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Abstract 

Background Incorporating genomic data into risk prediction has become an increasingly popular approach for rapid 
identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate 
Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who 
do not.

Methods Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 
controls) comprised of 5 diverse cohorts with available blood‑derived DNA methylation (DNAm) measured on the Illu‑
mina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood 
trauma exposure and DNAm variables; the second, methylation‑only risk score (MoRS) was based solely on DNAm 
data; the third, methylation‑only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted 
for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre‑deployment 
data was also assessed. External validation of risk scores was conducted in four independent cohorts.

Results The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1‑score (89%) in clas‑
sifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoR‑
SAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD 
in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p=0.006), but not in the remaining three 
cohorts. Pre‑deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) 
displayed a significant (p < 0.001) predictive power for post‑deployment PTSD.
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Conclusion The inclusion of exposure variables adds to the predictive power of MRS. Classification‑based MRS may 
be useful in predicting risk of future PTSD in populations with anticipated trauma exposure. As more data become 
available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their 
accuracy in predicting PTSD and, relatedly, improve their performance in independent cohorts.
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Background
Posttraumatic stress disorder (PTSD) is a psychiatric dis-
order that can develop after experiencing or witnessing a 
life-threatening event such as a war/combat, natural dis-
aster, violence, or serious accident. PTSD occurs in ~ 13% 
of the trauma-exposed population [1], and females are 
twice as likely to experience PTSD as males [2]. PTSD 
commonly occurs together with other psychiatric disor-
ders [3–6] and has also been associated with other health 
conditions such as accelerated aging [7, 8], cardiovascular 
and metabolic disorders [9, 10], and poor physical health 
[11]. Consequently, the overall burden caused by PTSD 
is high, with an estimated annual economic burden of 
$232 billion in the United States in 2018, including $76.1 
billion in excess direct health care costs [12]. Identifying 
individuals at elevated risk of PTSD would enhance the 
ability to develop timely preventive strategies and thera-
pies for this disorder.

Incorporating genomic data into risk prediction has 
become an increasingly popular approach for rapid iden-
tification of individuals most at risk for complex disor-
ders such as PTSD. In particular, polygenic risk scores 
(PRS) have been evaluated in both research and clinical 
contexts to estimate risk to develop complex disorders, 
including coronary artery disease, breast cancer, Type 
2 diabetes, and Alzheimer’s Disease (reviewed in [13]). 
These genetically-based risk scores are attractive as they 
access lifetime risk for a particular disorder and lever-
age variation across hundreds to thousands of variants. 
However, most PRSs are not yet clinically useful, as they 
typically explain only a small proportion of variance in 
risk for a particular disorder and do not capture envi-
ronmental factors that influence risk or detect the effect 
of disease progression itself [14], both of which may be 
important to identifying individuals at highest risk for 
disease.

In contrast, risk scores based on DNA methylation 
(DNAm) levels, which are modifiable and dynamic, can 
potentially convey more information about disease risk. 
A growing literature has shown that approaches origi-
nally developed for generating PRS can be adapted for 
DNAm data (reviewed in [15, 16]). The resulting meth-
ylation risk scores (MRS) have been shown in some cases 
to be more indicative of current disease state [17] and 
health-related phenotypes [18], as well as more predictive 

of future disease risk [19], than PRS-based approaches. 
Indeed, for PTSD, which requires an environmental 
exposure—trauma/shocking event —to meet the require-
ments for a diagnosis, MRS-based risk scores that cap-
ture the differential effects of this exposure may be 
particularly informative for identifying trauma-exposed 
individuals most at risk for the disorder.

To this end, here we leverage a large, ancestrally diverse 
set of cohorts to take a first step toward developing MRS 
for PTSD. We focus specifically on developing scores that 
distinguish between those with vs. without the disorder 
(i.e., a diagnostic MRS that correctly classifies current 
cases vs. trauma-exposed controls), and attempt to rep-
licate these MRS in multiple external validation cohorts. 
We further test whether these diagnostic risk scores have 
prognostic value, i.e., can predict future PTSD among 
individuals prior to trauma exposure. Finally, to gain 
insight into potential mechanisms, we investigate the bio-
logical significance associated with the specific cytosine-
guanine sites separated by a phosphate group (i.e. (CpG) 
sites) that comprise the MRS.

Methods
Cohorts
In order to maximize the available data from which to 
develop risk scores using machine learning approaches, 
we created a discovery cohort comprised of 1226 indi-
viduals drawn from five cohorts (Table  1). Two of 
these cohorts are civilian— Detroit Neighborhood 
Health  Study  (DNHS) and Grady Trauma Project 
(GTP), and three cohorts are military— Army Study to 
Assess Risk and Resilience in Servicemembers (Army 
STARRS), Marine Resilience Study (MRS I&II), and 
Prospective Research in Stress-related Military Opera-
tions (PRISMO). Details about each cohort are given in 
the supplementary file. The overall workflow of the pre-
processing and methods combining data from the five 
cohorts is shown in supplementary file (Figure S1).

