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Abstract
Background Bipolar disorder (BPD) is a kind of manic and depressive phase alternate episodes of serious mental 
illness, and it is correlated with well-documented cortical brain abnormalities. Emerging evidence supports that 
autophagy dysfunction in neuronal system contributes to pathophysiological changes in neurological disease. 
However, the role of autophagy in bipolar disorder has rarely been elucidated. This study aimed to identify the 
autophagy-related gene as a potential biomarker Correlated to immune infiltration in BPD.

Methods The microarray dataset GSE23848 and autophagy-related genes (ARGs) were downloaded. Differentially 
expressed genes (DEGs) between normal and BPD samples were screened using the R software. Machine learning 
algorithms were performed to screen the significant candidate biomarker from autophagy-related differentially 
expressed genes (ARDEGs). The correlation between the screened ARDEGs and infiltrating immune cells was explored 
through correlation analysis.

Results In this study, the autophagy pathway was abundantly enriched and activated in BPD, as indicated by 
Pathway enrichment analysis. We identified 16 ARDEGs in BPD compared to the normal group. A signature of 4 
ARDEGs (ERN1, ATG3, CTSB, and EIF2AK3) was screened. ROC analysis showed that the above genes have good 
diagnostic performance. In addition, immune correlation analysis considered that the above four genes significantly 
correlated with immune cells in BPD.

Conclusions Autophagy - immune cell axis mediates pathophysiological changes in BPD. Four important ARDEGs 
are prospective to be potential biomarkers associated with immune infiltration in BPD and helpful for the prediction 
or diagnosis of BPD.
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Introduction
Bipolar disorder (BPD) is a severe mental illness in which 
a person’s mood swings back and forth between mania 
and depression. Existing research shows that BPD affects 
more than 1% of the global population and is one of the 
major causes of psychological change in young people 
[1]. The latest data from the World Mental Health Sur-
veys involving 156,331 respondents across 29 countries 
from 2001 to 2022 reveal that the probability of the first 
episode peaks around the age of 15, with a median onset 
age of approximately 20 for bipolar disorder [2]. In addi-
tion, patients with bipolar disorder show variable courses 
and often leading to cognitive impairment and signifi-
cantly reduced quality of life [3, 4], and tend to get worse 
as the disease progresses [5, 6], and in more severe cases, 
individuals with bipolar disorder may face life-threat-
ening outcomes, with a heightened association with 
incidents involving harm, such as suicide, interpersonal 
violence, and road injuries, as well as cardiovascular dis-
eases, notably ischemic heart disease [7].

The Diagnostic and Statistical Manual of Mental Dis-
orders, Fifth Edition, Text Revision outlines stringent 
criteria for the diagnosis of bipolar disorder, necessi-
tating the presence of at least one episode of mania or 
hypomania [8]. This nuanced clinical framework under-
scores the intricacies associated with the characterization 
and identification of bipolar pathology. The challenges 
faced by clinicians encompass discerning subtle varia-
tions in mood episodes, disentangling bipolar manifesta-
tions from related mood disorders, and negotiating the 
inherent subjectivity in symptom reporting. Despite the 
meticulous delineation of these clinical parameters, the 
molecular diagnostic landscape for individuals with BPD 
remains characterized by uncertainty.

In some studies of recurrent affective bipolar disorder, 
progressive brain structure and function changes have 
been observed in patients [9]. Recurrent episodes of long-
term illness have been linked to reduced thickness in 
parts of the cerebral cortex, such as the prefrontal cortex, 
which may play an essential role in stress regulation [10]. 
Epigenetic mechanisms [11], mitochondrial dysfunction, 
pathways that maintain neuroplasticity, increased inflam-
mation, and oxidative stress are all thought to contribute 
to neural progression in bipolar disorder [9].

