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Abstract
Background  Diabetic nephropathy (DN) is a major contributor to chronic kidney disease. This study aims to identify 
immune biomarkers and potential therapeutic drugs in DN.

Methods  We analyzed two DN microarray datasets (GSE96804 and GSE30528) for differentially expressed genes 
(DEGs) using the Limma package, overlapping them with immune-related genes from ImmPort and InnateDB. LASSO 
regression, SVM-RFE, and random forest analysis identified four hub genes (EGF, PLTP, RGS2, PTGDS) as proficient 
predictors of DN. The model achieved an AUC of 0.995 and was validated on GSE142025. Single-cell RNA data 
(GSE183276) revealed increased hub gene expression in epithelial cells. CIBERSORT analysis showed differences 
in immune cell proportions between DN patients and controls, with the hub genes correlating positively with 
neutrophil infiltration. Molecular docking identified potential drugs: cysteamine, eltrombopag, and DMSO. And qPCR 
and western blot assays were used to confirm the expressions of the four hub genes.

Results  Analysis found 95 and 88 distinctively expressed immune genes in the two DN datasets, with 14 consistently 
differentially expressed immune-related genes. After machine learning algorithms, EGF, PLTP, RGS2, PTGDS were 
identified as the immune-related hub genes associated with DN. In addition, the mRNA and protein levels of them 
were obviously elevated in HK-2 cells treated with glucose for 24 h, as well as their mRNA expressions in kidney tissues 
of mice with DN.

Conclusion  This study identified 4 hub immune-related genes (EGF, PLTP, RGS2, PTGDS), as well as their expression 
profiles and the correlation with immune cell infiltration in DN.
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Background
As one of the most frequent and severe complications 
of diabetes, diabetic nephropathy (DN) is the leading 
cause of chronic kidney disease, accounting for nearly 
50% of all end-stage renal diseases globally [1]. The pro-
gression of DN causes renal failure, whose management 
most often involves dialysis and kidney transplantation. 
Dialysis and kidney transplantation for many diabetic 
patients are associated with tremendous medical and 
economic burdens [2]. To prevent the occurrence and 
aggravation of DN, accumulating evidence has indicated 
that comprehensive prevention and novel treatment are 
of utmost importance [3]. The progression and therapeu-
tic regimen for DN have been associated with numerous 
risk factors, including tight glycemic control, blood pres-
sure control using RAAS inhibitors, and lipid-lowering 
agents [4]. Multidisciplinary studies on DN have substan-
tially contributed to reducing the progression of risk and 
improving the clinical strategy for the prevention of DN 
[5]. Therefore, there is an urgent need to identify reliable 
markers for monitoring DN progression, which could 
then be used to develop novel therapeutic approaches to 
delay the development of DN.

Recent studies have confirmed that the immune sys-
tem, including macrophages, T cells, cytokines, chemo-
kines, extracellular matrix, growth factors, fibroblasts, 
and diseased cells, has an important role during DN [6, 
7]. Existing research indicates substantial immune cell 
infiltration in renal tissues of DN patients, including mac-
rophages, T cells, and B cells [8]. Such infiltration aligns 
closely with inflammatory responses and immune activa-
tion, exacerbating renal damage [9]. In murine models, 
the accumulation of macrophages has been correlated 
with DN progression [10]. Interestingly, a negative cor-
relation was observed between the percentage of M1 
macrophages and renal function, while M2 macrophages 
showed potential for mitigating kidney injury in DN mice 
[11]. Also, the cytokine landscape further accentuates 
its determinative role in DN advancement. Interleukin 
(IL)-6 levels are positively correlated with DN progres-
sion [12]. Moreover, the involvement of IL-1β, IL-18, and 
IL-17 A in the genesis and progression of DN has been 
well-documented [8]. Diminished TNF-α expression cor-
relates with reduced urinary albumin excretion, indicat-
ing a significant relationship between TNF-α and DN 
pathogenesis [13]. Delving deeper into immune-related 
genes that regulate the functions of these immune cells 
and cytokines suggests that they might be of paramount 
importance as potential biomarkers. For instance, IDO1, 
a metabolic gene, has emerged as a novel immune bio-
marker for DN that is correlated with immune cell infil-
tration [14]. Besides, the activation of NF-κB, a master 
regulator of inflammation and pro-inflammatory chemo-
kine transcription in tubular epithelial cells, is a marker 

for progressive DN [7, 15]. Interestingly, genome-wide 
transcriptome analyses of DN patients have unveiled 
the up-regulation of JAK1/2 and STAT1/3, underscoring 
their relevance [16]. Consequently, the endeavor to com-
prehend the pivotal immunomodulatory mechanisms 
underpinning the development and progression of DN 
elucidates the intricate nature of the disease, having great 
potential for identifying novel biomarkers that could 
potentially serve as diagnostic indicators and facilitate 
the design of innovative anti-inflammatory therapeutic 
strategies.