Quality Control (QC) procedures
DNAm from whole blood was measured using the Illu-
mina MethylationEPIC BeadChip following the manu-
facturer’s recommended protocol. Raw DNAm β values 
were obtained, and a sex check was conducted using the 
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minfi R package [20] to eliminate any sex-discordant sam-
ples. Quality control (QC) was performed on each cohort 
separately, using a standardized pipeline as previously 
described [21]. A total of 818,691 probes passed QC. 
Normalization was carried out using the single-sample 
Noob (ssNoob) method in the minfi R package [20]. Fur-
thermore, ComBat adjustment was performed, using an 
empirical Bayesian framework implemented in the SVA R 
package [22, 23] to reduce the likelihood of bias due to 
known batch effects (chip and position), while preserving 
the variation for age, sex (if applicable), and PTSD. The 
resulting QC’d data was used in subsequent analyses.

Estimation of covariates
Smoking scores
Studies have linked methylation at many genomic loci to 
smoking status [24–29]. Therefore, to adjust for DNAm 
differences related to smoking, we calculated smoking 
scores from DNAm data based on the weights obtained 
from 39 CpGs located at 27 loci, as previously described 
[30].

Table 1 Demographic and clinical characteristics of the studies 
included in the discovery cohort

Current PTSD

Cases Controls P value Total

N
 Army STARRS 42 111 153

 DNHS 31 385 416

 GTP 161 323 484

 MRS I&II 63 60 123

 PRISMO 17 33 50

 All 314 912 1226

Gender, Male (%)
 Army STARRS 42 (27) 111 (73) 153 (100)

 DNHS 10 (2) 161 (39) 171 (41)

 GTP 25 (5) 107 (22) 132 (27)

 MRS I&II 63 (51) 60 (49) 123 (100)

 PRISMO 17 (34) 33 (66) 50 (100)

 All 157 (50) 472 (51.8) 629 (51.3)

Age, mean (SD)
 Army STARRS 25.8 (5.1) 25.5 (5.2) 7.54E‑01 25.6 (5.2)

 DNHS 51.6 (11.1) 55.6 (17.1) 7.66E‑02 55.3 (16.8)

 GTP 41.7 (11.4) 42.4 (12.5) 5.48E‑01 42.2 (12.1)

 MRS I&II 23.3 (2.3) 22.9 (1.9) 3.59E‑01 23.1 (2.1)

 PRISMO 28.1 (10.1) 27.5 (9.1) 8.29E‑01 27.7 (9.3)

 All 36.1 (13.4) 44.1 (18) 5.89E‑16 42.1 (17.3)

PTSD symptom severity, mean (SD)
 Army STARRS 56.9 (9.6) 22.4 (5.8) 4.83E‑28 32 (17)

 DNHS 63 (16) 32.7 (11.4) 1.89E‑11 34.9 (14.2)

 GTP 70.4 (18.6) 25.1 (16.9) 2.17E‑32 38.5 (27.1)

 MRS I&II 65.4 (14.8) 13.6 (11.8) 1.30E‑42 40.2 (29.2)

 PRISMO 42 (4.4) 27 (4.8) 6.72E‑13 32.1 (8.5)

 All 63.1 (16.7) 27.7 (13.3) 5.88E‑88 35.8 (20.5)

Self-reported Race/Ethnicity, N (%)
 Army STARRS

  African American 3 (2) 12 (7.8) 15 (9.8)

  White 29 (19) 88 (57.5) ‑ 117 (76.5)

  Other 10 (6.5) 11 (7.2) ‑ 21 (13.7)

 DNHS ‑

  African American 28 (6.7) 381 (91.6) ‑ 409 (98.3)

  Other 3 (0.7) 4 (1) ‑ 7 (1.7)

 GTP ‑

  African American 153 (31.6) 307 (63.4) ‑ 460 (95)

  Other 8 (1.7) 16 (3.3) ‑ 24 (5)

 MRS I&II ‑

  African American 2 (1.6) 2 (1.6) 4 (3.3)

  White 53 (43.1) 53 (43.1) ‑ 106 (86.2)

  Other 8 (6.5) 5 (4.1) ‑ 13 (10.6)

 PRISMO ‑

  African American 1 (2) 1 (2) ‑ 2 (4)

  White 11 (22) 27 (54) ‑ 38 (76)

  Other 5 (10) 5 (10) ‑ 10 (20)

