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Introduction
Congenital myopathy is a group of diseases with hetero-
geneous etiology and a wide spectrum of phenotypes [1]. 
The widespread use of ultrasound screening leads to a 
high frequency of diagnosis of fetal muscle abnormalities. 
A diagnosis of severe myopathy always invites consid-
erations regarding termination of pregnancy and inevi-
tably raises concerns about the risk of recurrence in the 
future pregnancies. Identification of the potential genetic 
causes facilitates accurate genetic counseling as well as 
alleviating concerns. The application of next-generation 
sequencing (NGS) techniques has enabled the genetic 
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Abstract
Background TTN is a complex gene with large genomic size and highly repetitive structure. Pathogenic variants 
in TTN have been reported to cause a range of skeletal muscle and cardiac disorders. Homozygous or compound 
heterozygous mutations tend to cause a wide spectrum of phenotypes with congenital or childhood onset. The 
onset and severity of the features were considered to be correlated with the types and location of the TTN variants.

Methods Whole-exome sequencing was performed on three unrelated families presenting with fetal akinesia 
deformation sequence (FADS), mainly characterized by reduced fetal movements and limb contractures. Sanger 
sequencing was performed to confirm the variants. RT-PCR analysis was performed.

Results TTN c.38,876–2 A > C, a meta transcript-only variant, with a second pathogenic or likely pathogenic variant 
in trans, was observed in five affected fetuses from the three families. Sanger sequencing showed that all the fetal 
variants were inherited from the parents. RT-PCR analysis showed two kinds of abnormal splicing, including intron 199 
extension and skipping of 8 bases.

Conclusions Here we report on three unrelated families presenting with FADS caused by four TTN variants. In 
addition, our study demonstrates that pathogenic meta transcript-only TTN variant can lead to defects which is 
recognizable prenatally in a recessive manner.
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basis of neuromuscular diseases to be elucidated, allow-
ing more disease-causing variants to be characterized.

The TTN gene (OMIM: 188,840) encodes titin, a 
giant sarcomeric protein that plays an important func-
tional and structural role in the sarcomere [2–5]. Patho-
genic variants in TTN were reported to cause a range 
of skeletal muscle and cardiac disorders, such as dilated 
cardiomyopathy-1G (CMD1G; OMIM: 604,145), famil-
ial hypertrophic cardiomyopathy-9 (CMH9; OMIM: 
613,765), tibial muscular dystrophy (TMD; OMIM: 
600,334), myofibrillar myopathy-9 with early respiratory 
failure (MFM9; OMIM: 603,689), and limb-girdle muscu-
lar dystrophy type 2 J (LGMD2J; OMIM: 608,807) [6–10]. 
As one of the most complex human genes, TTN contains 
364 exons and four major structural regions (Z disk, I 
band, A band, and M band), giving rise to a large number 
of alternatively spliced transcripts [11, 12]. The inferred 
complete (IC) transcript (NM_001267550.2), also known 
as meta-transcript, is a theoretical isoform that includes 
all putative exons (except the exon 48 in transcript 
NM_133379.5) [13–15]. The exons not included in any of 
the recognized postnatal skeletal muscle isoform (N2A) 
and cardiac muscle isoforms (N2B, N2BA, Novex-1, 
Novex-2, and Novex-3) are defined as meta transcript-
only exons and are generally thought to be expressed pri-
marily during embryonic development, although some of 
them have low expression in the postnatal setting [1, 7, 
13, 15]. Some studies have proposed that the onset and 
severity of TTN-related diseases are related to the type 
and location of the variants [1, 16].

Herein, we report on the investigation of three unre-
lated families with fetal akinesia deformation sequence 
(FADS). Three novel TTN variants with a common meta 

transcript-only variant in trans were identified in our 
study.

Clinical reports
Family 1
The healthy and non-consanguineous couple has no 
family histories of neuromuscular diseases or cardiomy-
opathies. Their first daughter was healthy (Fig. 1A, II-1). 
During the second pregnancy (Fig. 1A, II-2), the women 
reported poor fetal movement. Fetal ultrasound in the 
22nd week of gestation showed a thickened nuchal fold 
of 10 mm (normally < 6 mm in the second trimester) and 
sustained flexed elbows with no joint movements. The 
pregnancy was terminated in the 24th week after the 
couple received genetic counsel. Chromosomal karyo-
type and chromosomal microarray analysis (CMA) on 
amniotic fluid showed no significant findings.

Unfortunately, similar fetal abnormalities were 
observed during their third pregnancy (Fig.  1A, II-3). 
Ultrasound screening in the 22nd week of pregnancy 
revealed abnormal fetal posture with persistent limb 
joint contractures, rocker-bottom feet, and significantly 
decreased fetal movement (Fig. 2A-C). The couple termi-
nated the pregnancy in the 23rd week of gestation after 
genetic counseling.