Molecular classifications based on RNA expression 
profiles related to patient prognosis enhance preci-
sion medicine during immune responses [17]. Due to 
the availability of various public cohorts providing bulk 
mRNA and single-cell RNA expression data, we can 
investigate the prognostic roles of immune-related genes 
in DN and their potential roles as drug targets [18, 19]. 
In the pursuit of identifying diagnostic biomarkers within 
the immune system for DN, the strategic application of 
advanced algorithms holds substantial promise. Support 
Vector Machine Recursive Feature Elimination (SVM-
RFE), Random Forest, and Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithms are pivotal tools 
for isolating key genes that can contribute significantly 
to disease diagnosis [8, 20]. SVM-RFE aids in selecting 
relevant features or genes from high-dimensional data 
[21]. By iteratively removing less informative features, 
SVM-RFE enhances the model’s discriminatory power, 
potentially unveiling key immune factors crucial for DN 
diagnosis [22]. The Random Forest algorithm can effec-
tively handle complex and noisy datasets by aggregat-
ing multiple decision trees [23]. It identifies interactions 
and nonlinear relationships among immune factors, 
enhancing the potential to uncover intricate immune sys-
tem dysregulation patterns associated with DN [24]. By 
imposing a penalty on regression coefficients and effec-
tively shrinking less informative features to zero, LASSO 
is instrumental in feature selection as it mitigates the 
risk of overfitting, ensuring that only the most informa-
tive genes are considered potential biomarkers [25]. The 
integration of these algorithms empowers researchers to 
navigate the complexities of immune system interactions 
in DN [8]. The integrative approach enriches our under-
standing of the immunopathogenesis of DN, offering 
valuable insights for enhanced diagnostic strategies in the 
context of this debilitating condition.

In the present study, we acquired three distinct datas-
ets from the Gene Expression Omnibus (GEO), including 
microarray data for DN and a single-cell RNA dataset. 
These datasets were used to identify DEGs between DN 
cases and healthy controls. Besides, the immune-related 
genes were found to be intersected with the immune 
gene database. We systematically sieved through 
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potential diagnostic biomarkers intrinsic to DN by apply-
ing three machine-learning methodologies. Furthermore, 
the third DN dataset was employed as a validation cohort 
to affirm the viability of candidate genes, with the con-
struction of receiver operating characteristic (ROC) 
curves. Moreover, the differential immune infiltration 
within 22 immune cell subsets from DN patients and 
normal controls was dissected employing CIBERSORT, 
unraveling the intricate relationship between the identi-
fied biomarkers and immune cells. Also, molecular dock-
ing was used to unearth potential therapeutic agents. By 
employing these comprehensive analyses, we aimed to 
identified the hub immune-related genes, as well as their 
expression profiles and the correlation with immune cell 
infiltration in DN, furthering the current understanding 
of the molecular intricacies of DN, expediting diagnostic 
advancements, and potentially facilitating novel thera-
peutic avenues.

Methods
Data gathering
mRNA expression data and clinical parameters were 
downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo). Microarray datasets GSE96804, 
GSE30528, and GSE142025, as well as scRNA-seq data-
set GSE183276, were included in this study. According to 
microarray data processing standards: (1) samples with-
out gene expression were excluded; (2) the probe was 
converted into symbol according to the probe correspon-
dence of the platform; (3) if one probe corresponded to 
multiple symbols, it was deleted; (4) if multiple probes 
corresponded to the same symbol, the median count was 
taken (Table 1).

The immune-related genes were downloaded from 
the IMMPORT database (https://www.immport.org/
home) and InnateDB database (https://www.innatedb.
com/). The microRNA-lncRNA interaction relations 
were downloaded from ENCORI database (https://rna-
sysu.com/encori/). The gene and transcriptional regula-
tion factor interaction relations were downloaded from 
TRRUST database (https://www.grnpedia.org/trrust/). 
Ethical approval was not necessary for this study because 
all data were retrieved from a public database. And the 
data processing process was showed in Fig.  1. Briefly, 

Table 1  Database information
Number Type Samples (DN/Normal)
GSE96804 mRNA array 61(41/20)
GSE30528 mRNA array 22(9/13)
GSE142025 RNA-seq 36(27/9)
GSE183276 scRNA-seq 30(12/18)

Fig. 1  The flow chart of data processing process
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the same DEGs were obtained from the datasets of 
GSE96804 and GSE30528. After intersecting with the 
immune-related genes, the immune-related DEGs were 
used for SVM-REF, randomForest, and LASSO analyses 
to get the hub genes. Then the dataset of GSE142025 was 
used for model validation. And the dataset of GSE183276 
was used to identify the expressions of hub genes in dif-
ferent cell types. Finally, the correlation of hub genes and 
immune cell infiltration and the drugs targeted to the 
hub genes were analyzed.