Table 1 (continued)

Current PTSD

Cases Controls P value Total

 All

  African American 187 (59.6) 703 (77.1) ‑ 890 (72.6)

  White 93 (29.6) 168 (18.4) ‑ 261 (21.3)

  Other 34 (10.8) 41 (4.5) ‑ 75 (6.1)

Smoking Score, mean (SD)
 Army STARRS ‑5.4 (18.4) ‑7.8 (18) 4.75E‑01 ‑7.1 (18.1)

 DNHS 3.8 (30.5) ‑0.6 (33) 4.45E‑01 ‑0.3 (32.8)

 GTP ‑4.1 (35.4) ‑2.8 (35.4) 7.05E‑01 ‑3.3 (35.4)

 MRS I&II ‑8.5 (17) ‑10.8 (15) 4.43E‑01 ‑9.6 (16)

 PRISMO 1.3 (16.9) 2 (21.3) 9.06E‑01 1.7 (19.7)

 All ‑4.1 (29.3) ‑2.9 (31.3) 5.21E‑01 ‑3.2 (30.8)

Childhood Trauma, mean (SD)
 Army STARRS 7.1 (3.3) 6.3 (2.2) 1.44E‑01 6.5 (2.5)

 DNHS 7.6 (5.7) 4.4 (3.4) 4.44E‑03 4.7 (3.7)

 GTP 56.1 (20.1) 37.7 (13.4) 1.67E‑21 43.8 (18.1)

 MRS I&II 41.7 (12.2) 37.5 (10.4) 4.10E‑02 39.6 (11.5)

 PRISMO 5.5 (2.6) 2.8 (2.2) 1.03E‑03 3.7 (2.7)

 All 39.1 (26.2) 18.5 (18.5) 3.3E‑32 23.8 (22.6)

Cumulative Trauma, Mean (SD)
 Army STARRS 1 (0) 1 (0) ‑ 1 (0)

 DNHS 12.2 (7) 6.1 (4.1) 3.63E‑05 6.6 (4.7)

 GTP 7 (3.1) 4.4 (2.8) 2.33E‑17 5.3 (3.1)

 MRS I&II 11.2 (2.9) 10.3 (3.8) 0.125 10.8 (3.4)

 PRISMO 6.5 (3.1) 5.9 (3.8) 0.557 6.1 (3.5)

 All 7.6 (4.8) 5.2 (4) 9.45E‑15 5.8 (4.3)
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Cell proportions
It is important to consider cellular heterogeneity in 
epigenome-wide association studies (EWAS) [31] since 
whole blood contains various cell types, each with its 
own DNAm profile [32, 33]. To address this, cell propor-
tions (CD4 + T, CD8 + T, Natural Killer (NK), B-cells, 
monocytes, and neutrophils) were estimated using refer-
ence data [34] and the Robust Partial Correlation (RPC) 
method implemented in the EpiDISH R package [35].

Ancestry principal components
Several  studies have found variations in DNAm levels 
among different populations (race/ethnicity) at certain 
CpG sites [36–41]. Therefore, to account for popula-
tion stratification, ancestry principal components (PCs) 
were generated from methylation data using a subset of 
CpGs in close proximity to SNPs in data from the 1000 
Genomes Project [42, 43]. As previously reported [42, 
43], PC 2 and 3 were the components most correlated 
with ancestry and thus, used to adjust for population 
stratification in this study.

Covariate adjustment
All the discovery cohorts had a small percentage of miss-
ing values (ranging from 0.002 to 0.03%). As the machine 
learning models require complete data, we used the 
mean method—a common and simple imputation tech-
nique to impute the missing data while maintaining the 
distribution of the data [44, 45]. We then adjusted the 
DNAm data for potential confounding factors, including 
cell composition, ancestry, smoking score, sex (if applica-
ble), and age, for models 1 and 2 (described below). The 
adjustment was made for each CpG by regressing out all 
the covariates using linear regression and then replacing 
the values of CpG with the corresponding residuals [46]. 
For model 3 (described below), we also regressed out the 
two exposure variables of interest, cumulative trauma 
and childhood trauma, in addition to the covariates used 
in models 1 and 2. This was done separately for each 
cohort to account for any differences related to exposure 
variables in individual cohorts.

