. Immunomodulatory drugs induce selective ubiq-
uitination and degradation of MM-associated lymphatic 
transcription factors IKZF1 and IKZF3 by binding to 
E3 ubiquitin ligase substrate receptor protein targets 
(CRBN) [7, 8]. Neuronally expressed developmentally 
downregulated 4 − 1 (NEDD4-1) inhibits the AKT sign-
aling pathway by inducing proteasome degradation 
through ubiquitinating phosphorylated AKT-Ser473 and 
promoting apoptosis of MM cells. The PI Bortezomib can 
lead to the accumulation of polyubiquitylated proteins. 
Bortezomib promotes apoptosis of MM cells by inhibit-
ing the 26 S proteasome [9]. Anti-MM drugs show their 
activity mainly by inhibiting ubiquitin-related enzymes, 
and target ubiquitin pathway promotes MM cell death. 
But drug resistance often develops [10]. The evidence 
showed that hyperactive small ubiquitin-like modifier 
is closely related to the progression of MM, while the 
higher the level of hyperactive small ubiquitin-like modi-
fier, the poorer the survival [11, 12]. The research by Du 
et al. indicated that the ubiquitin receptor PSMD4/Rpn10 
is effective in regulating cytotoxicity in MM, making it a 
potential therapeutic target [13]. According to the find-
ings, it can be seen that ubiquitination is closely related 
to the development and treatment of MM. Although 
immunomodulatory drugs can prolong survival, there 

is still the possibility of relapse and drug resistance [14]. 
Moreover, PI showed serious side effects, causing car-
diovascular damage [15]. Hence, there is an urgent need 
to develop new targets to treat MM and reduce drug 
resistance.

Methods
Download expression data and ubiquitination‑related 
genes
We employed the TCGA database to download gene expres-
sion data and clinical information of MM as a training dataset 
of the risk model under the project ID MMRF-COMMPASS 
by using the R statistical software (version 4.2.1, https:// mirro 
rs. tuna. tsing hua. edu. cn/ CRAN/ bin/ windo ws/ base/R- 4.2. 
1- win. exe) based on R package GDCRNATools (v1.16.2, 
https:// github. com/ Jialab- UCR/ GDCRN ATools, access time: 
2023-6-20) [16]. A total of 859 samples were included in the 
TCGA MMRF-COMMPASS dataset. Among them, 764 
MM samples were selected as a case group by PrimaryBlood-
DerivedCancer-BoneMarrow screening. Then, we used Bone-
MarrowNormal with project ID TARGET-AML downloaded 
from the leukemia dataset to screen normal bone marrow 
tissue samples due to the absence of normal samples in the 
MMRF-COMMPASS dataset. As a result, we got 20 nor-
mal samples for the control group. The expression data 
from 784 integrated samples were used for subsequent 
analysis. In the meanwhile, we obtained a gene expres-
sion dataset of MM samples with prognostic information 
GSE2658 [17] (549 tissue samples of MM at https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE26 58, Chip 
platform GPLGPL570), probe data and survival infor-
mation necessary to verify the risk model. We searched 
for the keyword “ubiquitin” to acquire the gene set from 
the Signatures Database [18] v7.5.1 (http:// www. gsea- 
msigdb. org/ gsea/ msigdb/ index. jsp). A total of 197 C2 
curated sets were obtained, and 1282 related genes were 
selected after merging data and de-duplicating for subse-
quent analysis.