Analysis of immune-related differentially expressed genes 
(irDEGs)
Hierarchical clustering on the samples in the datasets 
GSE96804 and GSE30528 was conducted to detected 
whether there are outlier samples. Then, by using the 
limma package (v3.50.3) of R (v4.1.3) (http://www.
bioconductor.org/), we screened the DEGs in the 
dataset of GSE96804 and GSE30528 with the crite-
ria of p-value < 0.05 and |log fold change|>1. To obtain 
immune-related differentially expressed gene (irDEGs), 
DEGs were overlapped with the immune-related genes 
obtained from the ImmPort database and the InnateDB 
database. The synergistically up-regulated and down-
regulated genes in the two datasets were selected as the 
common irDEGs for subsequent analysis. Functional 
enrichment analysis was performed using the “cluster-
Profiler” R package (v4.7.1). Different immune-related 
genes enriched in Gene Ontology (GO) and KEGG path-
way categories were identified. The GO terms and KEGG 
pathways were plotted using the R package ggplot2.

Multiple machine learning algorithms to identify the hub 
genes
To select reliable hub genes for constructing the DN 
prediction model, three machine learning algorithms, 
including Least Absolute Shrinkage and Selection Opera-
tor (LASSO), randomForest (RF), and support vector 
machine-recursive feature elimination (SVM-REF), were 
applied to analyze the GSE96084 dataset by “glmnet 
(v4.1)”, “randomForest (v4.7)”, and caret (v6.0) packages 
of R software, respectively. The overlapping hub genes 
from the three algorithms were obtained as the hub genes 
for constructing the comprehensive prediction model 
by logistic regression. The model score was calculated 
according to the following formula. Score = (4.825259 
* PTGDS) + (1.384 * EGF) + (1.456 * RGS2) + (1.475 * 
PLTP). The prediction performance of the constructed 
model indicated by ROC was analyzed on the training 
dataset GSE96084 and GSE30528 and the independent 
validation dataset GSE142025, respectively by using the 
“pROC (v1.18)” package of R language.

Hub gene correlation analysis
The interaction network of competing endogenous 
RNAs (ceRNAs) was constructed using data obtained 
from the ENCORI database for lncRNA-miRNA-mRNA 
interactions. Additionally, gene-to-transcription factor 
interactions were sourced from the TRRUST database. 
Cytoscape software was used for the visualization of 
this network. Spearman analysis was performed on the 
GSE96084 dataset to evaluate the correlations among 
the identified hub genes, namely EGF, PLTP, RGS2, and 
PTGDS. The strength and significance of these correla-
tions were depicted graphically using the R package cor-
rplot (v0.92).

Single-cell RNA analysis of the hub genes
The single-cell dataset GSE183276 was preprocessed 
using the R-package Seurat (v4.2). A total of 12 DN and 
18 normal samples were included in subsequent analy-
sis. Each gene was found to be expressed in at least 3 
cells. The cells expressing > 500 but ≤ 5,000 genes and 
the counts ranging from 600 to 40,000 were selected. 
Meanwhile, 50% of mitochondrial genes were set as cut-
off values for further filtration. After identifying 2,000 
hypervariable genes by the FindVariableFeatures function 
for analysis, the number of principal components (PCs) 
was adjusted to 50 to generate cell clusters annotated by 
original publications and exhibited using the “uMAP” 
function. The hub genes were visualized in each cell 
cluster.

Correlation analysis between hub genes and immune cell 
infiltration
CIBERSORT was used to estimate the abundances of 
member cell types in a mixed cell population using 
gene expression data on the GSE96084 dataset. With 
CIBERSORT in R software, the proportion of infiltrating 
immune cells was evaluated in DN and normal groups 
and visualized by the “ggpubr v0.4” package of R lan-
guage. Principal component analysis (PCA) was used 
to identify the difference in the immune cell infiltration 
between the DN and normal groups. The Spearman cor-
relation analysis of immune cells and gene expression 
was performed and visualized by the R package “corrplot 
(v0.92)”. The Wilcoxon test was used to compare the lev-
els of immune infiltration between the disease and the 
control, and a p-value < 0.05 indicated a significant dif-
ference. Violin plots were generated using the “vioplot” 
package in R to visualize the differences in immune cell 
infiltration expression levels between the DN and control 
groups.

http://www.bioconductor.org/
http://www.bioconductor.org/
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Molecular docking screening of potential therapeutic 
drugs
The corresponding PDB files of the hub genes were 
downloaded from the RCSB PDB database (https://www.
rcsb.org/). The structural information of correspond-
ing small molecule compounds was downloaded from 
any ZINC database file (https://zinc15.docking.org/sub-
stances/subsets/fda/). After setting other relevant param-
eters, autodock-vina was used to separately dock with the 
small molecule compounds and search for the minimum-
energy docking conformations. PyMol demonstrated 
docking conformation for proteins and compounds.

Cell culture
The HK-2 cells were cultured in DMEM/F12(1:1) 
medium (SH30243.FS, c HyClone, UT, USA) containing 
10% FBS (16000-044, GIBCO, MA, USA) in a humidi-
fied atmosphere with 5% CO2 at 37 ℃. Glucose (G8150, 
Solarbio, Beijing, China) with different concentration (5 
mM, 20 mM, 30 mM) was used to stimulate HK-2 cells 
for 24 h.