Analysis
Overall approach
Our goal was to develop a series of models based on 
important (i.e. set of features with best classification 
accuracy) methylation- and (in some cases) exposure-
related features to classify PTSD that would then be used 
to derive risk scores with which to predict PTSD. To train 
the models, we utilized unique, trauma exposed par-
ticipants from the discovery cohort in a cross-sectional 
approach. Model 1 was designed to classify PTSD by 
including two exposure variables—cumulative trauma 

(number of traumatic events experienced) and child-
hood trauma (experienced at < 18 years of age)—along 
with DNAm data, as increasing levels of exposures are 
known to substantially increase the risk of developing 
PTSD [47–50] and were thus hypothesized to contrib-
ute high predictive power to our model. The purpose of 
Model 2 was to classify PTSD using only DNAm data, 
without relying on the discriminatory power of cumula-
tive trauma or childhood trauma; this model would ena-
ble potential application to cohorts in which only DNAm 
data were available. Model 3 was developed with a unique 
purpose, distinct from Model 1. Namely, it was created 
to account for variations in exposure variables among 
individual cohorts. In this model, exposure variables 
were intentionally excluded from the analysis because 
they were used as covariates in DNAm data adjustment. 
While Model 3 addresses the challenge of cohort-specific 
variations, it does not possess the same predictive power 
as Model 1, which incorporates these exposure variables. 
The adjusted data was then subjected to the following 
analysis processes.

Feature selection and scaling
We used SelectKBest in Scikit-learn [51], a univariate fea-
ture selection approach. This method computes ANOVA 
F-values based on univariate statistical tests to identify 
the best features in relation to a particular phenotype. We 
identified the most important features from DNAm and 
exposure variables (in cases of Models 1 & 2) based on 
the rank order of the features’ association with PTSD. For 
Model 3, we selected features solely from DNAm data. 
The feature selection process was repeated 500 times, 
ranging from 10 to 5000 features with a 10-feature incre-
ment each time to determine the optimal feature set for 
the Elastic Net model best accuracy. As different studies/
cohorts used different instruments to measure cumula-
tive trauma and childhood trauma, we normalized the 
data using a min–max scale that ranged from [1].

Training and testing
In order to identify the best model to classify PTSD and 
determine risk scores, we trained three popular machine 
learning models —Random Forest, Lasso, and Elas-
tic Net on 75% of the data, and then tested them on the 
remaining 25% using the Scikit-learn [51] framework. 
We also conducted a tenfold cross-validation on train-
ing and testing data to evaluate the effectiveness of the 
models (Figure S1.1). After selecting the most accurate 
machine learning model, which was evaluated based on 
the methylation and exposure variable dataset, we used 
important features identified during the feature selection 
process to classify PTSD. Following covariate adjustment 
of the two additional exposure variables, we re-ran the 
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feature selection process to identify important features 
for Model 3 (described below). Performance of the mod-
els was assessed using accuracy, precision, recall, f1-score 
and area under the curve (AUC) metrics.

Risk scores
Risk scores are the weighted sum of the important fea-
tures. Using feature weights (i.e. effect sizes) from train-
ing data (75%), we created risk scores using discovery 
cohort test data (25%), in order to test for an association 
between risk scores and PTSD. Model 1 contributed to 
the development of exposure and methylation risk scores 
(eMRS), whereas Model 2 provided methylation-only risk 
scores (MoRS). Finally, Model 3 led to the creation of 
methylation-only risk scores with adjusted exposure vari-
ables (MoRSAE).

A logistic model was employed to test for an associa-
tion between risk scores (eMRS, MoRS and MoRSAE) 
and PTSD, and the Nagelkerke approach was used to 
assess the models’ resulting R-Squared  (R2) values. For 
all analyses, a Wilcoxon rank-sum test was used to assess 
differences in risk scores between cases and controls. To 
assess the direction of effect and strength of association 
among study variables in the both discovery and inde-
pendent cohorts, Pearson’s and point-biserial correlation 
was used, as appropriate.

Independent validation
To validate the risk scores, we tested their ability to dis-
tinguish those with vs. without PTSD in four independ-
ent, external cohorts using the same pre-processing and 
covariate adjustment pipeline as in the discovery cohort. 
Brief descriptions of the external cohorts (NCPTSD-
TRACTS, BEAR, DCHS and PROGrESS) are provided in  
Supplementary File  1. We utilized weights from signifi-
cant features identified in models 1, 2, and 3 of the dis-
covery cohort to generate risk scores (i.e., eMRS, MoRS, 
and MoRSAE) in the external cohorts. Similar to the dis-
covery cohorts, we conducted Pearson and Point-Biserial 
correlation tests, association tests using logistic regres-
sion model, and Wilcoxon rank-sum tests on external 
cohorts.

MRS-based predictive analyses
In cohorts with available pre-deployment data, a logistic 
model was used to predict post-deployment PTSD using 
risk scores calculated from pre-deployment DNAm data 
and exposure data (Army STARRS, MRS I&II; n = 276). 
Note that these participants had their post-deployment 
DNAm data included in the discovery cohort analyses 
described above.