Analysis of MM differentially expressed genes (DEGs) 
and differentially curated ubiquitination‑related genes 
and identification of ubiquitination‑related subtypes
The analysis of DEGs was performed based on MM 
expression data and normal bone marrow expression data 
by using the limma method [19] of the built-in gdcDEA-
nalysis function in the GDCRNATools package. In addi-
tion, we conducted an intersection between DEGs and 
curated ubiquitination-related genes. In order to conduct 
a more accurate model, individual differences in ubiq-
uitination gene expression were excluded. We applied 
R package ConsensusClusterPlus (http:// bioco nduct or. 
org/ packa ges/ relea se/ bioc/ html/ Conse nsusC luste rPlus. 
html) based on the expression quantity of differentially 

https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/R-4.2.1-win.exe
https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/R-4.2.1-win.exe
https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/R-4.2.1-win.exe
https://github.com/Jialab-UCR/GDCRNATools
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2658
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2658
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
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curated ubiquitination genes to conduct consistent clus-
ter analysis on the samples of the training dataset and 
set parameters: maxK = 10 (maximum number to evalu-
ate), reps = 100 (number of subsamples), while the most 
appropriate cluster number was selected, the samples 
were divided into different subtypes, and the classifica-
tion reliability was verified by PCA.

K‑M survival analysis among different ubiquitination 
subtypes, analyzing tumor immune infiltration analysis, 
and comparison of clinical information differences
The survival differences between different ubiquitina-
tion subtypes were analyzed. The Estimate algorithm [20] 
was employed to perform immune scores for samples of 
each subtype and to compare the differences in immune 
scores. Moreover, CIBERSORT [21] was used to evaluate 
the proportion of immune cell infiltration and compare 
the difference in samples of each subtype.

Differences in checkpoint genes and HLA family genes 
between subtypes and representative gene collections
The list of immune checkpoint genes was obtained based 
on published article [22], and the list of HLA family genes 
was obtained by searching the HLA nomenclature data-
base (http:// hla. allel es. org/ genes/ index. html). Wilcoxon 
test was used to compare the expression of immune 
checkpoint genes and HLA family genes among subtypes.

For obtaining representative genes of subtypes, we used 
the limma method from the R package to conduct differ-
ence analysis between samples of a specific subtype and 
samples of other subtypes. Only genes highly expressed 
in the subtype (logFC > 1, P < 0.05) were selected as repre-
sentative genes of the subtype.

Prognostic risk models were constructed based on 
single-factor and multiple-factor analysis [23] and scored 
after picking the union set de-duplicating representative 
genes for each subtype and collecting the survival infor-
mation of each subtype.

The predictive power evaluation of the risk model based 
on the TCGA dataset
According to the median risk score, the samples were 
divided into a high-risk group and a low-risk group, 
and the survival difference between the high- and low-
risk groups was compared respectively. Finally, the ROC 
curve was plotted.

The independent predictive power of the risk model 
was evaluated based on a nomogram and a calibration 
graph combined with the risk model score and clinical 
phenotype.

Risk model validation based on the GSE2658 dataset
According to the risk model, risk scores were assigned 
to the samples in the validation dataset, and the sur-
vival difference between high-risk and low-risk sam-
ples was compared using the median as the standard. 
The predictive power of the validation dataset is veri-
fied by drawing the nomogram and a calibration graph 
simultaneously.

Prediction of drug sensitivity and subtype characterization 
correlation analysis
We utilized the Genomics of Drug Sensitivity in Cancer 
(GDSC; https:// www. cance rrxge ne. org/) database to 
estimate the sensitivity of each patient to chemother-
apy drugs. The half maximal inhibitory concentration 
(IC50, where a lower IC50 value indicates greater cell 
sensitivity to the drug) was quantified using the pRRo-
phetic package in the R language. The Wilcoxon test 
was used to compare drug sensitivity between high- 
and low-risk groups. The classification samples of dif-
ferent subtypes within the high- and low-risk groups 
were collected and analyzed.

External validation of model genes
The Kaplan-Meier Plotter was used to verify the cor-
relation between model genes and MM survival. The 
P-value < 0.05 was considered statistically significant.