Animal models
Twelve 8-week-old C57/J male mice were used to estab-
lish DN model induced by streptozotocin (STZ) as pre-
viously described [26]. The mice were divited into DN 
group (n = 6) and NC group (n = 6) and kept in the envi-
ronment with constant temperature and humidity. After 
fasting for 12 h, the mice in the DN group were intraper-
itoneally injected with STZ (150  mg/kg), then the mice 
were fed with water with 10% sucrose for 3 days. The 
fasting blood-glucose (FBG) level was detected every 3 
days after surgery and the FBG level >8.3 mM for 3 con-
secutive times meant the diabetes model was success-
fully constructed. Then the mice were kept for another 
8 weeks after successful establishment of the diabetes 
model. After anesthesia, the mice were perfused via 
heart, and the kidney tissues were obtained for further 
studies.

qPCR analysis
Total RNA was isolated from HK-2 cells and kidney tis-
sues by using Total RNA extraction solution (10606ES60, 
Yeasen Biotechnology Co., Ltd, Shanghai, China). Then 
equal amount of RNA was reverse transcribed into 
cDNA by employing Hifair® II 1st Strand cDNA Syn-
thesis Kit (11119ES60, Yeasen Biotechnology Co., Ltd, 
Shanghai, China). qPCR experiments were performed 
using the Fluorescent quantitative PCR instrument (CG-
05, HANGZHOUJINGGE scientific instrument Co., Ltd, 
Hangzhou, China) with Hieff® qPCR SYBR Green Master 
Mix (11203ES03, Yeasen Biotechnology Co., Ltd, Shang-
hai, China). β-actin was used as the internal control. And 
the primers were showed in Table S4.

Western blot analysis
The protein was collected from HK-2 cells by using RIPA 
buffer. After detecting the protein concentration by using 
BCA kit, an equal amount of protein was separated by 
SDS-PAGE. Then the proteins on the gels were trans-
ferred to NC membranes. The membranes were blocked 
by 5% skim milk powder and incubated with primary 
antibodies (Table S5), following by being incubated with 
the secondary antibodies (Table S5). The signals on mem-
branes were visualized by ECL reagent.

Statistical analysis
All statistical analyses were based on R 4.1.2. Wilcoxon 
rank-sum test was used to compare the differences in 
various values (expression amount, infiltration propor-
tion, and various eigenvalues, etc.) between the DN and 
normal group. NS indicates p > 0.05, * indicates p < 0.05, 
** indicates p < 0.01, *** indicates p < 0.001, **** indicates 
p < 0.0001, otherwise specified.

Results
Identification of the irDEGs and exploring their functions 
in DN disease
To identify and characterize the irDEGs between a dis-
ease group (DN group) and a normal group, we con-
ducted a comprehensive bioinformatics analysis focusing 
on immune-associated genes (Table S1). Using strin-
gent criteria (|log2FC| > 1, corrected p-value < 0.05), we 
screened the GSE96804 and GSE30528 datasets after 
making sure there are no outlier samples in these two 
datasets (Fig.  2A). Our analysis showed 644 DEGs (95 
immune-associated) in GSE96804 (Table S2) and 427 
DEGs (88 immune-associated) in GSE30528 (Table S3), 
depicted in Fig. 2B-E. The intersection of immune-asso-
ciated DEGs between these two datasets yielded 14 co-
expressed immune-related differentially expressed genes 
(co-irDEGs), with 4 up-regulated and 10 down-regulated 
co-irDEGs (Fig.  2F). Enrichment analysis uncovered 
functional pathways such as positive regulation of the 
MAPK cascade, EGFR tyrosine kinase inhibitor resis-
tance, and Ras signaling (Fig. S1).

Identification of immune-related hub genes in DN disease 
by using machine learning methods
To identify the specific genes among the 14 co-irDEGs 
associated with DN, we employed a combination of 
LASSO regression, SVM-RFE algorithm, and Random 
Forest analysis. Initially, we fine-tuned the ntree and mtry 
parameters of the Random Forest algorithm, identifying 
the optimal values as mtry = 13 and ntree = 150, which led 
to the lowest and most stable model error rate (Fig. 3A, 
B). Utilizing these parameters, the Random Forest model 
was trained, and gene weight coefficients were derived 
(Fig. 3C). Subsequently, based on the MeanDecreaseGini 

https://www.rcsb.org/
https://www.rcsb.org/
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Fig. 2  Differential expression analysis of genes in diabetic nephropathy (DN) and normal controls. (A) Hierarchical clustering on the samples of the 
datasets GSE96804 and GSE30528. (B) Volcano plot depicting the distribution of differentially expressed genes in the GSE30528 dataset. (C) Heatmap il-
lustrating the expression patterns of the top 50 immune-related differentially expressed genes in GSE30528. (D) Volcano plot displaying the distribution of 
differentially expressed genes in the GSE96804 dataset. (E) Heatmap showing the expression profiles of the top 50 immune-related DEGs in GSE96804. (F) 
Venn diagram illustrating the intersection of up-regulated and down-regulated genes differentially expressed in both GSE30528 and GSE96804 datasets
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ranking, the top 5 genes were selected as candidate genes. 
Furthermore, employing the SVM-RFE algorithm, we 
determined that the model achieved its highest accuracy 
with 6 candidate genes (Fig. 3D). The LASSO algorithm 
analysis yielded eight non-zero features, highlighting the 
key genes associated with DN (Fig. 3E-F).