Family 2
The couple was healthy and non-consanguineous, and 
their detailed family history was noncontributory. Dur-
ing their first pregnancy (Fig.  1B, II-1), fetal ultrasound 
in the 25th week of gestation revealed polyhydramnios, 
hydrops fetalis, scoliosis, flexion of the limbs, and lack of 
movement. The pregnancy was terminated after genetic 

Fig. 1 Pedigree of the three families and segregation of the recessive TTN variants, including the common c.38,876–2 A > C haplotype. (A) Family 1; (B) 
Family 2; C Family 3
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counseling. CMA performed on the fetal tissue revealed 
no pathogenic copy number variants (CNVs). One year 
later, during the second pregnancy (Fig.  1B, II-2), the 
tragedy repeated: hydrops fetalis, cystic hygroma, scolio-
sis, flexion of the limbs, and poor fetal movement were 
revealed by ultrasonography (US) performed in the 24th 
week of gestation (Fig.  2D-F). Again, the couple termi-
nated the pregnancy.

Family 3
It was a healthy, non-consanguineous couple, with the 
age of 28 for the husband and 27 for the wife. This was 
their first pregnancy (Fig.  1C, II-1). Fetal ultrasound in 

the 23rd week of gestation indicated contractures of all 
four limbs, right-sided pleural effusion, and polyhydram-
nios. All of the fetal abnormalities were confirmed by the 
following ultrasound in the 31st week (Fig.  2G-I). Peri-
cardial effusion (PEFF) and widened extracerebral space 
were revealed subsequently by fetal echocardiogram and 
magnetic resonance imaging (MRI), respectively (Fig. 2J-
K). The pregnancy was terminated upon parental request. 
CMA performed on the fetal tissue didn’t find any patho-
genic CNVs.

Fig. 2 Imaging findings. (A-C) fetal ultrasound images from F1-II0.3. (A) ankle and knee contractures; (B) the left foot presented with rocker bottom 
deformity; (C) wrist contractures. (D-F) Fetal ultrasound images from F2-II0.2. (D) the abnormal fetal posture with the palms of the feet facing each other; 
(E) the abnormal curvature of the fetal spine; (F) thickened nuchal fold with cystic the dark area inside. (G-K) Imaging findings from F3-II0.1. (G) flexed 
position of all limb joints; (H) a right pleural effusion with a width of about 16 mm; (I) mild pericardial effusion with a width of 3.6 mm; (J) widened extra-
cerebral space and mild deformation of the cerebral parenchyma showed by MRI; (K) polyhydramnios with an amniotic fluid index (AFI) of 266 mm and 
a maximum depth of 95 mm
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Methods
WES and data analyses
Genomic DNA was extracted from the muscle tissue of 
the five aborted fetuses and peripheral blood from the 
couples. Proband-WES was performed in family C while 
trio-WES was selected for the other two families. The 
database of single nucleotide polymorphisms (dbSNP, 
http://www.ncbi.nlm.nih.gov/snp), the 1000 Genomes 
Project database (http://browser.1000genomes.org), and 
genome Aggregation Database (gnomAD v4.0.0, http://
gnomad.broadinstitute.org/) was used for searching the 
minor allele frequencies (MAF < 0.1%) of all known vari-
ants. Online bioinformatics tools Mutation Taster (http://
www.mutationtaster.org), Polyphen-2 (http://genet-
ics.bwh.harvard.edu/pph2), SIFT (http://sift.jcvi.org), 
REVEL (https://sites.google.com/site/revelgenomics/), 
CADD(https://cadd.gs.washington.edu), and SpliceAI 
(https://github.com/lllumina/SpliceAl) were used to pre-
dict the effects of the variants. The pathogenicity of the 
variants was determined according to the American Col-
lege of Medical Genetics and Genomics (ACMG) guide-
lines [17]. Sanger sequencing was performed on family 
members to confirm segregation and carrier status.

RNA isolation and expression analysis via reverse 
transcription and PCR
We extracted mRNA from 10 ml of whole blood from the 
father of family 1 following the manufacturer’s manual 
(RNAiso Plus, TaKaRa, Japan). Nano Drop 2000 (Thermo 
Scientific) was used to determine the RNA concentra-
tion. The extracted mRNA was synthesized into cDNA 
(PrimeScriptTM RT reagent Kit, TaKaRa, Japan). PCR 
was performed using the following primers: 5’- A A A G C 
C A G A A G C T C C A C C T C-3’ (forward primer at the start 
of exon 192) and 5’- C T C A G G C T C C T C G A A C A C T T-3’ 
(reverse primer at the end of exon 205). The cDNA PCR 
product was visualized by 2% agarose gel electrophore-
sis and analyzed by Sanger sequencing on the ABI3730xl 
Genetic Analyzer (Applied Biosystems).