Enrichment analysis
To investigate the biological significance of the impor-
tant CpGs identified in the feature selection step, we 
performed Gene Ontology (GO) enrichment analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis using missMethyl [52]. Gene ontologies 
and KEGG pathways that reached a nominal significance 
level of p < 0.05 were considered important.

Results
Description of discovery cohort
Table  1 provides a summary of the demographic char-
acteristics and clinical information of all participants 
(n = 1226) in the discovery cohort with current PTSD. 
More information about cumulative and childhood 
trauma is provided in Table S1. A slight majority of par-
ticipants were male (n = 629). Two cohorts, DNHS and 
GTP, were comprised mostly of African Americans, while 
the remaining three cohorts were predominantly of Euro-
pean ancestry. In all cohorts, a significant difference in 
PTSD symptom severity was observed between cases and 
controls (p < 0.05). With the exception of Army STARRS, 
childhood trauma also demonstrated a significant differ-
ence between PTSD cases and controls (p < 0.05) in all 
cohorts. Finally, a significant difference was observed in 
cumulative trauma between cases and controls in DNHS 
and GTP (p < 0.001).

Development of methylation risk scores to distinguish 
those with vs. without PTSD
We developed three different risk scores with the goal 
of distinguishing those with vs. without PTSD using 
machine learning approaches. Our first model, eMRS, 
included both exposure and DNAm variables and iden-
tified 3730 features (3728 CpGs, cumulative trauma, and 
childhood trauma) as important in the discovery cohort. 
Using these 3730 features, Elastic Net approaches were 
employed to achieve the best accuracy (92%; Fig. 1), pre-
cision (91%), recall (87%), and f1-score (89%); Table  2 
(See Fig. S2 for AUCs with Lasso and Random Forest 
approaches). The eMRS significantly predicted PTSD 
(beta = 2.64, p < 0.001),  R2 = 0 0.70), with higher eMRS 
values in PTSD cases than controls (p < 0.001; Fig.  2A, 
left plot). Our second MoRS model, based solely on the 
3728 methylation features in model 1, accurately clas-
sified PTSD with 89% accuracy and had an AUC of 
95% (Fig.  3; Table  2). Additionally, the precision, recall, 
and f1-score were at 86%, 83%, and 84%, respectively, 
as shown in Table  2. As with eMRS, the MoRS signifi-
cantly predicted PTSD (beta = 2, p < 0.001,  R2 = 0.54) and 
had higher MoRS values in cases vs controls (p < 0.001) 
(Fig.  2A, middle plot). Our third and final model (i.e., 
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MoRSAE), which used DNAm data adjusted for the two 
exposure variables as well as the other covariates in mod-
els 1 and 2, identified 4150 significant features that classi-
fied PTSD with 84% accuracy and an AUC of 89% (Fig. 4, 
with precision, recall, and f1-score at 80%, 77%, and 78%, 
respectively (Table 2). As with models eMRS and MoRS, 
MoRSAE significantly predicted PTSD (beta = 1.20, 
p < 0.001,  R2 = 0.36) and had significantly (p < 0.001) dif-
ferent, and higher, MoRSAE in PTSD cases vs. controls 
(Fig. 2A, right plot). In summary, while all three models 
produced risk scores that significantly predicted PTSD 
in the test dataset, and showed higher scores in aggre-
gate between cases and controls, there was a decline 
in effect size (b) and explanatory power  (R2) such that 
eMRS > MoRS > MoRSAE.

Intercorrelation among study variables
A significant positive point-biserial correlation between 
eMRS and current PTSD was observed (ρ = 0.72, 
p < 0.001; Figure S3). Cumulative trauma (ρ = 0.40, 
p < 0.001) and childhood trauma (ρ = 0.57, p < 0.001) 
also showed a positive and significant correlation with 
eMRS. Notably, there was also a significant and positive 
point-biserial correlation (ρ = 0.62, p < 0.001) between 

MoRS and PTSD, significant and positive correlation 
between cumulative trauma and MoRS (ρ = 0.16, p < 0.01) 
and childhood trauma and MoRS (ρ = 0.169, p < 0.01) 
(Figure S3). In contrast, while we observed a signifi-
cant (p < 0.001) and positive point-biserial correlation 
(ρ = 0.49) between MoRSAE and PTSD (Figure S3), we 
observed a negative correlation between MoRSAE and 
cumulative trauma (ρ = -0.13, p = 0.02) and childhood 
trauma (ρ = -0.12, p = 0.03), respectively.

