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Abstract
Background  Drugs targeting disease causal genes are more likely to succeed for that disease. However, complex 
disease causal genes are not always clear. In contrast, Mendelian disease causal genes are well-known and druggable. 
Here, we seek an approach to exploit the well characterized biology of Mendelian diseases for complex disease 
drug discovery, by exploiting evidence of pathogenic processes shared between monogenic and complex disease. 
One way to find shared disease etiology is clinical association: some Mendelian diseases are known to predispose 
patients to specific complex diseases (comorbidity). Previous studies link this comorbidity to pleiotropic effects of the 
Mendelian disease causal genes on the complex disease.

Methods  In previous work studying incidence of 90 Mendelian and 65 complex diseases, we found 2,908 pairs 
of clinically associated (comorbid) diseases. Using this clinical signal, we can match each complex disease to a set 
of Mendelian disease causal genes. We hypothesize that the drugs targeting these genes are potential candidate 
drugs for the complex disease. We evaluate our candidate drugs using information of current drug indications or 
investigations.

Results  Our analysis shows that the candidate drugs are enriched among currently investigated or indicated drugs 
for the relevant complex diseases (odds ratio = 1.84, p = 5.98e-22). Additionally, the candidate drugs are more likely 
to be in advanced stages of the drug development pipeline. We also present an approach to prioritize Mendelian 
diseases with particular promise for drug repurposing. Finally, we find that the combination of comorbidity and 
genetic similarity for a Mendelian disease and cancer pair leads to recommendation of candidate drugs that are 
enriched for those investigated or indicated.

Conclusions  Our findings suggest a novel way to take advantage of the rich knowledge about Mendelian disease 
biology to improve treatment of complex diseases.
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Background
Traditional drug development pipeline is costly and 
slow. It is estimated that around $2.6 billion is spent and 
approximately 12–15 years are required for just one new 
drug to reach the market [1, 2]. Additionally, clinical trial 
success rates remain low [3]. Therefore, there is a press-
ing need for new approaches to predict which drugs will 
succeed.

Recently, genetics has emerged as a resource for pre-
dicting drug success. Genome-wide association stud-
ies (GWAS) have identified genetic variants associated 
with complex diseases that are also known therapeutic 
drug targets [4]. For instance, mutations in the IL23R 
locus have been associated with Crohn’s disease [5]. 
Ustekinumab, a monoclonal antibody originally approved 
for the treatment of psoriasis, targets the IL23 p-40 sub-
unit [6]. Based on genetics, ustekinumab was success-
fully repurposed for Crohn’s disease [7–10]. This example 
highlights the importance of genetics both in target pri-
oritization and drug discovery.

Nelson et al. analyzed historical data of clinical trials 
and found that drug uses supported by human genetic 
evidence are twice as likely to succeed in clinical trials 
[11]. Four years later, King et al. confirmed these findings 
by analyzing data not available at the time of the Nelson 
et al. study, further emphasizing the importance of genet-
ics in the drug development process [12]. Moreover, King 
et al. found that the success rate of a drug is higher when 
the disease causal gene is clearly identified, as in the case 
of monogenic (Mendelian) diseases. However, identifying 
the disease causal genes from GWAS can be challenging 
as the majority of the GWAS hits are located in non-cod-
ing regions [13]. In contrast, in monogenic (Mendelian) 
diseases, the causal genes are both well-known and drug-
gable [14]. Then, developing a way to translate knowledge 
about Mendelian disease biology to complex diseases 
could have a significant impact on their treatment.

We have previously exploited clinical data to discover 
associations between Mendelian and complex diseases 
[15, 16]. In a systematic analysis of 90 Mendelian and 65 
complex diseases, Blair et al. used health records to iden-
tify which complex diseases individuals with a Mendelian 
disease are predisposed to, finding 2,908 clinically associ-
ated (comorbid) pairs of Mendelian and complex diseases 
[15]. That study showed evidence that comorbidity can 
be tied to pleiotropic effects of disease genes. In a follow-
up study focusing on cancers, Melamed et al. showed that 
Mendelian disease causal genes are likely to be frequently 
mutated in comorbid cancers [15]. For instance, patients 
with Rubinstein Taybi syndrome, a Mendelian disease 
caused by mutations in CREBBP [17], are predisposed to 
lymphoma [18]. CREBBP is one of the most frequently 
inactivated genes in lymphoma [19] meaning that the 
observed comorbidity can be attributed to a pleiotropic 

effect of CREBBP mutation causing Rubinstein Taybi 
syndrome and contributing to lymphoma.