Results
Mutation detection
Heterozygous variant c.38,876–2  A > C was found in all 
the affected fetuses (Fig. 1). The variant c.38,876–2 A > C, 
a meta transcript-only variant, is a canonical splicing 

variant and lies within the proline-glutamine-valine-
lysine (PEVK) repeat region (Fig.  3). It was presented 
in the gnomAD database at a very low frequency 
of 0.000005611 (9/1,604,030 alleles) in total of the 
population.

Three truncating variants: c.48396dup (p. 
Asn16133Ter), c.80,539  C > T (p. Gln26847Ter), and 
c.15865G > T (p. Glu5289Ter) were found to co-segregate 
with the c.38,876–2  A > C in the three families, respec-
tively (Fig.  1). Variants c.48396dup (p. Asn16133Ter) 
and c.80,539  C > T (p. Gln26847Ter) are located in the 
A-band, while c.15865G > T (p. Glu5289Ter) lies within 
the I-band (Fig.  3). All three variants are predicted to 
induce loss of function (LoF) for the encoded titin pro-
tein. The frequency of c.48396dup and c.80,539 C > T in 
the gnomAD v4.0 was 0.000001594 (1/627,338 alleles) 
and 0.000006580 (1/151,974 alleles), respectively. And 
c.15865G > T was not recorded in the gnomAD v4.0. 
According to the ACMG guidelines, c.38,876–2 A > C was 
classified as likely pathogenic (PM2_Supporting + PVS1_
Moderate + PM3_Strong + PP1), c.48396dup was clas-
sified as pathogenic (PVS1 + PM2_Supporting + PP1), 
c.80,539  C > T and c.15865G > T were classified as likely 
pathogenic (PVS1 + PM2_Supporting). The TTN variants 
are reported and numbered with exons using the inferred 
meta-transcript as the reference (NM_001267550.2).

The clinical and molecular features of the three families 
are summarised in Supplemental Table 1.

RT-PCR and sequencing analysis
To confirm the effect of c.38,876–2  A > C on TTN 
mRNA, the cDNA from the carrier sample was amplified 
using primers toward the region between exon 192 and 
exon 205.

Agarose gel electrophoresis showed that the control 
sample had only one band with the length of 1042  bp, 
while the carrier sample showed three bands with lengths 
of 1034 bp, 1042 bp, and 1151 bp, respectively (Fig. 4a). 
Sanger sequencing for the abnormal cDNA revealed 
skipping of 8 nucleotides and retention of intron 199 
(Fig. 4b and c). The full length original blot can be seen in 
Supplemental Fig. 1.

Fig. 3 A schematic representation of main titin regions encoded by the inferred complete meta-transcript and the corresponding location of variants 
identified in the current study
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Discussion
Titin is the largest sarcomeric protein and is organized 
into four structurally and functionally distinct regions, 
including Z-disk, I-band, A-band, and M-disk (Fig.  3), 
each of which has a largely independent functional role 
[18]. The I-band region is mainly composed of repeti-
tive immunoglobulin (Ig) domains and the PEVK region, 
which is rich in proline (P), glutamic acid (E), valine (V), 
and lysine (K), and unravels when stretched to give the 
muscle elasticity [11, 19]. Exons within the PEVK region 
are extensively alternatively spliced, regulating passive 
tension and muscle elasticity.

Previous studies have shown the genotype-phenotype 
correlations: hereditary myopathy with early respiratory 
failure (HMERF) is specifically caused by missense vari-
ants in the exon 344; tibial muscular dystrophy (TMD) is 
caused by heterozygous variants in the last exon [20, 21]; 
all remaining TTN-related skeletal muscle diseases are 
recessively inherited and present a phenotypic spectrum 

of severe early-onset disorders collectively termed “con-
genital titinopathies”, which includes core myopathy 
with heart disease, centronuclear myopathy, early onset 
myopathy with fatal cardiomyopathy, and arthrogrypo-
sis multiplex congenita [3, 4, 20, 22]. There are several 
reports of congenital myopathies associated with vari-
ants within meta transcript-only exons [1, 3, 7, 13, 14, 23, 
24], while variants within meta transcript-only introns is 
rarely reported [2, 16]. Previous studies showed that the 
meta transcript-only exons are observably more highly 
expressed in fetal muscle than adult muscle [2, 15]. It is 
hypothesized that meta transcript-only variants specifi-
cally and selectively affect fetal isoforms, disrupting the 
development and assembly of fetal muscle, leading to 
prenatal or congenital severe myopathic phenotypes [3, 
15, 16]. In our study, five fetuses with a common meta 
transcript-only canonical splice site variant all presented 
with arthrogryposis and a lack of movement, providing a 
good validation of the above hypothesis.