Validation of risk scores in external cohorts
We conducted external validation on risk scores from 
the three different models across four external cohorts— 
NCPTSD-TRACTS, BEAR, DCHS and PROGrESS. 
The NCPTSD-TRACTS cohort demonstrated a notice-
able distinction (p < 0.05) in childhood trauma, but not 
in cumulative trauma (Table  S1) between cases and 
controls. Similar to the discovery cohorts, the BEAR 
cohort exhibited a significant difference in both cumu-
lative trauma and childhood trauma when compar-
ing cases and controls. The DCHS cohort, on the other 
hand, only showed a significant difference in cumulative 
trauma, while the PROGrESS cohort did not display any 

Fig. 1 The confusion matrix for Model 1 displays an accuracy of 92% on test data (N = 307), while the ROC curve indicates an AUC of 96% 
during the tenfold cross‑validation using all data (N = 1226)

Table 2 Elastic net model performance across the three models

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)

eMRS (Model 1) 92 91 87 89 96

MoRS (Model 2) 89 86 83 84 95

MoRSAE (Model 3) 84 80 77 78 89
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significant difference in trauma variables between cases 
and controls.

The eMRS significantly predicted PTSD in one exter-
nal cohort, BEAR (beta = 0.6839, p = 0.006) (Table  S2); 

in this cohort, there was also a significant correlation 
(ρ = 0.24, p = 0.003) between eMRS and PTSD (Figure 
S4) and a significant difference in eMRS between PTSD 
cases and controls (p = 0.02, Figure S5). The eMRS did 

Fig. 2 Distribution and variation of risk scores between cases and controls in test data (N = 307) in figure legend, 0 is No PTSD and 1 is PTSD. A) 
The distribution of risk scores for Models 1, 2, and 3 is shown for both cases and controls. B) The difference in risk scores, and associated p value, 
between cases and controls is displayed. Model 1 calculates exposure and methylation risk scores (eMRS), while Model 2 calculates risk scores based 
only on methylation variables (MoRS). Model 3 calculates risk scores based on methylation variables adjusted for exposure variables (MoRSAE). 
The risk scores are higher in PTSD cases compared to controls. The Wilcoxon test confirms a significant difference in risk scores between cases 
and controls with p < 0.001 for all models (1, 2, and 3)

Fig. 3 The confusion matrix for Model 2 displays an accuracy of 89% on test data (N = 307), while the ROC curve indicates an AUC of 95% 
during the tenfold cross‑validation using all data (N = 1226)
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not significantly predict PTSD in any of the other three 
independent cohorts; however, the correlation between 
eMRS and PTSD showed the same (i.e., positive) direc-
tion of effect in the NCPTSD-TRACTS (beta = 0.0598, 
p = 0.35), PROGrESS (beta = 0.1141, p = 0.53) and DCHS 
(beta = 0.0631, p = 0.81) cohorts (Figures  S6-S11). For 
model 2, the MoRS did not significantly predict PTSD in 
any external cohort (NCPTSD-TRACTS: beta = -0.0977, 
p = 0.28; BEAR: beta = 0.0239, p = 0.93; PROGrESS: 
beta = 0.2156, p = 0.52; DCHS: beta = 0.3739, p = 0.37). 
On the other hand, for model 3, the MoRSAE approached 
significance in association with PTSD in the NCPTSD-
TRACTS cohort (beta = -0.1707, p = 0.05) and had signif-
icant difference in risk scores between cases and controls 
(p = 0.018) (Figure S7); however, the direction of effect 
was opposite to that observed in the discovery cohort.

Testing of pre-deployment risk scores to predict future 
PTSD
A compelling feature of risk scores is their ability to pre-
dict future disease risk. In our data, we were able to test 
the predictive ability of the MRS derived from our diag-
nostic/classification models on prospective risk of PTSD 
in two of our pre-deployment military cohorts, MRS 
I&II and Army STARRS (with data from the two cohorts 
analyzed together). MRS were calculated using “unseen” 
DNAm data from a pre-deployment timepoint, i.e. using 
DNAm data not included in the discovery cohort. All 
three models significantly predicted future PTSD based 
on risk scores calculated with pre-deployment data 
(eMRS beta = 1.92, p < 0.001,  R2 = 0.53; MoRS beta = 1.99, 
p < 0.001,  R2 = 0.46; and MoRSAE beta = 1.77, p < 0.001, 

 R2 = 0.47) and had significant difference in risk scores 
between individuals who developed PTSD and those who 
did not (Figs. 5, 6, 7).