Both of the above studies systematically demonstrate 
that Mendelian disease comorbidity can suggest a role 
of Mendelian causal genes on complex disease. How-
ever, Mendelian disease comorbidity has not been previ-
ously used for complex disease drug discovery purposes. 
Building on previous findings, we hypothesize that if the 
Mendelian disease causal genes contribute to the devel-
opment of a comorbid complex disease, then these genes 
can be novel therapeutic targets for that disease (Fig. 1A).

Methods
Recommending drugs for complex disease based on 
Mendelian disease comorbidities
We download results assessing comorbidity between 
95 Mendelian diseases and 65 complex diseases from 
the supplementary materials from Blair et al. (available 
online) [15]. Our goal is to find drugs targeting Mende-
lian disease causal genes and recommend them as candi-
date drugs for the comorbid complex disease. Therefore, 
we remove 5 Mendelian diseases (and their comorbidi-
ties) that are due to chromosomal abnormalities and the 
causal gene is not obvious (Down Syndrome, Edward 
Syndrome, Klinefelter Syndrome, Patau Syndrome, 
Turner Syndrome). We use the remaining 2,908 comor-
bidity pairs between 90 Mendelian diseases and 65 com-
plex diseases in our main analysis. Additionally, we group 
the 65 complex diseases into 6 major disease categories 
as annotated in Blair et al.’s work [15]: cardiovascular [4], 
hormonal [8], immune [19], neoplasms [14], neurological 
[15], ophthalmological [5].

We systematically code all the 65 complex diseases 
using MeSH codes. To do this, we download the sup-
plementary “Table S2” from Blair et al. [15]. (available 
online) which contains the ICD-10 billings codes that the 
authors used to identify the complex diseases. We manu-
ally match them to relevant MeSH codes. Eventually, we 
have 230 unique MeSH codes for 65 complex diseases 
(median of 3 MeSH codes per complex disease).

We download information for 5,800 drugs from Drug-
Bank (version 5.19, date of download: June 16, 2022, 
https://www.drugbank.com/). After filtering for gene tar-
gets in humans, for each drug, we keep its DrugBank ID 
and its gene targets (HGNC symbols). Drugs included in 
this file can be approved, investigational, small molecule, 
biotech, experimental, nutraceutical, illicit, or withdrawn. 
We do not filter the list of drug-gene targets based on 
pharmacological action.

To suggest drug repurposing candidates for a complex 
disease, we first find its comorbid Mendelian diseases. 
We obtain the genes causally associated with these Men-
delian diseases from the OMIM. Using drug-gene target 
information from DrugBank, we find drugs targeting the 

https://www.drugbank.com/
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Mendelian disease causal genes and we suggest them as 
candidate drugs for the complex disease.

Finding investigated drugs for the complex diseases
To find drugs currently investigated for the 65 com-
plex diseases in our sample, we download clinical trial 
data from the Aggregate Content of ClinicalTrials.gov 
(AACT) database in a pipe-delimited format (data of 
download: November 4, 2022; note that it is updated 
daily) [20]. AACT (https://aact.ctti-clinicaltrials.org/) is a 
publicly available relational database that contains exten-
sive information about every study registered in Clini-
calTrials.gov. We obtain information for 432,597 clinical 
trials that were registered in ClinicalTrials.gov by the date 
of download. For each clinical trial, we keep the clinical 
trial ID, clinical trial phase, conditions (diseases) stud-
ied and interventions (drugs) tested. We filter out clini-
cal trials that tested behavioral, device, diagnostic test, 
dietary supplements, procedures, radiation, or “other 
interventions”, and do not provide MeSH terms for both 
conditions and interventions. For the total of 109,430 
clinical trials that remain, we match the MeSH terms of 
both conditions and interventions to MeSH codes using 
the Unified Medical Language System (UMLS) database 
(https://www.nlm.nih.gov/research/umls/index.html). 
We group clinical trial phases to Phase I (Phase I and 

Early Phase I), Phase II (Phase II and Phase I/Phase II), 
Phase III (Phase III and Phase II/Phase III) or unknown 
phase (no information provided). Phase IV studies are 
conducted after a drug gets approved to find long-term 
benefits and side-effects that could not be discovered 
in the duration of a clinical trial. Therefore, we consider 
drugs in Phase IV clinical trials as indicated drugs (see 
“Finding indicated drugs for the complex diseases”). 
Eventually, we have 31,053 clinical trials that tested inter-
ventions for the 65 complex diseases in our sample.