Results
DEGs analysis
A total of 784 samples were obtained after screening for 
subsequent analysis. In the meanwhile, we obtained 197 
ubiquitination-related genes from the Signatures Data-
base. A total of 6533 DEGs were identified using the 
limma method with |log2 (FC)| > 0.58 and P < 0.05 as the 
criterion through the built-in gdcDEAnalysis function of 
the GDCRNATools package (Fig.  1A). Furthermore, we 
got 87 differential ubiquitination-related genes. Among 
them, 47 genes were highly expressed in the tumor, and 
40 genes were highly expressed in the control group, 
suggesting a close relationship between ubiquitination-
related genes and MM (Supplementary Table 1, Fig. 1B). 
The expression levels of ubiquitination-related genes are 
presented in Supplementary Table  2. The results of the 
Wilcoxon test were statistically significant (Fig. 1C). The 
correlation analysis of ubiquitination-related DEGs was 
shown in Fig. 1D. The results suggest a strong correlation 
among highly expressed ubiquitination-related genes.

Identification of molecular subtypes
According to the method, we performed a consist-
ent cluster analysis of 764 TCGA MM samples based 

http://hla.alleles.org/genes/index.html
https://www.cancerrxgene.org/
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Fig. 1  A DEGs volcano map of MM and normal bone marrow samples; B Ubiquitination‑related DEGs volcano of MM and normal bone marrow 
samples; C There were significant differences in ubiquitination‑related genes; D Correlation analysis of ubiquitination‑related DEGs. *: 0.01 < P < 0.05, 
**: 0.001 < P < 0.01, ***: 0.0001 < P < 0.001, ****: P < 0.0001



Page 5 of 14zhang et al. BMC Medical Genomics          (2024) 17:164  

on the 84 ubiquitination-related genes obtained ear-
lier. We selected the Delta area to show the inflection 
point (Fig.2A), and the clustering heat-map was well-
structured (Fig. 2B), while the CDF curve was leveling 
off (Fig.2C). The corresponding k value was used as the 
number of clusters, so we finally determined that the 
number of clusters is 4, that is, the samples are divided 
into four subtypes. Principal Component Analysis 
(PCA) was conducted using the expression levels of 
ubiquitination genes, followed by ANOSIM analysis to 
compare thevariations among subtypes (Fig. 2D-E).

K‑M survival analysis between different immune subtypes, 
analyze immune cell infiltration, and correlate with clinical 
data
Based on the survival information of samples in each 
subtype, we utilized the R packages survival and sur-
vminer to compare the survival conditions of different 

subtypes.Our analysis revealed significant differences in 
survival between subtypes (Fig. 3A). Among them, clus-
ter 1 had a poor prognosis, while the rest had a better 
prognosis. At the same time, the results of enrichment 
scores showed that the score of cluster 1 was signifi-
cantly lower than that of cluster 2 and cluster 4 (Fig. 3B), 
which illustrated that ubiquitination-related genes were 
related to the prognosis of MM patients. In addition, the 
immune scores were performed by using the ESTIMATE  
algorithm, and we compared the differences in immune 
scores among subtypes (Fig. 3C). As a result, the differ-
ences in immune scores between the subtypes were sta-
tistically significant. The tumor purity of cluster 1 and 
cluster 3 was significantly higher than those the other 
two clusters. The immune score and stromal score in 
cluster 2 and cluster 4 were higher than in cluster 1 and 
cluster 3. The GSVA score of each cluster was consist-
ent with the ESTIMATE score, which confirmed the 

Fig. 2  A Change of area of CDF curve under the number of clusters; B Clustering hierarchy diagram; C CDF curve for each cluster number; D PCA 
of differentially ubiquitination‑related genes in 3D; E PCA Anosim in 2D, R > 0 refers there is difference between clusters, P < 0.05 refers the difference 
is statistically significant
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correlation between ubiquitination-related genes and 
MM pathogenic progression. The proportion of immune 
cells in tumor tissues, evaluated by the CIBERSORT 
algorithm showed that the differences in CIBERSORT 
fraction in clusters were statistically significant (Fig. 3D). 
In terms of immune cells, B cells memory in cluster 1 
accounted for the highest proportion, while the propor-
tion of plasma cells in cluster 1 was less than in cluster 2. 
Additionally, T cells CD8 accounted for the highest pro-
portion in cluster 4.