Through the intersection of candidate genes, four hub 
genes, i.e., epidermal growth factor (EGF), phospholipid 
transfer protein (PLTP), regulator of G protein signaling 
2 (RGS2), and glycoprotein prostaglandin D2 synthase 
(PTGDS), were selected by Random Forest, SVM-RFE, 
and LASSO algorithms (Fig.  3G). To establish the diag-
nostic utility of these hub genes, we constructed a logistic 
regression model on GSE96804 and GSE30528 datasets. 
Next, ROC curve analyses were conducted to evaluate 
the sensitivity and specificity of the four hub genes and 
the integrated model in DN diagnosis. EGF, PLTP, 
RGS2, PTGDS, and the comprehensive model exhibited 
substantial diagnostic potential in distinguishing DN 
patients from healthy individuals. The area under the 
curve (AUC) for the comprehensive model reached an 
impressive 0.995 on GSE96804 and 1.00 on GSE30528 
(Fig.  3H, I). In order to enhance the reliability of our 

findings, we validated the model using the GSE142025 
dataset, revealing consistent AUC values > 0.9, which was 
indicative of significant and meaningful diagnostic capac-
ity in DN (Fig.  3J). Furthermore, we measured the rele-
vant metrics including Precision, Recall, and F1-score of 
the model, the results showed the Precision, Recall, and 
F1-score of the model were 1, 0.93, and 0.96, respectively 
for GSE96804, and 1, 1, and 1, respectively for GSE30528 
and GSE142025. These findings underscore the robust-
ness of our integrated approach in identifying and vali-
dating key hub genes for potential use as diagnostic 
markers in DN.

We constructed a multifactor network around the iden-
tified hub genes using data sourced from the ENCORI 
database for lncRNA-miRNA-mRNA interactions and 
the TRRUST database for gene-transcriptional regula-
tor interactions. The final network encompassed 4 hub 
genes, 17 miRNAs, 5 lncRNAs, and 6 transcription fac-
tors (TFs) (Fig. S2A). Notably, interactions with miR-
NAs were absent in hub genes EGF, PLTP, and PTGDS; 
however, each demonstrated at least one associated TF 
in transcriptional regulation. On the other hand, while 
RGS2 lacked an associated TF, RGS2 exhibited multiple 

Fig. 3  Screening of hub genes for diabetic nephropathy diagnosis. (A) Parameter optimization (mtry) training of the random forest algorithm. (B) Param-
eter optimization (ntree) training of the random forest algorithm. (C) Weight coefficient distribution analysis using random forest, aiding the selection 
of potential diagnostic genes. (D) Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm employed for potential diagnostic gene 
selection. (E) Analysis of coefficient distribution through LASSO regression. (F) Application of LASSO regression for the selection of potential diagnostic 
genes. (G) Venn diagram showcasing the four specific genes identified through the convergence of the three algorithms. H. ROC curve of the hub gene 
and integrated model in GSE96804. (I) ROC curve of the hub gene and integrated model in the GSE30528 dataset. (J) ROC curve of the hub gene and 
integrated model in the GSE142025 dataset
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interactions as competing endogenous RNA. Addition-
ally, Spearman correlation analysis among the hub genes 
revealed significant correlations, particularly for PTGDS, 
displaying significant associations with the remaining 
three hub genes (Fig. S2B). This intricately woven mul-
tifactor network offers insights into the regulatory com-
plexities underlying the identified hub genes, highlighting 
potential cross-talk among various regulatory layers.

Analysis of the expression profiles of hub genes among 
different cell subsets
In order to gain deeper insights into the expression pro-
files of the identified hub genes, an examination of their 
expression across various cell types was conducted using 
single-cell RNA sequencing data (GSE183267), which 
included 12 DN and 18 normal samples. After quality 
control and filtering, the remaining 64,726 cells in 30 
samples were used for further analysis. By using sub-
clustering and annotation, these cells were categorized 
into distinct cell types, namely endothelial cells, epithelial 
cells, immune cells, and stromal cells (Fig. 4A). Notably, 
Fig. 4B highlights a relatively lower proportion of epithe-
lial cells than other cell types. Remarkably, Fig. 4C under-
scores the enriched expression of the four hub genes 
within epithelial cells. Further details regarding single-
cell data preprocessing are provided in Fig. S1.