Assessment of biological significance among Important 
CpGs
Gene ontology (GO) analysis on the set of 3728 CpGs 
from models 1 and 2 revealed 403 nominally significant 
GO terms; among the 4150 important CpGs from Model 
3, 382 nominally significant GO terms were identi-
fied. There were 115 GO terms common between mod-
els, including regulation of muscle adaptation, positive 
regulation of autophagy of mitochondrion, and sucrose 
metabolic process. Additionally, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis iden-
tified 47 pathways for models 1 and 2 and 25 pathways 
for model 3 at p < 0.05 (list of GO and KEGG terms are 
provided in Supplementary File 2). Further, 14 pathways 
were common in models 1 and 2, and model 3, including, 
HIF-1 signaling pathway, mTOR signaling pathway, Insu-
lin signaling pathway and Galactose metabolism. None 
of the GO terms or KEGG pathways passed the multiple 
hypothesis correction test.

Discussion
It is crucial to identify individuals who are at a higher risk 
of developing PTSD in order to provide timely preventive 
measures and effective therapeutic interventions. MRS 
offer dynamic and modifiable genomic-based insights 
into disease risk. In this study, we leveraged machine 
learning and a diverse set of cohorts to develop MRS for 
PTSD, with an initial aim of distinguishing those with vs. 

Fig. 4 The confusion matrix for Model 3 displays an accuracy of 84% on test data (N = 307), while the ROC curve exhibits an AUC of 89% 
during the tenfold cross‑validation process using all data (N = 1226)
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without PTSD and, subsequently to predict future PTSD 
cases. MRS derived from three different models dem-
onstrated both high precision and high accuracy in pre-
dicting PTSD (i.e., identifying probable PTSD cases vs. 
controls) in the test dataset and, moreover, significantly 
predicted future PTSD. Although our approach did not 
yield MRS that consistently predicted PTSD in independ-
ent cohorts, our work leverages data from a diverse set 
of cohorts to develop what is, to our knowledge, the first 
methylation-based risk scores for PTSD. Future work 
that builds on this approach will help to advance person-
alized preventive strategies and therapeutic interventions 
for PTSD in order to reduce the impact of this debilitat-
ing disorder on individuals and society.

Among the three models tested, the eMRS model 
showed the highest accuracy and precision to classify 
PTSD by using both exposure and DNAm variables. The 
inclusion of exposure variables substantially adds to the 
predictive power of the model. This finding aligns with 
the literature that suggests that experiencing trauma, 
particularly during childhood, significantly increases the 
likelihood of developing PTSD [47, 53, 54]. It is note-
worthy that, despite not including any trauma expo-
sure factors, the second model (MoRS) and third model 

(MoRSAE) that solely utilized methylation data in train-
ing still displayed notable predictive ability in the test 
dataset. These findings suggest that, even without using 
trauma variables in prediction, DNAm can still provide 
significant predictive information about PTSD. This also 
emphasizes the significant impact that trauma can have 
on the epigenetic landscape, which is consistent with 
other research studies [55, 56] that reported methyla-
tion differences linked to trauma. Overall, the decrease in 
classification accuracy across the models in the test data-
set, from eMRS to MoRSAE, highlights the crucial role 
and discriminatory power that both DNAm and trauma 
exposure have in classifying PTSD.

Our attempts to validate the three models showed 
variable results across models and cohorts. The eMRS 
significantly predicted PTSD in one cohort, BEAR, with 
the same direction of effect as in the discovery cohort; 
the MoRSAE approached significance in predicting 
PTSD (p = 0.05) in the NCPTSD-TRACTS cohort for 
MoRSAE, although with an opposite direction of effect 
to the discovery cohort. This variability may be due to 
individual differences in the type or severity of trauma 
in each cohort. For example, similar to the discovery 
sample, the BEAR cohort showed significantly higher 

Fig. 5 Distribution and difference in risk scores (eMRS) between PTSD cases and controls pre‑ and post‑deployment (N = 262) — in figure legend, 
0 is No PTSD and 1 is PTSD. A) The distribution of risk scores revealed that individuals who developed PTSD post‑deployment had higher scores 
compared to those who did not, both before and after deployment. B) The difference in risk scores showed there was a significant (p < 0.001) 
difference in risk scores in those with PTSD post‑deployment using Wilcoxon test
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levels of both cumulative and childhood trauma in par-
ticipants with vs. without PTSD—a pattern not observed 
in any of the other three validation cohorts (Table  S1). 
While we attempted to account for variability in trauma 
exposure by regressing out these effects in our MoR-
SAE model, this did not improve the validation results. 
These results suggest that it may be necessary to develop 
a trauma-specific MRS in order to more precisely cap-
ture the influence of trauma, and its variability, in rela-
tion to classification and prediction of PTSD risk that 
generalizes across cohorts. We acknowledge that smaller 
sample sizes like the BEAR cohort can increase the risk 
of false positives. Still, the significant correlation and 
prediction results suggest that the observed strong asso-
ciation between eMRS and PTSD in the BEAR cohort is 
less likely due to chance alone. We emphasize the need 
for future studies with larger discovery and validation 
datasets to confirm our findings and further explore the 
observed association.