The collection of representative genes in each cluster
The expression levels of checkpoint genes and HLA family 
genes are presented in Supplementary Table 3. The results 

revealed significant differences in checkpoint genes and 
HLA family genes among various molecular subtypes, 
indicating notable distinctions significant differences 
between the subtypes. For example, the expression level of 
BTN3A1 in cluster 4 was lower than in other clusters, and 
the expression level of HLA-A, B, and C in clusters 1 and 
4 was higher than in clusters 2 and 3 (Fig. 4A). Moreover, 
we utilized the limma package to analyze the differences 
between the samples of one subtype and other subtypes, 
and selected the highly expressed genes as representative 
genes of each subtype (Fig. 4B). The intersection of rep-
resentative genes in subtypes was limited, meaning that 
the differences in representative genes of each subtype 
were significant. In the meanwhile, we selected all sets of 

Fig. 3  A The differences in survival analysis in ubiquitination‑related gene clusters; B The differences in enrichment scores in ubiquitination‑related 
gene clusters; C The differences of immune infiltration scores in ubiquitination‑related gene clusters; D The differences in the proportion of immune 
cells in ubiquitination‑related gene clusters. Wilcoxon Test *: 0.01 < P < 0.05, **: 0.001 < P < 0.01, ***: 0.0001 < P < 0.001, ****: P < 0.0001
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ubiquitination-related genes in the Signatures Database 
to intersect with all subtypes, and we got 72 ubiquitina-
tion representative genes for subsequent survival analysis 
(Fig.  4C). Then, we constructed a risk model combined 
with the survival information of the samples. The rea-
son LASSO regression only considers survival and death 

time, and does not include survival information, is that we 
need to select genes that are significantly related to sur-
vival time and survival state in the single-factor analysis to 
ensure the reliability of the model. Based on single-factor 
analysis, the LASSO regression was performed on genes 
with P < 0.005 (Fig. 4D).

Fig. 4  A The differences between checkpoint genes and HLA family genes in subtypes. (Wilcoxon Test *: 0.01 < P < 0.05, **: 0.001 < P < 0.01, 
***: 0.0001 < P < 0.001, ****: P < 0.0001); B The representative genes of clusters (The red dots represent the representative genes of each cluster, 
log2FC > 1 and P < 0.05); C The veen diagram of representative genes in each cluster; D LASSO regression
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The risk model construction and validation based 
on the TCGA dataset
The risk score model was constructed according to the 
results of LASSO model: Riskscore = 0.0046833357739203
*SOCS3 + 0.0296897767259966*UBE2T + 0.018515892717
0784*TOP2A + (-0.0189779895672147)*HERC6 + (-0.02 
61853093234728)*USP3 + (-0.0124611715684952)*TNIP1 + 
(-0.0668058378550144)*KLHL24 + 0.0114569251299551*SD
E2 + 0.0439772194879231*VCPIP1 + 0.0270466928975837* 
YOD1 + (-0.00796472303046347)*CISH”.

After scoring the TCGA MM samples, the samples 
were divided into a high-risk group and a low-risk group 
according to the median risk score. The differences in 
gene expression (Fig. 5A) and survival probability (Fig. 5B) 
between high- and low-risk groups were statistically sig-
nificant, while the ROC curve had a high interpretive abil-
ity (Fig.  5C). The model genes UBE2T, TOP2A, VCPIP1, 

SDE2, YOD1, and SOCS3 were highly expressed in the 
low-risk group, while KLHL24, HERC6, USP3, TNIP1, and 
CISH were highly expressed in the high-risk group. Based 
on the prognostic model and TCGA dataset, we conducted 
univariate and multivariate analyses with independent 
prognostic clinical information and risk score, and found 
that age and risk score were significantly correlated with 
prognostic survival. According to the age and risk score, 
the risk model nomogram (Fig. 5D) and calibration graphs 
of 1-, 2-, and 3-year survival rates were conducted (Fig. 5E).