An increasing body of evidence suggests that BPD is 
correlated with the physiological processes mediated by 
autophagy [12–14]. Autophagy is primarily involved in 
protein degradation pathways and plays a vital role in 
helping the body remove protein aggregates and mis-
folded proteins from healthy cells [15]. According to the 
present researches, changes in autophagy-related fac-
tors in the prefrontal cortex are involved in regulating 
depression-like behaviors [16].The Akt-mTOR pathway, 
which plays a crucial role in the regulation of autophagy, 

is reduced in the prefrontal cortex in BPD patients, and 
decreased activity leads to cognitive impairment asso-
ciated with changes in synaptic connectivity and func-
tion [12]. Moreover, imaging, biochemical and genetic 
research has suggested that mitochondrial dysfunction 
is the core of BPD features [17]. Previous studies have 
demonstrated a complex interplay between autophagy 
and mitochondria, particularly in stress responses such 
as oxidative stress [18] and endoplasmic reticulum stress 
[19, 20]. In the context of bipolar disorder, dysregula-
tion of these stress responses is implicated in the patho-
physiology of the condition [21]. The intricate signaling 
pathways activated by stressors contribute to the dys-
regulation of autophagy and mitochondrial dynamics, 
potentially playing a crucial role in the progression of 
bipolar disorder.

Numerous studies have noted that immune disorders 
accompany patients with BPD (e.g., increased production 
of pro-inflammatory cytokines, activation of monocytes 
and macrophages, reduced T cell numbers or activity) 
[22–26]. Moreover, autophagy interacts with immune 
system. Autophagy can control the immune response 
by regulating the activity of immune cells and the pro-
duction of cytokines [27]. In turn, autophagy is also sig-
nificantly affected by a wide variety of immune cells and 
cytokines [28]. Consequently, it becomes crucially critical 
to examine the relationship between immune cells and 
autophagy-related genes (ARGs) in BPD.

Nevertheless, understanding the pathophysiology and 
molecular mechanisms leading to BPD is still limited, and 
more unambiguous evidence for the correlation between 
BPD and autophagy should be provided further. Early 
diagnosis is quite difficult for professionals who did not 
previously comprehend the longitudinal evolution of the 
disease because there are no exact biomarkers available.

This research sought to link the ARG signature to likely 
diagnosis of BPD. Furthermore, the immune status of 
BPD patients was further explored to reveal the potential 
immune infiltration pattern of ARGs in BPD, which may 
be helpful for diagnosing and treating BPD.

Materials and methods
Gathering and processing of gene expression omnibus 
(GEO) datasets
The GEO database was used in this investigation to 
explore the gene expression profile of BPD [29]. Data 
from 20 BPD group and 15 control group samples’ 
peripheral blood gene expression matrices were included 
in the GSE23848 dataset, and the GPL6106 platform 
was used to evaluate the aforementioned information. 
The composition of BPD samples includes both patients 
undergoing medication treatment and those with-
out medication treatment. Considering the diversity 
within the actual patient population, we did not conduct 
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separate analyses, aiming to provide a more comprehen-
sive reflection of the characteristics of bipolar disorder. 
All data employed in the study originated from GEO, 
such that ethical approval and informed consent were not 
required. The workflow chart is illustrated in Fig. 1.

Selection and functional enrichment of DEGs in BPD 
patients
The GEO2R online analytic tool was used to find the 
DEGs between the BPD and normal groups [29]. In 
the identification of DEGs associated with BPD, our 
approach focused on an adjusted P-value threshold of less 
than 0.05. Unlike conventional methodologies, we opted 
not to incorporate a specific Log2 fold change threshold 
in our criteria. This decision was grounded in the consid-
eration that BPD, as a complex and multifaceted disorder, 
may involve subtle yet biologically significant changes 
in gene expression. By exclusively utilizing the adjusted 
P-value criterion, we aimed to capture a comprehen-
sive view of gene expression alterations without impos-
ing restrictions on the magnitude of fold changes. This 
approach aligns with the intricate nature of psychiatric 

disorders, where nuanced expression changes can hold 
biological relevance. Based on the “clusterProfiler” pack-
age in the R programming language, enrichment studies 
for the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were carried out.