For these clinical trials, we convert the MeSH codes 
of interventions to DrugBank IDs using the UMLS API 
(crosswalk function). However, DrugBank does not 
assign IDs to drug combinations. In order to include 
them in our analysis, we convert the MeSH codes that did 
not match directly to a DrugBank ID, to RxNORM CUIs 
using the UMLS API (crosswalk function). Then, for each 
drug combination, we obtain each active pharmaceuti-
cal ingredient using the UMLS API (“Retrieving Source-
Asserted Relations”; vocabulary = RXNORM; relation 
label = has_part).

Moreover, MeSH vocabulary assigns different codes 
to each form of an active pharmaceutical ingredient. 
But DrugBank assigns IDs only to the general forms. 
For example, liposomal doxorubicin and doxorubicin 
are two separate entries in MeSH vocabulary but not 

Fig. 1  Outline of the approach. A. Proposed method where the drugs targeting genes causally associated with a Mendelian disease are suggested as 
candidate drugs for its clinically associated (comorbid) complex disease. This hypothesized connection between the drug and the complex disease is 
based on the previously shown pleiotropic effects of the Mendelian disease causal genes on the development of the comorbid complex disease. B. 
Distribution of the number of comorbid complex diseases per Mendelian disease. C. Number of investigated (per clinical trial phase) and approved drugs 
for each complex disease
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in DrugBank (doxorubicin). To deal with this discrep-
ancy, we follow the steps described above and we obtain 
the active pharmaceutical ingredients using the UMLS 
API (“Retrieving Source-Asserted Relations”; vocabu-
lary = RXNORM; relation label = form_of). Then, for each 
drug, we convert its RxNORM CUI to DrugBank ID 
using the UMLS API (crosswalk function).

Eventually, we have 29,758 clinical trials that tested 
1,795 drugs for 64 complex diseases in our sample. Note 
that the complex disease “Dermatitis herpetiformis“ did 
not have any investigated drugs at the time of this study.

Finding indicated drugs for the complex diseases
To find drugs that are currently indicated for the 65 
complex diseases, we download 4,225 approved drugs 
from DrugBank (version 5.19, date of download: June 16, 
2022). We get their indications by combining informa-
tion from RxNORM (https://www.nlm.nih.gov/research/
umls/rxnorm/index.html) and repoDB [21], as described 
below.

RxNORM is maintained by the National Library of 
Medicine and is a high-quality database that uses struc-
tured terminologies to provide well defined drug-indica-
tion pairs that are updated monthly: each drug is mapped 
to its RxNORM ID, and each indication is matched to a 
MeSH term. Using the RxNORM API (getClassByRx-
NormDrugName function), we obtain diseases (in MeSH 
terms) with a relationship of “may_treat” or “may_pre-
vent” with each approved drug. We then match the dis-
eases to MeSH codes using the UMLS database.

repoDB is a publicly available database that contains 
drug repositioning successes and failures by integrat-
ing data from DrugCentral and ClinicalTrials.gov. We 
download the full database (last update: 2017) and, 
for each drug, we keep its DrugBank ID and approved 
indication(s), after excluding the ones with a note of 
suspended, terminated, or withdrawn. All indications 
are coded in UMLS CUIs, so we easily convert them to 
MeSH codes using the UMLS database.

After combining the data from RxNORM and repoDB, 
we have 939 unique drugs indicated for 58 complex dis-
eases. We then add to this data set the drugs in clinical 
trials Phase IV to get a total of 1,373 unique drugs indi-
cated for 64 complex diseases. Note that the complex 
disease “hypotony of the eye” did not have any indicated 
drug at the time of this study.

Statistical analysis
Logistic regression to evaluate candidate drugs
We find 781 unique drugs that target the causal genes of 
the 90 Mendelian diseases. Using these drugs and the 65 
complex diseases, we create a table where each row is a 
drug-complex disease pair. Therefore, in our main analy-
sis, the number of rows in this table is 50,765 (781 drugs 

multiplied by 65 complex diseases). We assess whether 
our recommended drug-disease pairs are predictive of 
current investigated or indicated drug-disease pairs in 
a logistic regression model also adjusting for (i) the dis-
ease category of each complex disease; (ii) the number of 
known gene-targets per drug.

We account for the disease category due to differences 
in the number of drugs investigated or indicated among 
the 6 disease categories tested in this study. For exam-
ple, significantly more drugs are tested in clinical trials 
for neoplasms than ophthalmological diseases (Fig.  1B). 
Additionally, we account for the number of targets per 
drug as drugs with a higher number of known targets are 
more likely to be linked to a Mendelian disease and may 
be more likely to be subject to research investment for 
new indications.