The validation of the risk model based on the GSE2658 
dataset
Based on the expression of model genes in the valida-
tion dataset GSE2658, we scored the risk of MM sam-
ples (Supplementary Table  4), and divided them into 
high- and low-risk groups according to the median risk 

Fig. 5  A The heat map of gene expression in low‑ and high‑risk groups; B The survival probability of low‑ and high‑risk groups; C The ROC curve 
of the risk model in the TCGA dataset; D Nomogram of risk model; E The calibration graph of 1‑, 2‑ and 3‑year survival rate
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score. According to the expression of model genes in 
the high- and low-risk groups (Fig. 6A), the model genes 
UBE2T, TOP2A, VCPIP1, SDE2, YOD1, and SOCS3 were 
highly expressed in the low-risk group, while KLHL24, 
HERC6, USP3, TNIP1, and CISH were highly expressed 
in the high-risk group. In addition, survival analysis was 
conducted for the samples in high- and low-risk groups 
(Fig. 6B). The survival probability was higher in the low-
risk group than in the high-risk group, and the difference 
was statistically significant. The ROC curve indicated 
that the risk model effectively predicted the prognosis of 
MM (Fig. 6C).

The results of single-factor analysis indicated that the risk 
score was significantly correlated with survival time (Supple-
mentary Table 5). The higher the risk score, the shorter the 
survival time. The nomogram (Fig. 6D) and calibration graphs 
of 1-, 2- and 3-year survival rates (Fig. 6E) were plotted.

The prediction of drug sensitivity and subtype 
characterization correlation analysis
Based on the TCGA MM sample expression dataset and 
GDSC database to estimate the sensitivity to chemother-
apy drugs for each patient, and compare the drug sensi-
tivity between high- and low-risk groups. Most drugs had 
significantly different sensitivity in high- and low-risk 
groups. For instance, 5-aminoimidazole-4-carboxamide-
1-β-riboside (AICAr) and BMS.754,807 had higher drug 
sensitivity in a low-risk group than in a high-risk group, 
while Bleomycin had higher drug sensitivity in the high-
risk group (Fig. 7A). We analyzed the enrichment of high- 
and low-risk samples in various clusters in the TCGA 
dataset using the fisher test, and the results of the enrich-
ment are displayed in (Fig.  7B). High-risk samples were 
significantly enriched in cluster 1, while low-risk samples 
were significantly enriched in cluster 2 and cluster 4.

Fig. 6  A The expression of model genes in high‑ and low‑risk groups based on the GEO validation dataset; B The survival analysis of model 
genes in high‑ and low‑risk groups based on the GEO validation dataset; C The ROC of risk model prediction in high‑ and low‑risk groups based 
on validation dataset; D The nomogram of validation dataset; E The calibration graphs of 1‑, 2‑ and 3‑year survival model based on GEO dataset
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External validation of model genes
The validation of these 11 model genes on the Kaplan-
Meier Plotter database indicated that the expression of 
the model genes was significantly correlated with the sur-
vival of MM patients (P < 0.05, Fig. 8).

Discussion
Protein modification plays a crucial role in the regulat-
ing of cellular processes, in which protein ubiquitination 
can alter tumor metabolism and immune regulation [24]. 
Ubiquitination is related to the stability of oncoproteins 
in MM [25]. Nowadays, the proteasome inhibitor has 
been widely used in treatment of MM [11, 26]. How-
ever, drug resistance is one of the major challenges we 
face. And the correlation between ubiquitination-related 
genes and MM has not been thoroughly examined.