Acquisition of autophagy-related differential genes 
(ARDEGs)
We were able to extract 221 genes associated with 
autophagy from the human autophagy database (HADb, 
http://www.autophagy.lu/). The “venn” package in R was 
used to find the genes that are differentially expressed 
in autophagy. Principal Component Analysis (PCA) was 
employed to provide a comprehensive exploration and 
analysis of the identified genes.

Screening of potential biomarkers for diagnosis of bipolar 
disorder based on machine learning algorithm and 
construction of PPI network
A support vector machine (SVM), random forest (RF), 
and generalized linear model (GLM) were established 
depending on GSE23848. The response variable was BPD 

Fig. 1 Workflow of the research. Abbreviations are defined as follows, Gene Expression Omnibus database (GEO), differentially expressed genes (DEGs), 
Autophagy-related differentially expressed genes (ARDEGs), protein-protein interaction (PPI), Principal Component Analysis (PCA), Receiver Operating 
Characteristic (ROC)
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diagnosis, while the explanatory variable was ARDEGs. 
The three models were examined using the interpreta-
tive capabilities of the “DALEX” package in R, and the 
residual distribution was improved using the test set. 
This research additionally examines the significance of 
these factors, screens the core genes employing the PPI 
network, and derives four significant explanatory vari-
ables. Finally, the “glmnet” package in R was used to build 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) analysis with penalty settings for 10-fold cross-
validation, which was utilized to validate the screened 
genes.

Evaluation of expression levels and diagnostic significance 
of crucial genes identified
The expression levels of the crucial genes were exam-
ined using the Wilcoxon rank-sum test. Additionally, a 
receiver operating characteristic curve (ROC) analysis 
was conducted to assess the diagnostic performance of 
these genes in differentiating between samples with BPD 
and healthy controls.

Immune status assessment
The ESTIMATE algorithm, employed in this study, was 
utilized to compute immune scores and stromal scores 
in the GSE23848 dataset for DEGs between the control 
and BPD groups. ESTIMATE (Estimation of Stromal and 
Immune cells in samples using Expression data) is a com-
putational approach designed to infer the presence of 
stromal and immune cells within samples based on gene 
expression profiles.

Immune infiltration
A total of 27 immune-related cells and related genes were 
collected (for details, see Supplementary material_1) [30]. 
The R package “GSVA” was used to analyze the differen-
tial immune cell infiltration in the GSE23848 dataset; 
“ggpubr” was used for visualization; and “corrplot” was 
used to analyze the relationship between four crucially 
significant genes and immune cells. The Pearson test was 
performed to calculate the correlation coefficient, and 
the significance test.

Prediction of transcription factors
Using ChIP-X Enrichment Analysis (ChEA3), the tran-
scription factors associated with ARDEGs were predicted 
[31]. A tool for TFs enrichment analysis and evaluating 
TFs of user-submitted gene sets, the ChEA3 database 
contains several gene banks from various sources.

Statistical analysis
Statistical analysis was conducted using the R program-
ming language, specifically version 4.3.1. A significance 

threshold of p < 0.05 was employed, indicating statistical 
significance.

Result
Differentially expressed genes and their functional 
enrichment in peripheral blood of BPD patients
In order to investigate if autophagy plays a role in the 
development of BPD, we analyzed the DEGs and their 
functional enrichment in peripheral blood in BPD 
patients compared to healthy individuals. 400 up-regu-
lated genes and 599 down-regulated genes, totaling 999 
DEGs, were found in GSE23848 (Fig. 2A). The expression 
profile of all DEGs was shown in the heatmap (Fig. 2B). 
Furthermore, the 999 DEGs were subjected to GO and 
KEGG functional enrichment analysis. The genes men-
tioned above, located inside of cytosol, which mostly 
display catalytic activity and nucleic acid binding, are 
positive regulators of the cellular protein metabolism 
process (Fig.  2C). According to the KEGG enrichment 
analysis (Fig.  2D), the highest-level classical pathways 
correlated with differentially expressed genes (DEGs) 
included autophagy, apoptosis, and Alzheimer’s disease 
modulation. These findings suggest a close association 
between bipolar disorder (BPD) and autophagy, with a 
potential pivotal role of the immune system in BPD.