To ensure that class imbalance does not bias the coef-
ficient estimate in our model, we also conduct a weighted 
logistic regression. This is a widely used approach to 
compensate for class imbalance, and we compute class 
weights by using the default sci-kit learn setting “bal-
anced”. This setting assigns weights to each class by 
dividing the total number of samples by the product 
of the number of classes and the number of samples in 
each class. As shown in Figure S1, the results from the 
weighted logistic regression are also significant and com-
parable to the non-weighted logistic regression. There-
fore, we use a non-weighted logistic regression in all of 
our analyses.

Permutation tests
To assess the significance of the observed associations, 
we perform permutation tests.

In our main analysis, we want to assess whether the 
enrichment of approved drugs within our drug candi-
dates is due to signals from the comorbidity relationships. 
So, we shuffle the Mendelian-complex disease pairs. This 
random shuffling changes which complex diseases are 
comorbid with each Mendelian disease, while keeping 
unchanged all the intrinsic Mendelian disease character-
istics, such as prevalence, number of comorbidities, and 
associated causal genes. This allows us to assess if the 
observed association is solely attributed to the Mendelian 
disease comorbidity or not.

In the per Mendelian disease analysis, we want to 
assess if the higher druggability of a Mendelian dis-
ease gene rather than the information about comorbid-
ity drives the results. The random permutation changes 
which drugs target a Mendelian disease gene by keeping 
unchanged the total number of drugs targeting the Men-
delian disease gene.

In both cases, we perform 1,000 permutations to create 
a null distribution of odds ratios using the logistic regres-
sion model above. We then compare the observed odds 

https://www.nlm.nih.gov/research/umls/rxnorm/index.html
https://www.nlm.nih.gov/research/umls/rxnorm/index.html
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ratio to this null distribution. We calculate the probability 
of observing an odds ratio at least as extreme as the origi-
nal one by estimating the number of times a permuted 
odds ratio is higher or equal to the observed odds ratio 
(odds_ratioobserved ≤ odds_ratiopermutation). A result is con-
sidered significant if the calculated probability is less than 
0.05 (ppermutation<50/1000).

Genetic similarity between Mendelian diseases and 
cancers
We assess the genetic similarity between a Mendelian dis-
ease and a cancer using two sources of evidence, inspired 
by the work of Melamed et al [16]. First, we consider the 
extent of genetic overlap between two diseases. This sim-
ple metric captures the shared driver genes between two 
diseases. To capture a wider range of functional relation-
ships between two diseases, we also use gene co-expres-
sion across diverse human tissues.

The genetic overlap metric tests the significance of the 
overlap between the Mendelian disease causal genes and 
the genes significantly altered in a cancer. For each Men-
delian disease, we compile a list of causally associated 
genes using the OMIM database. For each cancer, we 
compile a list of driver genes using the Broad GDAC Fire-
hose database (https://gdac.broadinstitute.org/) includ-
ing genes significantly mutated (as identified by MutSig 
v2.0, q < 0.05) and genes with significant copy number 
alterations (as identified by Gistic2; q < 0.05; peaks with 
at maximum 50 genes). Then, for a Mendelian disease 
and cancer pair, we test the significance of the overlap 
between the set of Mendelian disease causal genes and 
the set of genes significantly altered in cancer (Fisher’s 
exact test, p < 0.05).

The co-expression metric is based on the rationale that 
genes with similar expression patterns across normal tis-
sues also have similar functions. Therefore, it helps us to 
infer functional similarities between sets of Mendelian 
and cancer-related genes. To assess genetic similarity 
using this metric, we first download summarized expres-
sion data for 20,162 genes across 37 GTEx tissues from 
the Human Protein Atlas (https://www.proteinatlas.org/
download/rna_tissue_gtex.tsv.zip). We remove 889 genes 
that do not have expression data across all 37 tissues. The 
remaining data contained expression for 574 out of the 
594 Mendelian disease causal genes. Consequently, the 
co-expression metric of one Mendelian disease (“Familial 
Dysautonomia”) with any cancer could not be measured. 
For every cancer and Mendelian disease pair, the metric 
tests co-expression between any cancer-related gene and 
the set of Mendelian disease causal genes. More specifi-
cally, for each disease pair, we calculate the correlation 
of expression between the set of known Mendelian dis-
ease genes and each cancer-related gene. We also com-
pute the correlation of expression between the same set 

of Mendelian genes and all other, non-Mendelian disease 
genes. Then, using the Wilcoxon rank-sum test, we test 
whether the set of Mendelian disease genes exhibit stron-
ger correlation in expression with the cancer gene com-
pared to the correlation distribution of all other genes 
with the same cancer gene. Finally, we adjust the result-
ing p-values to account for the number of cancer genes 
tested (Benjamini-Hochberg method; p < 0.05).