The ability to predict PTSD prior to deployment is par-
ticularly important, as deployment is linked to a higher 
probability of trauma exposure than typically observed 

in community samples and higher trauma load increases 
risk for PTSD [54]. All three models significantly pre-
dicted future development of PTSD based on pre-deploy-
ment data, which is notable because these data preceded 
trauma exposure and were not included in the training or 
testing phase of MRS model development. This suggests 
that classification-based MRS may be useful in predict-
ing risk for future PTSD in populations with anticipated 
trauma exposure.

Previous work has leveraged DNAm data as one among 
many biomarker types included in risk score approaches 
to predicting PTSD [57, 58]. An earlier study focused on 
war zone-related PTSD identified a set of 343 candidate 
biomarkers, of which 98 were DNAm values associated 
with particular genes [57]. From our identified list of sig-
nificant CpGs (3728 in models 1 and 2), cg16335858 in 
GYLTL1B (Glycosyltransferase-like 1B) was previously 
identified as a biomarker in diagnosing war zone-related 
PTSD [57]. From the list of 4150 CpGs (model 3), one 
additional CpG, cg25448062 in FADS1 (Fatty acid desat-
urase 1) was identified as a diagnostic biomarker in the 
same study. A subsequent study [58] showed prediction 

Fig. 6 Distribution and difference in risk scores (MoRS) between cases and controls pre‑ and post‑deployment (N = 262) — in figure legend, 0 is No 
PTSD and 1 is PTSD. A) Distribution of risk scores between cases and controls. Risk scores are higher in those who developed PTSD post‑deployment 
than who didn’t in both pre and post deployment. B) Difference in risk scores between cases and controls. Wilcoxon test showed a significant 
difference (p < 0.001) in risk scores between cases and controls
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of post-deployment PTSD symptoms with the best 
AUC of 88% and CpGs cg01208318 and cg17137457 as 
top predictors but none of these were replicated in our 
study. More broadly, it is interesting to note that, 4 CpGs 
(cg04583842, cg04987734, cg16758086 and cg19719391) 
in genes BANP, CDC42BPB, CHD5 and Intergenic 
respectively, have been associated with PTSD in recent 
PGC EWAS meta-analyses (Katrinli et  al., submitted). 
Our results build on these earlier studies, highlight-
ing novel CpGs that, when combined in a weighted, risk 
score format, may contribute to PTSD prediction.

In this study, there were no results from GO or KEGG 
pathway analyses that remained significant following 
multiple hypothesis testing; however, the GO terms and 
KEGG pathways shared among the three models provide 
interesting clues about the biological mechanisms that 
may be involved in the development of PTSD. For exam-
ple, positive regulation of autophagy of mitochondrion, 
identified as nominally significant biological processes in 
all three models, is noteworthy, as prior research has sug-
gested that autophagy plays a role in neurodegenerative 
illnesses [59–61], and exploring its connection to PTSD 
could provide insights into the disorder’s neurobiological 

underpinnings. Additionally, the link to sucrose meta-
bolic process is intriguing and raises questions about 
the relationship between energy metabolism and stress 
responses [61], as metabolic disorders have been associ-
ated with PTSD [63]. KEGG pathway analyses revealed 
additional implicated pathways, including mTOR and 
insulin signaling, which play a crucial role in cellular 
growth and metabolism, highlighting the extensive physi-
ological effects of PTSD beyond psychological distress 
[63, 64].

Our study is not without limitations. Chief among 
these is our external validation results, which showed 
validation for only one model in one of the four cohorts 
tested. To date, attempts to validate risk scores in exter-
nal, independent cohorts–as done in this study–are not 
common, and most work focusses on reporting results 
based on validation in a test (i.e., internal) dataset [14]. 
Results from this work highlight the need to increase 
efforts to do so, in order to arrive at robust, generaliz-
able MRS with the potential for future clinical applica-
tion. While our three classification-based MRS models 
showed good prediction of future PTSD in pre-deploy-
ment data, it is unclear whether they would perform 

Fig. 7 Distribution and difference in risk scores (MoRSAE) between cases and controls pre‑ and post‑deployment (N = 262) — in figure legend, 0 
is No PTSD and 1 is PTSD. A) The distribution of MoRSAE is higher in those who developed PTSD post‑deployment B) The difference in risk scores 
showed there was a significant (p < 0.001) difference in risk scores in those with PTSD post‑deployment using Wilcoxon test
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as well in predicting future PTSD in civilian popula-
tions. As more data become available, the inclusion of 
additional molecular, environmental, and psychosocial 
factors in MRS scores may enhance their accuracy in 
predicting the condition and, relatedly, improve their 
performance in independent cohorts.
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