Acquisition of autophagy-related differential genes 
(ARDEGs)
The intersection of 999 DEGs and 221 Autophagy rela-
tive genes were further taken to screen out autophagy 
relative genes from DEGs. On that basis, 16 differential 
ARGs were obtained (Fig.  3A). Subsequently, ARDEGs 
were classified through PCA analysis. The results of the 
principal component analysis revealed that 16 genes 
exhibit a clear distinction between BPD and control 
group samples. This observation suggests the potential 
significance of these genes in the diagnosis of BPD; how-
ever, it should be noted that experimental confirmation 
is required to validate their diagnostic relevance (Fig. 3B). 
Figure 3C and D present the expression profiles of these 
16 ARDEGs in different samples, displayed in the form of 
a heatmap and violin plot, respectively.

Selection of signature genes via support vector machine 
model algorithms, LASSO analysis and PPI network
The 16 ARDEGs above were employed as crucial genes 
to build three models to further narrow the scope of 
ARDEGs. As illustrated in Fig.  4(A-B), the SVM model 
is considered the optimal match for minimizing sam-
ple residues. Five significant explanatory variables (i.e., 
KLHL24, ERN1, ATG3, CTSB, and EIF2AK3) were 
selected from the SVM model (Fig. 4C). Next, the func-
tional interaction of 16 ARDEGs was studied using 
STRING 11.5 (http://string-db.org). The KLHL24 gene 

http://string-db.org
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without protein interaction was deleted, and four essen-
tial genes were obtained (Fig. 4D). Finally, on the basis of 
16 ARDEGs expression matrices, the regression analysis 
model of LASSO was established, and the LASSO model 
was optimized and selected with the optimal λ value by 
using the minimum standard of 10-fold cross-validation 
(Fig. 4E). It was decided to employ a value of = 0.0115532 
with log (λ)= -4.460793. The log (λ) sequence was plotted 
against a coefficient profile (Fig. 4F). ERN1, ATG3, CTSB, 
and EIF2AK3 coefficients were 0.37669785, 0.33988395, 
0.12711732, and − 0.22049001, respectively.

Evaluation of the selected genes’ diagnostic efficacy and 
expression levels in BPD
Subsequently, we performed further analysis on the four 
significant variables that the SVM model had filtered. 
The chromosomal locations of ERN1, ATG3, CTSB, 
and EIF2AK3 were shown in Fig. 5B. Patients with BPD 
reported higher peripheral blood levels of ERN1, ATG3, 

and CTSB than patients without the condition. However, 
compared to control group patients, EIF2AK3 expression 
in peripheral blood was lower in BPD patients (Fig.  5A 
and C). The following four markers can effectively dis-
criminate between BPD and control group patients, as 
demonstrated in the PCA analyses in Fig.  5D, demon-
strating that they are essential for diagnosing BPD. In 
this regard, ROC analysis verified the diagnostic valid-
ity of the above four genes for BPD. AUC greater than 
0.800 could diagnose BPD with excellent specificity and 
sensitivity. The AUC values of ERN1, ATG3, CTSB, and 
EIF2AK3 were 0.827 (95%CI 0.933-0.600), 0.867 (95%CI 
0.933 − 0.750), 0.862 (95%CI 0.867 − 0.850) and 0.882 
(95%CI 0.733–0.950), respectively, As shown in Fig. 5E-
H. Furthermore, a multi-gene combined diagnosis model 
was built, and the result indicated that the AUC of those 
models are all greater than 0.9 and the 4-gene model was 
1 through logistic regression analysis (Fig. 5I).