We define a Mendelian disease and cancer pair as 
genetically similar only if at least one of the above metrics 
is significant (p < 0.05). It is worth mentioning that tradi-
tional genetic correlation techniques are not suitable for 
the estimation of genetic similarity between (monogenic) 
Mendelian and complex diseases, such as cancers, due to 
differences in variant discovery and effect size quantifica-
tion, penetrance and linkage disequilibrium.

Results
Integrating data to test Mendelian diseases as a resource 
for drug repurposing candidates
From Blair et al. [15]., we obtain clinical associations 
between 2,908 pairs of a Mendelian and a complex dis-
ease. The data include 90 Mendelian diseases with known 
causal genes and 65 complex diseases across six disease 
categories (cardiovascular, hormonal, immune, neo-
plasms, neurological, ophthalmological). Figure 1B shows 
the distribution of the number of comorbid complex 
diseases per Mendelian disease. Using drug-gene target 
information from DrugBank and Mendelian causal genes 
from the Online Mendelian Inheritance in Man (OMIM), 
we compile a list of 781 drugs that target the Mendelian 
disease causal genes. This allows us to suggest candidate 
drugs for each complex disease based on its comorbid 
Mendelian diseases (Fig. 1A).

To test our hypothesis, we compare our candidate 
drugs against drugs currently investigated or indicated 
for the complex diseases. We curate 29,758 clinical tri-
als that investigate 1,795 drugs for 64 complex diseases 
(median of 110 investigated drugs per complex disease). 
In addition to the investigated drugs, we compile current 
approved drug uses, including 1,373 indicated drugs for 
64 complex diseases (median of 42 indicated drugs per 
complex disease) (Fig. 1C).

Mendelian disease comorbidity identifies drugs under 
current investigation or indication
First, we assess whether the candidate drugs for a com-
plex disease are enriched for those currently investigated 
or indicated for that disease. Accounting for the number 
of gene targets per drug and the category of disease, we 
find that the candidate drugs are significantly enriched 
for drugs currently investigated or indicated (odds 
ratio = 1.834, p = 5.98e-22) (Fig. 2A).

https://gdac.broadinstitute.org/
https://www.proteinatlas.org/download/rna_tissue_gtex.tsv.zip
https://www.proteinatlas.org/download/rna_tissue_gtex.tsv.zip
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Next, we seek to exclude artifactual explanations for 
this signal. One such artifact is variation in disease fre-
quency: disease frequency can impact both the abil-
ity to discover disease genes and the power to discover 
clinical associations. To exclude this spurious source of 
association, we randomly permute which complex dis-
eases each Mendelian disease is comorbid with. This ran-
dom permutation preserves the characteristics of each 
Mendelian disease, such as number of complex disease 
comorbidities, but not the list of candidate drugs for each 
complex disease. After 1,000 permutations, we find that 
the observed association is significantly stronger than 
expected by chance (ppermutation<0.001). For Mendelian 
diseases with many comorbidities, the permutation does 
not impact recommendations; therefore the permuted 
signal, though weaker, still has odds ratio > 1. However, 
when these Mendelian diseases are removed, comorbid-
ity is significantly predictive of drug uses, while the per-
muted comorbidity is not predictive (Figure S2).

We repeat the analysis at a disease category level, and 
we find significant results for neurological, immune, 
neoplasms, ophthalmological, and hormonal diseases. 
However, after permutation analyses, only neurological, 
immune, and neoplasm disease categories remain sig-
nificant (ppermutation<0.05) (Fig.  2A, S3-S8). This may be 
due to the low number of analyzed complex diseases that 

fall under the cardiovascular (n = 4), ophthalmological 
(n = 5), and hormonal (n = 9) disease categories, compared 
to neurological (n = 15), immune (n = 19) and neoplasms 
(n = 14), potentially reducing the statistical power to 
detect a significant association. Additionally, these dis-
ease categories have a lower number of current therapies 
(Fig.  1C). Figure  2B shows an example of our recom-
mended candidate drugs for 14 neoplasms, illustrating 
an extensive overlap between the candidate drugs and the 
drugs currently investigated or indicated for these neo-
plasms. The full list of recommended candidate drugs for 
repurposing for each complex disease can be found in 
Supplementary Tables 1 and 2.