According to the DEGs analysis, a total of 47 ubiq-
uitination-related genes were highly expressed in the 
MM group, while 40 genes were highly expressed in 
the control group, indicating a connection between 

ubiquitination-related genes and MM. Four clusters 
exhibited significant differences according to the consist-
ent cluster analysis. At the same time, the survival infor-
mation was significantly among different clusters. The 
prognosis of cluster 1 was poor, and the enrichment score 
was significantly lower than that of cluster 2 and cluster 
4. It is suggested that the genes related to to ubiquitina-
tion are associated with the prognosis of MM patients. 
Patients with poor survival may experience early death. 
Developing targeted therapies that act on genes associ-
ated with aggressive disease or drug resistance can be 
applied to improve outcomes for MM patients with high-
risk [27]. The tumor purity in clusters 1 and 3 was higher 
than that in clusters 2 and 4 consistent with the trend of 
GSAV score.

In this study, the analysis of gene expression levels of 
using TCGA and GEO datasets revealed that the that 
model genes UBE2T, TOP2A, VCPIP1, SDE2, YOD1, 
and SOCS3 were highly expressed in the low-risk group, 
whereas KLHL24, HERC6, USP3, TNIP1, and CISH were 

Fig. 7  A The prediction of drug sensitivity in the TCGA dataset and the difference in high‑ and low‑risk groups; B The enrichment analysis 
of high‑ and low‑risk groups in the TCGA dataset
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highly expressed in the high-risk group. Regarding genes 
highly expressed in high-risk groups, KLHL24 is the main 
substrate adaptor protein of Cullin3-RING ligase (CRL3) 
which is one of the most common E3 ubiquitin ligases. 
CRL3 can affect the stability of functional proteins by 
mediating substrate ubiquitination modifications. Dys-
regulation of CRL3 can lead to the development of mul-
tiple diseases. KLHL24 inactivation is associated with 
hypertrophic cardiomyopathy [28, 29]. KLHL24 inhib-
its the activation of fibroblasts, leading to skin fibrosis, 
and hinders skin wound healing [30]. People who carry 
a mutation in the KLHL24 gene are at risk of developing 
epidermolysis bullosa [31]. HERC6 is also an E3 ubiqui-
tin ligase, primarily expressed in the testicles and fetal 
brain, with rare expression in the heart and skeletal mus-
cle. HERC6 participates in a variety of cellular activities, 
including cell proliferation, cell migration, and neurode-
velopment. HERC6 can be cancer-promoting factors and 
tumor suppressor genes, depending on the type of cancer 

[32]. At the same time, the up-regulation of HERC6 is 
present in systemic lupus erythematosus (SLE) and pro-
motes inflammation [33]. Ubiquitin-specific protease 3 
(USP3) is highly expressed in multiple cancers. It plays an 
important role in tumor proliferation and invasion. The 
overexpression of USP3 leads to an unfavorable progno-
sis in breast cancer patients and stomach cancer metas-
tasis [34]. Furthermore, the activation of USP3 induces 
neuroblastoma [35]. The tumor necrosis factor α-induced 
protein 3-interacting protein 1 (TNIP1) plays a part in 
mitophagy [36]. It has an impact on the development of 
autoimmune diseases [37], such as lupus nephritis [38]. 
The overexpression of cytokine-inducible SH2-contain-
ing protein (CISH) promotes inflammation in the elderly 
[39]. The knockdown of CISH may regulate the metabolic 
activity of NK cells to exert an anti-tumor effect [40, 41]. 
In addition, a previous study has shown that the inhib-
iting of CISH could improve the outcomes of immune 
checkpoint blockade therapy [42]. The existing study has 

Fig. 8  Correlation between the expression of model genes and survival of MM patients
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confirmed that HERC4 is involved in inhibiting the pro-
liferation of myeloma cells [43]. More important, model 
genes were verified to be significantly correlated with the 
survival of MM patients through external validation. The 
role of KLHL24, HERC6, USP3, TNIP1, and CISH genes 
in MM has not been reported in the literature, so it is 
worth further investigation in vitro and in vivo.