Fig. 2 Differentially expression analysis and Gene Ontology and KEGG pathway enrichment analysis. (A) Volcano plot of significant DEGs between BPD 
and Ctrl samples (BPD: Bipolar disorder; Ctrl: Control). (B) A heatmap of the DEGs. (C) The results of GO are presented in cnetplot. (D) The results of KEGG 
are presented in Lollipop illustration
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Distribution of Immune Infiltration Pattern in BPD patients
Existing research has suggested that autophagy is signifi-
cantly correlated with the immune system [27, 32–35]. 
To gain insights into the interaction between immunity 
and autophagy in BPD, we evaluated the immune status 
of DEGs in patients with BPD compared with healthy 
people based on the ESTIMATE algorithm. As shown in 
Fig. 6, BPD patients had a lower immune score (Fig. 6A. 
Wilcoxon test, p = 9.8E-07) and higher stromal scores 
(Fig.  6B. Wilcoxon test, p = 3.1E-07), which indicated 
immune dysfunction might participate in the occurrence 
and development of BDP patients.

Subsequently, we utilized the R package ‘GSVA’ to 
assess the relative proportions of the 27 immune cell 
biomarkers in each sample, aiming to gain a more com-
prehensive understanding of the immune microenvi-
ronment’s functionality in BPD. The analysis revealed 
statistically significant associations for 21 distinct types 
of immune cells. Using a heatmap and a boxplot, we 
could compare 21 immune cell infiltrations across sam-
ples BPD and normal. We found a variety of immune cell 
infiltration abundances that were statistically significant 

between BPD and control group samples and a correla-
tion between the above differentially associated immune 
cells. In this regard, we found that the four essential 
ARDEGs above were correlated with differentially related 
immune cells, such as ERN1 showed a positive correla-
tion with Macrophage (R = 0.38, P = 7.83E-07) and Mono-
cyte (R = 0.39, P = 3.68E-07), ATG3 showed a positive 
correlation with Macrophage (R = 0.51, P = 1.43E-07) and 
Monocyte (R = 0.56, P = 1.16E-09), and CTSB showed a 
positive correlation with Macrophage (R = 0.70, P = 5.82E-
13) and Monocyte (R = 0.69, P = 4.62E-12). In addition, 
EIF2AK3 showed a negative correlation with Macro-
phage (R=-0.70, P = 3.36E-15) and Monocyte (R=-0.65, 
P = 1.02E-13). (Fig. 6F)

Biological function analysis and transcription factor 
regulation mechanism of the above four genes
We conducted GO and KEGG functional enrichment 
analyses for these four putative biomarkers in order to 
learn more about the biological processes and regula-
tory mechanisms of ERN1, ATG3, CTSB, and EIF2AK3. 
The result indicated that the above markers were not only 

Fig. 3 Identification of ARDEGs. (A) Venn diagram was generated to obtain the intersection of DEGs in GSE23848 dataset and ARGs originating from the 
Human Autophagy Database covered 16 ARDEGs. (B) PCA analysis was performed to classify infiltrating ARDEGs between BPD and normal peripheral 
blood samples. The expression levels of ARDEGs are presented in the heatmap (C) and vioplot (D). *p < 0.05, **p < 0.01, ***p < 0.001
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correlated with autophagy, but they were likely to regu-
late pathophysiological processes (e.g., apoptosis (adjust. 
P < 0.001) and Alzheimer’s disease (adjust. P < 0.01)). 
(Fig. 7A-D)

Furthermore, the transcription factors regulating the 
above four genes were predicted through the CHA3E 
website to study the regulatory mechanisms of ERN1, 

ATG3, CTSB, and EIF2AK3, and 1632 transcription fac-
tors were obtained in total. A total of 377 transcription 
factors were obtained by removing blank values (Fig. 7E, 
Please refer to Supplementary material_2 for detailed 
content). The above four genes were compared with the 
TF target gene set ChEA3 library assembled from mul-
tiple orthogonal omics datasets. The Fisher precision 