The correlation of hub gene and immune infiltration
The immune microenvironment has a profound impact 
on the diagnosis of DN. Using CIBERSORT to calculate 
the proportions of 22 immune cell types, these values 
were projected onto PCA plots, demonstrating a distinct 
separation between DN and normal groups (Fig.  5A). 
Moreover, intricate interactions among immune cells 
were explored through Spearman correlation analy-
sis, indicating positive associations among T cells, CD4 
T memory-activated cells, and activated dendritic cells 
(Fig.  5B). The present study also identified significant 
differences in the proportions of macrophage M1, mac-
rophage M2, CD8+ T cells, and neutrophils between DN 
and normal groups using the Wilcoxon test (Fig.  5C), 
indicating the relevance of specific immune cell subsets 
to DN pathogenesis. Furthermore, the correlation analy-
sis unveiled a positive association between the expression 
levels of all four identified hub genes and neutrophil infil-
tration (Fig.  5D). Collectively, these findings illuminate 
the intricate immune cell dynamics in DN.

Identification of potential therapeutic drugs targeted the 
hub genes by using molecular docking
We employed Molecular Docking to identify potential 
therapeutic options for DN, i.e., to assess the interac-
tions between three of the identified hub genes and vari-
ous compounds. PLTP was excluded from the molecular 

Fig. 4  Single-cell analysis of hub genes. (A) Two-dimensional UMAP projection depicting the cell subsets derived from scRNA-seq data. (B) Distribution 
representation of individual cell clusters as defined through scRNA-seq data analysis. (C) Expression patterns of hub genes across different cell clusters 
showcased in the UMAP projection
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Fig. 5  Immune cell interactions and correlations with hub genes in diabetic nephropathy (DN). (A) Principal Component Analysis (PCA) plot illustrating 
distinct immune cell infiltration distributions between the DN and normal groups. (B) Heat map displaying the correlation analysis results among various 
immune cell types. (C) Box diagrams depicting the differential immune cell infiltration between the DN and normal groups, with statistical significance 
denoted (p < 0.05). (D) Correlation analysis revealing the associations between the four identified hub genes and infiltrating immune cells
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docking analysis due to the absence of protein structure 
information. Consequently, molecular docking was 
exclusively conducted for the remaining three hub genes. 
This analysis identified compounds displaying the lowest 
binding energies, indicative of favorable interactions, as 
promising candidates. Notably, cysteamine exhibited the 
lowest binding energy (-2.3) to the EGF protein (Fig. 6A), 
eltrombopag demonstrated the most favorable interac-
tion with the PTGDS protein, with a binding energy of 
-10.1 (Fig.  6B), and DMSO exhibited the smallest bind-
ing energy of -2.1 with the RGS2 protein (Fig. 6C). These 
findings collectively suggest that cysteamine, eltrom-
bopag, and DMSO could be used as therapeutic agents 
for addressing the complexities of DN.

Validation of the expressions of EGF, PLTP, RGS2, and 
PTGDS in vivo and in vitro
To further validate the expressions of EGF, PLTP, RGS2, 
and PTGDS in DN, we stimulated HK-2 cells with differ-
ent concentration of glucose for 24 h. As shown in Fig. 7, 
the mRNA levels of EGF, PLTP, RGS2, and PTGDS were 
significantly increased in HK-2 cells treated with glu-
cose compared with those in the vehicle group (Fig. 7A). 
In addtion, the protein expressions of EGF, PLTP, RGS2, 
and PTGDS were elevated in HK-2 cells treated with 
glucose in a dose dependent manner (Fig. 7B, C). Furh-
termore, we established a mice DN model with STZ and 
the kidney tissues were collected. The results revealed 
the mRNA levels of EGF, PLTP, RGS2, and PTGDS were 
observably increased in the kidney tissues of mice with 
DN compared with those in the control group. These 
results indicated that the expressions of EGF, PLTP, 
RGS2, and PTGDS were up-regulated both in HK-2 cells 
treated with glucose and kidney tissues of mice with DN.

Discussion
DN is among the most common chronic complications 
of diabetes mellitus, posing a serious threat to human 
health. Due to the lack of specific indicators for the early 
diagnosis of DN, some DN patients miss the opportu-
nity for early diagnosis and treatment. In this study, 14 
co-irDEGs were obtained. Among these co-irDEGs, four 
hub genes, including EGF, PLTP, RGS2, and PTGDS, were 
pinpointed as promising candidates capable of accurately 
predicting DN, which expressions were validated to be 
significantly increased in HK-2 cells treated with glu-
cose and the kidney tissues of mice with DN. Notably, 
these four hub genes exhibited robust expression pro-
files within epithelial cells, suggesting their probable sig-
nificance in renal physiology. Intriguingly, the expression 
levels of these hub genes were correlated with the infil-
tration of neutrophils, thus highlighting a potential inter-
play between gene expression patterns and immune cell 
dynamics. Beyond their diagnostic potential, this study 

identified cysteamine, eltrombopag, and dimethyl sulfox-
ide (DMSO) as conceivable therapeutic agents for DN.