Fig. 4 Transcript analyses of TTN variant c.38,876–2 A > C. (A) Display of cropped gels for the RT-PCR fragments, on the right molecular weight (MW) 
marker. A band of 1042 bp corresponding to the wild-type (WT), a band of 1151 bp corresponding to a retention of intron 199, and a band of 1034 bp 
corresponding to the skipping of 8 nucleotides. (B) Sanger sequencing of the splicing variant resulting from the retention of the whole intron 199 and 
the skipping of 8 nucleotides of Exon 200. (C) Schematic representation of the abnormal splicing combining the results of RT-PCR and Sanger sequencing
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The c.38,876–2  A > C variant has been previously 
reported as an incidental finding [25]. And it is not 
thought to contribute to the fetal phenotypes including 
skin oedema, pleural effusion, and talipes equinovarus. 
However, skin oedema and pleural effusion were all 
observed in our study. We think these are not incidental 
findings but part of the phenotype. Meanwhile it sug-
gests that characterization of a complete spectrum of 
TTN-related diseases remains difficult and needs more 
studies to provide further evidence. Variations in splic-
ing receptor and donor sites are usually considered to 
lead to abnormal splicing [17]. RNA analysis should be 
performed since it is a powerful tool to verify the result. 
It is a great pity that we missed the opportunity to col-
lect muscle tissue from the fetuses. As a remedy, we took 
blood sample from the carrier for RNA analysis. Despite 
very low levels of expression in peripheral blood, we suc-
ceeded in obtaining the cDNA sequences and confirmed 
two types of abnormal splicing caused by the mutation. 
Both abnormal splicing outcomes lead to a frameshift 
predicted to trigger nonsense mediated decay and result 
in loss of function (LoF) for the TTN transcript. Since all 
outcomes are LoF, PVS1 can be applied instead of PVS1_
moderate, according to the relevant guidelines [26], and 
the variant c.38,876–2 A > C is reclassified as pathogenic.

Previous data suggested that variants in exons not 
expressed at significant levels in cardiac tissue are not 
associated with cardiomyopathy. Patients with two 
pathogenic variants predicted to affect both of the car-
diac isoforms (N2BA and N2B) have a significantly 
higher risk of cardiac involvement than those with other 
combinations of TTN variants [3, 13, 27]. To date, no 
cardiac phenotype has been reported in individuals with 
meta transcript-only pathogenic variants [1, 2, 13, 23, 
24]. Here, according to a detailed prenatal ultrasound, 
none of the five fetuses showed signs of cardiac structural 
malformation.

Heterozygous titin-truncating variants (TTNtv) in 
exons that are constitutively expressed in cardiac tis-
sue have been identified as the most common genetic 
cause of dominant or sporadic dilated cardiomyopa-
thy (DCM) [19, 28–32]. As the variants c.48396dup and 
c.80,539  C > T affect both N2B and N2BA, the two het-
erozygous carriers (Family 1: I-2 and Family 2: I-2) were 
referred for cardiac surveillance and the echocardiogram 
showed normal structural with no sign of cardiomy-
opathy. The genotype-phenotype correlation for cardiac 
involvement remains unclear. However, age should not be 
excluded, as TTNtv-induced cardiomyopathy shows an 
age-related penetrance [13, 16, 33].

The five fetuses exhibited the major FADS phenotypes 
such as reduced fetal movements, polyhydramnios, 
hydrops fetalis, limb contractures, scoliosis, and pleural 
effusion. One fetus also showed widened extracerebral 

space which has been reported in very few cases [13], 
but whether it is caused by TTN mutation is unclear. 
Although the widespread use of NGS has enabled the 
discovery of an increasing number of variants in TTN, 
characterization of a complete spectrum of TTN-related 
diseases remains difficult due to the high frequency of 
TTN variants, incomplete penetrance, and as yet uniden-
tified underlying disease mechanisms.

Conclusions
Our finding not only clarify the etiology of the fetal 
anomaly in the three families, but also help guide their 
next pregnancy. Pre-implantation genetic diagnosis is 
a good choice for them. Significant polyhydramnios, 
arthrogryposis, and reduced fetal movements often 
indicate neuromuscular disease, and we recommend 
autosomal recessive congenital titinopathy as one of the 
differential diagnoses.
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