Fig. 4 Construction and assessment of RF, GLM and SVM model. (A) Cumulative residual distribution map of the sample. (B) Boxplots of the residuals of 
the sample. Red dot stands for root mean square of residuals. (C) The significance of the variables in the SVM model. (D) Functional protein association 
network of ARDEGs constructed using STRING dataset. (E) LASSO coefficient profiles. (F) Ten time cross-validation for tuning parameter selection in the 
LASSO model
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Fig. 5 Relative expression level of the 4 ARDEGs. (A) Heat map of the expression pattern of the 4 ARDEGs. (B) The chromosomal locations of the 4 AR-
DEGs (C) The relative expression level of the 4 ARDEGs between BPD and control group from GSE23848 dataset. (D) Principal component analysis shows 
that the four genes aforementioned can clearly distinguished BPD and control group. (E-H) The GSE23848 dataset was used to validate the diagnostic 
effectiveness of the four important ARDEGs by ROC analysis. (I) The diagnostic performance of multi-gene combined model was calculated based on the 
4 genes’ expression. *p < 0.05, **p < 0.01, ***p < 0.001
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test (background size 20000) was used to compare the 4 
screened genes with the TF target gene set to determine 
which TF might be most closely related to the 4 genes 
and to screen out the top 10 core transcription factors 
most related to each gene. (Fig. 7F-I. Table 1)

Discussion
In the clinical setting, the precise and timely diagnosis of 
BPD continues to pose a formidable challenge, regard-
less of the overt manifestation of symptoms. Therefore, 
the diagnosis and treatment of BPD still need to be vig-
orously promoted. This work identifies useful diagnostic 

Fig. 6 Assessment of immune status and immune cell infiltration patterns in BPD samples and control group samples. The immune score (A) and the 
stromal score (B) of DEGs in patients with bipolar disorder compared to healthy people based on the ESTIMATE algorithm. (C) Heatmap of 21 immune 
cell subpopulations in each BPD and control group sample. (D) Correlation heatmap of 21 immune cells. (E) Boxplot showing the differentially infiltrated 
immune cells between the two groups. (F) Correlation among four important ARDEGs and 21 differential immune cells. *p < 0.05, **p < 0.01, ***p < 0.001
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biomarkers for BPD and sheds light on the landscape of 
autophagy associated with the disorder. Additionally, this 
study examines the relationship between immune cells 
and ARDEGs, which are involved in the onset and pro-
gression of BPD. In a nutshell, this study used bioinfor-
matics analysis to first pinpoint four ARDEGs as possible 
biomarkers associated with immune infiltration in BPD 
patients.

We integrated the differentially expressed genes of 
patients with bipolar disorder and the gene set of the 

Human Autophagy Database. Based on machine learn-
ing methods, we screened four important ARDEGs 
(ERN1, ATG3, CTSB, and EIF2AK3). An essential sen-
sor of unfolded proteins in the ER is the signaling 
enzyme endoplasmic reticulum nuclear signal 1 (ERN1) 
[36]. According to a recent study, exosomal microRNA-
124-3p from bone marrow mesenchymal stem cells may 
reduce ERN1 levels and thereby lessen nerve damage in 
spinal cord ischemia reperfusion injury [37]. Unfolded 
protein response (UPR) results in neuronal apoptosis by 