The 14 co-irDEGs, comprising 4 up-regulated and 10 
down-regulated genes identified in the present study, 
constitute a pivotal step in unraveling the genetic under-
pinnings of DN. The subsequent enrichment analy-
ses provided invaluable insights into the functional 
context of these differentially expressed genes. Notably, 
the enrichment results showcased pronounced asso-
ciations with processes such as positive regulation of the 
MAPK cascade, EGFR tyrosine kinase inhibitor resis-
tance, and activation of dendritic cells. These enriched 
pathways, resonating with immune and inflammatory 
responses, underline the intricate interplay between 
immune dynamics and DN progression [27]. This aligns 
seamlessly with recent research affirming the role of den-
dritic cells in DN. Demonstrably, hyperglycemia-induced 
up-regulation of CD83 and CD86 in dendritic cells trig-
gers cascades of cytokines, including IL-6 and IL-12, 
through signaling pathways that discernibly impact kid-
ney function [28]. Not only MAPK-pathway, our results 
also revealed EGFR tyrosine kinase inhibitor resistance, 
and Ras signaling were enriched in the DEGs between 
DN and normal controls. Previous studies showed sev-
eral EGFR ligands were elevated in DN. Inhibiting the 
tyrosine kinase of EGFR could alleviate the development 
of DN [29]. However, our study found EGF, the ligand of 
EGFR, was down-regulated in DN. Others showed EGF 
increased the degradation of EGFR to inhibit its activa-
tion [30]. Furthermore, EGF was reported to protect 
podocytes from high glucose-induced injury [31]. Our 
study provided a potential role of EGF-EGFR signaling in 
DN formation. In addition, RGS2 was revealed to inhibit 
Ras signaling [32], and RAS inhibitors were the first-line 
drugs for DN. However, the role of RGS2 in DN develop-
ment is unknown. We found that the expression of RGS2 
was decreased in DN, further functional assays are neces-
sary to confirm its effects on DN. Collectively, these find-
ings fortify the understanding of the relationships of hub 
genes and regulated sinalings in DN development and 
progression, elucidating a crucial facet of the complex 
pathogenesis of the disease.

Based on the LASSO, SVM-RFE algorithms, and RF 
analysis, four hub genes, including EGF, PLTP, RGS2, 
and PTGDS, were identified. This integrative approach 
harnesses the power of machine learning to refine our 
understanding of DN-related gene selection. EGF is a 
polypeptide with 53 amino acids and multiple roles, 
such as regulating cell growth, proliferation, and tissue 
repair [33]. It has been linked to kidney damage biomark-
ers [34], correlating with estimated glomerular filtra-
tion rate (eGFR) loss and predicting renal damage [35]. 
In addition, EGF protects podocytes from high glucose-
induced apoptosis [36] by modulating autophagy and the 
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Fig. 6  The docking conformation analysis of hub genes with their docked compounds. (A) Analysis of the docking conformation and EGF and Cyste-
amine. (B) Analysis of the docking conformation and PTGDS and eltrombopag. (C) Analysis of the docking conformation and RGS2 and DMSO. PyMol 
shows docking conformation and hydrogen bonding with the color symbols of cyan for small molecules and blue for amino acid residues forming 
hydrogen bonds with small molecules
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Fig. 7  The expressions of EGF, PLTP, RGS2, PTGDS in vivo and in vitro. HK-2 cells were treated with different concentration of glucose (5 mM, 20 mM, 30 
mM) for 24 h, (A) mRNA expressions of EGF, PLTP, RGS2, PTGDS were detected. N = 3, **p < 0.01 vs. Vehicle, ***p < 0.001 vs. Vehicle. (B-C) Representative 
western blotting images (B) and quantifications (C) of EGF, PLTP, RGS2, PTGDS were showed. N = 3, *p < 0.05 vs. Vehicle, **p < 0.01 vs. Vehicle, ***p < 0.001 
vs. Vehicle. (D) mRNA expressions of EGF, PLTP, RGS2, PTGDS were detected in the kidney tissues of mice with DN or the control mice. N = 6 per group, 
***p < 0.001 vs. Ctrl
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PI3K/AKT/mTOR signaling pathway [31]. EGFR dele-
tion delays the recovery of renal injury [37], although the 
EGFR pathway is activated in diabetic kidney diseases 
[38]. PLTP, a widely expressed key lipid transfer protein 
[39], can alter responses to pro-inflammatory stimuli 
[40]. Increased plasma PLTP activity in diabetics cor-
relates with CRP levels [41], suggesting an influence on 
DN through inflammation modulation rather than direct 
progression control. RGS2 inhibits Gαq and Gαi signal-
ing [42], particularly in kidney tubules [43]. RGS2 dele-
tion exacerbates kidney fibrosis via AngI/AT1R signaling 
[44]. RGS2 regulates chemokine receptors like CXCR4 
[45], with higher CXCR4 expression in RGS2 knock-
out mice. RGS2 lacks associated TFs but has compet-
ing endogenous RNA interactions. PTGDS, a lipocalin 
superfamily member [46], influences kidney failure pro-
gression [47]. Its overexpression impacts metabolite lev-
els in serum and urine, potentially causing renal lipid 
toxicity and damage [48]. While PTGDS is involved in 
DN, the exact mechanism remains unclear. These find-
ings potentially unravel intricate molecular mechanisms 
underlying the condition and facilitating the discovery of 
novel therapeutic avenues.