Next, we ask if the candidate drugs are more likely to 
be in advanced drug development phases for the relevant 
complex diseases. To test this, we stratify drugs by their 
drug development phase for a complex disease: phase I, 
phase II, phase III, indicated. First, we find a significant 
enrichment of candidate drugs for a complex disease 
among drugs in any of phase I, II, or III (odds ratio = 1.59, 
p = 2.27e-09; ppermutation<0.001) (Figure S9). Stratified per 
clinical trial phase (phase I, II, or III), we find a progres-
sive increase in the enrichment for drug success with 
increasing phase (ppermutation<0.05) (Fig.  2C, S10-12). 
Additionally, when considering only indicated drugs for 
a complex disease, we find an even greater enrichment 

Fig. 2  Clinical associations between Mendelian and complex diseases predict candidate drugs with higher potential of success for the complex diseases. 
(A) Odds ratio of candidate drugs to be currently investigated or indicated for the complex diseases within a disease category. Only disease categories 
that are significant compared to 1,000 permutations of the comorbidity relationships (ppermutation<0.05) are shown. (B) Examples of recommended can-
didate drugs for 14 neoplasms based on their clinical associations with 2 Mendelian diseases: Androgen Insensitivity Syndrome and Retinitis Pigmentosa. 
Gray-scaled boxes indicate the phase of the drug in the development pipeline for each neoplasm. (C) Odds ratio of candidate drugs to be investigated 
or indicated for a complex disease per drug development phase. * in A and C, bars represent the observed odds ratio with 95% confidence intervals
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of its candidate drugs for drug success (odds ratio = 2.18, 
p = 5.94e-11; ppermutation<0.001) (Fig.  2C, S13). Overall, 
our predicted drug candidates show more enrichment 
in categories with more clinical evidence, supporting the 
potential of our approach for identifying new successful 
drugs.

Prioritizing Mendelian diseases targeted by high number 
of drugs
Mendelian disease causal genes are known to be good 
drug targets [14]. We find 193 out of 593 Mendelian 
genes (32.6%) to be targeted by at least one drug (median: 
2 drugs per Mendelian gene). However, outliers exist: 
androgen receptor (AR), a gene mutated in Androgen 
Insensitivity Syndrome, is targeted by 82 drugs [22]. This 
variation in drug targeting of Mendelian genes may sug-
gest that certain disease processes are more druggable. 
We hypothesize that the most druggable Mendelian dis-
eases are the most promising for providing insight into 
complex disease therapeutics.

To test this hypothesis, we repeat the above analysis 
for each Mendelian disease individually, for Mendelian 
diseases targeted by at least one drug (n = 68) (Fig.  3A). 

That is, we test whether the drugs targeting the causal 
genes of each Mendelian disease are enriched for drugs 
currently investigated or indicated for its comorbid com-
plex diseases. Although testing only the drugs targeting 
a single Mendelian disease reduces the statistical power 
of the analysis, we find 8 significant Mendelian diseases 
(ppermutation<0.05). Further, we find that these 8 Mende-
lian diseases are targeted by a significantly higher num-
ber of drugs than other Mendelian diseases (p = 9.1e-05, 
one-sided Wilcoxon rank-sum test) (Fig. 3B). To exclude 
the possibility that this is due only to higher numbers of 
drugs increasing power to discover an association, we 
compare the result against a permutation analysis that 
permutes the drugs targeting each Mendelian disease 
(ppermutation=0.018).

In another test of this hypothesis, we ask which Men-
delian disease genes successfully point to new drug 
indications. That is, for each Mendelian disease gene, 
we use comorbidity to suggest which complex diseases 
may benefit from drugs targeting that gene. Under our 
hypothesis, we expect that highly druggable genes can 
more successfully be used for finding new drug uses. 
To test this, we repeat the above analysis for each gene 

Fig. 3  Highly drugged Mendelian diseases are a better resource for candidate drugs. (A) Histogram of the number of drugs targeting a Mendelian dis-
ease, for Mendelian diseases targeted by at least one drug (n = 68). (B) Mendelian diseases that significantly predict candidate drugs already investigated 
or indicated for their comorbid complex diseases are targeted by a higher number of drugs compared to the other Mendelian diseases (p = 9.1e-05, one-
sided Wilcoxon rank-sum test comparing the number of drugs in each group). (C) Histogram of number of drugs targeting a Mendelian gene, for genes 
targeted by at least one drug (n = 193). (D) Genes linked to Mendelian diseases that significantly predict candidate drugs already investigated or indicated 
for their comorbid complex diseases are targeted by a higher number of drugs compared to the other genes (p = 2.3e-05, one-sided Wilcoxon rank-sum 
test comparing the number of drugs in each group)
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targeted by at least one drug (n = 193) (Fig. 3C), compar-
ing the association to permutations. We find 12 signifi-
cant genes, and these successful genes are again targeted 
by a higher number of drugs compared to the other Men-
delian disease genes (p = 2.3e-05, one-sided Wilcoxon 
rank-sum test) (Fig. 3D). Altogether, these results imply 
that Mendelian diseases associated with more druggable 
genes are a particularly promising resource for complex 
disease therapeutics.