Effector lymphocyte dysfunction and malignant plasma 
cells are associated with MM which is accompanied by 
immunosuppression [44]. Immune escape and loss of 
antigenicity appear in MM. Tumor cells in patients with 
MM exhibit increased expression of the immune check-
point receptor programmed death receptor ligand that 
promotes immune escape [45]. The proportions of B cells 
memory, plasma cells, T cells CD4 naïve, and T cells CD8 
showed significant differences between the clusters in 
this study. In addition, the differences in ICGs and HLA 
genes between the clusters were statistically significant, 
except for BTN2A2, HLA-DQA1, and HLA-DRB5. After 
the intersection, a total of 72 ubiquitination representa-
tive genes were screened and divided into high- and low-
risk groups for survival analysis.

In the present study, AICAr exhibited higher drug 
sensitivity in a low-risk group. It has been reported 
the effects in accelerating apoptosis [46] and inhibits 
the growth of MM cells [47]. Insulin-like growth fac-
tor 1 receptor/insulin receptor family kinases inhibitor 
BMS.754,807 also showed higher drug sensitivity in the 
low-risk group in this study. The evidence showed that it 
is effective in inhibiting MM cells [48]. Bleomycin dem-
onstrated higher drug sensitivity in the high-risk group 
in the present study. It could be used in drug-resistant 
MM patients, which plays a role in the treatment of 
drug-resistant MM [49]. In Fig. 2E, cluser4 is clearly dis-
tinguished by PCA, but cluster1 \ 2 \ 3 has significant 
overlap. Exploring additional biological features related 
to gene clusters of these different clustering patterns, in 
order to identify patient sub clusters and develop thera-
pies in clinical, will be a highly promising work in the 
future. Although this study identified ubiquitination 
genes associated with multiple myeloma, But differences 
in the transcriptome of hematopoietic system tumors 
may result in variations in drug efficacy among differ-
ent samples and developmental stages [50]. Additionally, 
this study lacks analysis based on ubiquitination-related 
genes, risk scores, and drug sensitivity across samples 
at different developmental stages, which is a potential 
research point.

The risk model had exhibited satisfactory predictive 
power. It was elucidated that there was poor survival in 
the high-risk group. Furthermore, genes related to ubiq-
uitination were initially explored in connection with MM 
in our study. Ubiquitination has a significant impact on 

celluar protein interactions and is linked to cancer pro-
gression. Due to the wide range of viral and non viral 
etiologies in MM [51, 52], clustering based on ubiquitina-
tion can better distinguish the differences in etiology of 
multiple myeloma, identify different interaction patterns 
between these clusters, and provide personalized treat-
ment for patients based on these etiologies.

Whereas, there were some limitations in the present 
study. First, we did not find normal bone marrow samples 
in the same dataset but screened control samples in the 
leukemia dataset, and there is a lack of ethnic details in 
clinical data, which may have led to a decrease in reliabil-
ity. Furthermore, we lacked survival information other 
than survival time and death time for LASSO regression 
analysis to enhance the effectiveness of the risk model. 
Due to the fact that only a very small number of enriched 
immune cells show insignificant differences in immune 
scores across different clusters, validation of all immune 
cells is necessary. However, due to limitations in research 
conditions, we are unable to conduct cell experiments for 
validation. This is a limitation of the study and we hope 
to verify it in future research.

Conclusion
The risk model is constructed to predict the prognosis of 
MM patients. Overexpression of ubiquitination-related 
genes such as KLHL24, HERC6, USP3, TNIP1, and 
CISH may indicated a poor prognosis and lower survival 
rate in MM patients. These genes have the potential as 
therapeutic targets for MM. The mechanisms of these 
genes in drug sensitivity and MM pathogenesis deserve 
further study.
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