Our single-cell analysis yielded insightful findings on 
the composition of different cell types within the stud-
ied context. Interestingly, the proportion of epithelial 
cells was relatively low, underscoring the cellular diver-
sity and complexity inherent to the microenvironment 
under investigation [49]. Within this intricate landscape, 
the emergence of four hub genes that were abundantly 
expressed within epithelial cells is particularly notewor-
thy. It was found that the EGF can activate EGFR signal-
ing in renal epithelial cells, thus exacerbating diabetic 
kidney injury [50]. This aligns intriguingly with their 
role as potential biomarkers for predicting DN, poten-
tially suggesting a specialized function or regulatory role 
within the epithelial cell population. Observing enriched 
expression of these hub genes within a subset of cells 
highlights the nuanced interplay between gene expres-
sion patterns and cellular dynamics [51], potentially elu-
cidating their functional significance in DN development 
and progression. Moreover, the lower proportion of epi-
thelial cells prompts consideration of their interactions 
with other cell types, such as immune cells or stromal 
cells within the microenvironment [51]. Further explora-
tion of these intercellular communication networks could 
offer insights into the broader regulatory mechanisms 
that underlie DN and its associated molecular signatures 
[52]. The convergence of our single-cell analysis data sug-
gests an intricate relationship between epithelial cells and 
the identified hub genes in the context of DN.

By scrutinizing the involvement of various immune 
cell types, we gained a deeper understanding of their 
intricate interplay in relation to disease advancement. 

The proportion of macrophage M1, macrophage M2, 
CD8 + T cells, and neutrophils was significantly differ-
ent between DN and the normal group, thus suggesting 
that these immune cells may be involved in the occur-
rence and development of DN. Immune cell infiltration 
is a significant feature in diabetic samples that gradually 
became an identified biomarker in the early prediction of 
DN [53]. There was a phenotypic imbalance of M1/M2 
macrophages in DN renal tissues, with a predominance 
of M1-type infiltration, which leads to inflammation and 
fibrosis [54]. Spearman correlation analysis detected a 
significant positive correlation with the infiltration level 
of neutrophils, thus suggesting that the expression level 
of these four hub genes may be among the factors affect-
ing neutrophils infiltration levels in DN patients [53]. 
Neutrophil counts are closely associated with DKD in 
patients with autoimmune diabetes [55]. The ratio of neu-
trophils could be higher in normal controls, but with the 
disease progress, these inflammatory cells substantially 
increase in DN patients. Neutrophil-secreting enzymes 
and oxidation products can damage the local microenvi-
ronment, resulting in tissue injury [56]. Besides, our find-
ings revealed that EGF, PLTP, RGS2, and PTGDS genes 
were associated with neutrophil infiltration. Consistently, 
the EGF-induced chemotactic activity involved RhoA 
signaling in neutrophils to produce pro-neutrophil activi-
ties in asthma patients [57]. PLTP can prevent neutro-
phil degranulation but serine proteases [58]. In a broader 
context, the immune system and its related genes sig-
nificantly affect the pathogenesis and progression of DN. 
An in-depth exploration of immune cell infiltration and 
immune factor modulation offers insights into their pre-
cise roles in the etiology of DN, thereby furnishing valu-
able insights for developing novel therapeutic strategies.

Previous studies reported JAK/STAT pathways aggra-
vated the formation of diabetic kidney disease [59]. 
Furthermore, NF-κB activation was involved in the devel-
opment of diabetic nephropathy [60]. Interestingly, cyste-
amine, which was the predicted drug for EGF, a hub gene 
identified in our study, decreased the activation of NF-κB 
and the expression of iNOS [61]. In addition, eltrom-
bopag, another candidate drug that targeted PTGDS pro-
tein, would induce phosphorylation of STAT5 [62]. These 
researches indicate cysteamine and cysteamine may be 
associated with the molecular mechanisms of DN.

Although this study offers valuable insights into poten-
tial biomarkers and mechanisms associated with DN, 
the limitations stemming from data variability and the 
reliance on bioinformatic analyses underscore the need 
for future research combining basic experiments with 
computational approaches. Furthermore, even though 
we identified some candidate drugs targeted the hub 
genes, the validation study was not performed to confirm 
the effects of them on DN therapy, further studies are 
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necessary to unveil their functions both in animals and 
clinical trials. This multifaceted approach enhances the 
robustness of the reported findings and lays the founda-
tion for informed and effective strategies for diagnosing 
and treating DN.

Conclusion
The present study represents a pivotal advancement in 
the realm of DN research, ranging from the early detec-
tion of the disease to identifying potential therapeutic 
strategies. Identifying the four hub genes as accurate pre-
dictors of DN enables unraveling previously unexplored 
immune-related mechanisms and can be potentially used 
to guide future therapeutic strategies.
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