Combining comorbidity with genetic similarity enhances 
drug predictions
Comorbidity is a way to discover diseases sharing a bio-
logical basis, but it is not the only way. Comorbid Men-
delian and complex diseases have been shown to be more 
likely to share related or overlapping genes, which is 
known as genetic similarity [15, 16]. Additionally, genetic 
similarity between drug targets and disease-linked genes 
has also been shown to predict successful drugs for a dis-
ease [11, 12]. Building on these results, we propose that 
genetic similarity could contribute to discovering thera-
peutically relevant shared etiology of Mendelian and 
complex diseases [23, 24]. Specifically, we propose that 
by combining comorbidity with genetic similarity, the 
two forms of evidence can more robustly point to dis-
eases with shared etiology, increasing the predictive suc-
cess of our approach.

To test this hypothesis, we focus on cancers, one of 
the disease categories with the strongest association 
in our analysis (Fig.  2A). Cancers are also of interest 
because each type of cancer has been associated with a 
set of recurrently mutated driver genes in The Cancer 
Genome Atlas (TCGA); we previously showed that Men-
delian diseases comorbid with a cancer are enriched for 
genetic similarity to somatically mutated cancer driver 
genes [16]. Building on that work, we ask whether can-
didate drugs supported by both comorbidity and genetic 
similarity between Mendelian disease and cancer have 
greater probability for success. Among the 10 cancers in 
TCGA, Mendelian disease comorbidity again predicts 
drugs enriched for those currently investigated or indi-
cated (odds ratio = 1.69, p = 7.42e-06, ppermutation=0.014) 
(Figure S14). But, combining comorbidity with genetic 
similarity, drugs with both forms of evidence are even 
more enriched for drugs with clinical support (odds 
ratio = 2.19, p = 6.33e-13, ppermutation=0.001) (Fig. 4A, S15).

In order to investigate the contributions of genetic 
similarity and comorbidity individually and combined, 
we stratify the 600 pairs of 60 Mendelian diseases and 
10 cancers into those that are comorbid and those with 
no detected comorbidity relationship. As genetic simi-
larity was not previously evaluated for non-comorbid 
disease pairs, we establish two measures for genetic 
similarity between two diseases, gene overlap and gene 

Fig. 4  Combination of comorbidity and genetic similarity prioritizes candidate drugs for cancers with higher probability of success. (A) Odds ratio of 
success for candidate drugs supported by comorbidity or comorbidity and genetic similarity between Mendelian disease and cancer. Information about 
genetic similarity comes from Melamed et al. [16]. Black bars represent the 95% confidence intervals. (B) Number of comorbid and genetically similar pairs 
among 60 Mendelian diseases and 10 cancers. Genetic similarity was estimated using two metrics established here: gene overlap and co-expression. (C) 
Percentage of candidate drug-cancer pairs to be currently investigated or indicated among different levels of support
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coexpression, similar to the measures used in Melamed, 
et al. [16]. (see Methods) (Supplementary Table 3). 
Among 314 comorbid disease pairs, 135 are also geneti-
cally similar (43%). These comorbid and genetically 
similar pairs greatly overlap with the ones identified by 
Melamed et al. [16]. (p = 7.13e-08, one-sided Fisher’s 
exact test), indicating that our genetic similarity metrics 
are consistent with the prior work. Among the remain-
ing 286 non-comorbid pairs, 87 are genetically similar 
(30.4%) (Fig.  4B). The higher rate of genetic similarity 
among the comorbid diseases is consistent with the prior 
literature [16].

Using all the drugs targeting the causal genes of the 60 
Mendelian diseases, we compile a list of 6,850 possible 
drug-cancer pairs (685 drugs x 10 cancers) (Supplemen-
tary Table S4). Among 2,727 drug-cancer pairs not sup-
ported by comorbidity, we find that those supported by 
genetic similarity have increased probability of drug suc-
cess (odds ratio = 2.32, p = 1.07e-04). This implies that 
genetic similarity might be able to detect shared etiol-
ogy between Mendelian disease and cancer pairs that 
cannot be detected with comorbidity. Further, among 
4,123 drug-cancer pairs supported by comorbidity, those 
additionally supported by genetic similarity have greater 
probability of drug success (odds ratio = 1.39, p = 0.01). 
As we expect that candidate drug recommendations sup-
ported by comorbidity are already enriched for shared 
etiology, it is logical that the effect of genetic similarity 
would be smaller for this category of recommendations, 
but the effect is still significant. Notably, drug uses sup-
ported by both comorbidity and genetic similarity are 
most enriched for known drug uses (Fig.  4C, most left 
bar).

In conclusion, these findings suggest that by combin-
ing the two forms of evidence we can prioritize candidate 
drugs that target the shared biology between two comor-
bid diseases, enhancing the use of Mendelian disease 
biology for drug discovery.

Discussion
Previous studies have suggested that Mendelian disease 
genes pleiotropically contribute to the development of 
complex diseases, resulting in significantly increased risk 
of the complex disease in individuals with the Mende-
lian disease [15, 16]. However, this insight has not been 
harnessed for drug discovery. Here, we have shown that 
comorbidity between Mendelian and complex diseases 
can recommend candidate drugs for the complex dis-
eases. Importantly, these candidate drugs are more likely 
to be in advanced drug development phases or have 
received regulatory approval, suggesting that Mendelian 
disease comorbidity can be used to prioritize drugs with 
high potential of eventual approval.

Our findings provide a novel way to leverage the well-
known biology of Mendelian diseases to enhance the 
treatment of complex diseases. For instance, verapamil, 
an approved calcium channel inhibitor for the treatment 
of angina [25], is among our recommended candidate 
drugs for Type 1 Diabetes (T1D). This recommenda-
tion is supported by the comorbidities of T1D with Long 
QT Syndrome (CACNA1C) and Spinocerebellar Ataxia 
(CACNA1A). Studies in mice have previously demon-
strated verapamil’s potential to prompt the survival of 
insulin-producing β-cells and reverse T1D [26]. Notably, 
verapamil has recently been tested in a phase III clini-
cal trial for T1D treatment [27]. Additionally, we rec-
ommend carbamazepine, an approved sodium channel 
inhibitor for the control of seizures [28], as a candidate 
drug for the treatment of T1D based on its comorbidities 
with Long QT Syndrome (SCN5A) and Erythromelalgia 
(SCN9A). This recommendation is further supported 
by preclinical studies showing that inhibition of sodium 
channels increases the expression of INS1 and INS2 and 
thus protects from the development of T1D [29–31]. 
Looking ahead, we anticipate that future clinical trials 
should consider testing the efficacy of this drug category 
for preventing T1D.

We also present an approach for identifying a subset 
of Mendelian diseases with the most utility for drug dis-
covery. In general, Mendelian diseases are enriched for 
drugged genes [14], but some Mendelian diseases appear 
to be targeted by even more drugs than the average. 
Focusing on both the Mendelian disease and gene level, 
we find that diseases associated with highly drugged 
genes hold greater promise for future drug discovery 
efforts.

As well, building on previous work that prioritizes 
drugs functionally related to disease genes [16], we 
explore genetic similarity as an additional way to iden-
tify diseases sharing likely pleiotropic causal genes. In 
an analysis of ten cancers, we find that candidate drugs 
supported by both comorbidity and genetic similarity 
between a Mendelian disease and a cancer have greater 
probability of success. By combining two independent 
sources of evidence for shared disease etiology, future 
research can use Mendelian disease genes to prioritize 
new drug uses.

Our work has some limitations. First, we could not 
compile a complete list of investigated drugs for the 65 
complex diseases due to annotation inconsistencies. Sec-
ond, the complete list of genes causally associated with a 
Mendelian disease might not be complete due to its rar-
ity. Third, comorbidity may not always be due to pleio-
tropic effects of the Mendelian disease genes on the 
development of the complex diseases, but it can also be 
due to indirect or interaction effects. Similarly, lack of 
measurable comorbidity between a pair of diseases does 
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not definitively mean an absence of shared pathological 
processes, but could be due to disease frequency or inter-
action effects. Finally, we find that the enrichment of can-
didate drugs for success varies across disease categories: 
our results were not significantly predictive for cardio-
vascular, ophthalmological, and hormonal diseases. This 
may be because we were not able to test a diverse set of 
diseases in these categories leading to reduced statistical 
power.

Conclusion
In conclusion, we leverage the well-known biology of 
Mendelian diseases to improve treatment of common 
diseases. To our knowledge, this is the first study that 
suggests the use of clinical associations of Mendelian dis-
eases to inform drug discovery. Future work both exploit 
the drugs we suggest for each disease and explore Men-
delian disease genes currently lacking drugs as novel drug 
targets. In fact, according to Finan et al. [32]., almost one 
fourth (24.4%) of the undrugged Mendelian genes, have 
high druggability potential. Additionally, disease comor-
bidity might improve other drug repurposing efforts 
when considered as an additional source of evidence for 
prioritizing drug repurposing candidates. Finally, future 
efforts can also build on the idea by investigating whether 
clinical associations between common diseases can 
expand the use of existing drugs.
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