Fig. 7 Functional correlation analysis, and Prediction of transcription factors for ARDEGs. (A, B) The results of KEGG were presented by bubble and circle 
charts. (C, D) The results of GO were shown by bubble and circle graphs. (E) The TF enrichment analysis of four important ARDEGs. Blue diamond indicate 
ARDEGs, and red circles indicate predicted TFs (Supplementary material_2). (F-I) Top10 TFs network of four ARDEGs
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regulating ERN1/IRE1 or EIF2AK3/PERK pathways [38]. 
In mental diseases such schizophrenia, depression and 
post-traumatic stress disorder, aberrant neuronal death 
is mediated by endoplasmic reticulum stress [39]. The 
endoplasmic reticulum stress pathway involves ERN1, 
which has a strong correlation with autophagy [40–42]. 
Our results indicated that ERN1 was up-regulated in 
patients with BPD compared with normal, suggesting a 
complex interplay between endoplasmic reticulum func-
tion, autophagy, and BPD. Autophagy-related gene 3 
(ATG3) refers to an enzyme primarily known for its role 
in the lipidation of LC3B, and it is of critical significance 
to autophagy. More recently, dysfunctional mitochondria 
in early BPD have been identified by co-localizing mito-
chondria (Hsp60) with autophagosomes (LC3B) in BPD 
patient cells [43]. This finding suggested that ATG3 was 
implicated in the development of BPD, and this research 
verified that the expression level of ATG3 in blood sam-
ples of BPD patients was greater than that of the control 
group. A member of the cysteine cathepsin family, CTSB 
(cathepsin B), contributes to neuropathological altera-
tions in Alzheimer’s disease and traumatic brain injury in 
addition to being strongly linked to autophagy [44–46]. 
The hippocampus and cortical areas of healthy individu-
als’ brains were discovered to have significant levels of 
CTSB expression [47]. As revealed by the transcriptome 

analysis of different brain regions in the mouse limbic 
system, CTSB is closely correlated with mood [48]. Our 
investigation discovered that BPD patients had much 
greater levels of CTSB expression in their peripheral 
blood than the control group, indicating that CTSB may 
have a special function in BPD. EIF2AK3(Eukaryotic 
translation initiation factor 2α kinase 3) may be involved 
in the pathogenesis of BPD by regulating ER stress. The 
down-regulation of PERK/EIF2AK3 leads to increase of 
endoplasmic reticulum stress and impaired apoptosis 
induction, antioxidant response and autophagy impaired 
flux [49]. Our study found that the expression of 
EIF2AK3 in the blood samples of BPD patients was lower 
than that of the control group. In brief, it is speculated 
that the four ARDEGs may become the peripheral blood 
monitoring markers for BPD. In order to confirm our 
suspicions, ROC curves were created to assess the four 
aforementioned genes’ diagnostic effectiveness. In this 
study, the AUCs of the above ARDEGs were all greater 
than 0.8, and the combination of multiple genes achieved 
a higher diagnostic efficiency.

There is growing proof that immune dysfunction and 
inflammation play a significant role in the development 
of bipolar disorder [9, 50]. Actually, a number of auto-
immune processes can have an impact on the brain, and 
this may explain various psychiatric problems. As evi-
denced by pathogenic microglial over-activation and 
elevated levels of pro-inflammatory cytokines, manic and 
depressive episodes are associated with the activation of 
neuroinflammation mechanisms [51–53]. 27 immune-
associated cells from the BPD and healthy groups were 
examined for immune cell infiltration in this investiga-
tion. The expression of activated CD8 T cell, effector 
memory CD4 T cell, gamma delta T cell, immature B 
cell, macrophage, monocyte, macrophage, and Type 1 T 
helper cells in BPD was significantly up-regulated. How-
ever, the expression of myeloid-derived suppressor cell 
(MDSC), activated CD4 T cell (activated dendritic cell), 
memory B cell, mast cell, plasmacytoid dendritic cell, 
regulatory T cell, T follicular helper cell was significantly 
down-regulated. In existing research, significant changes 
in the circulating frequency of T cells and their subsets, 
playing a key role in cellular immune response, have been 
identified in patients with BPD [22–24]. The result indi-
cated that patients with bipolar disorder showed a sig-
nificant reduction in regulatory T cells and a significant 
bias towards high levels of Type 1 T helper cells rather 
than Type 2 T helper cells [25]. Drexhage, R.C. et al. veri-
fied that BPD patients had considerably higher levels of 
proinflammatory monocyte expression [54]. High lev-
els of heterogeneity and plasticity allow macrophages 
to develop into M1 and M2 macrophages under various 
circumstances. Macrophages mostly differentiate into 
the pro-inflammatory M1 type in the peripheral blood 

Table 1 The top 10 transcription factors of prediction results for 
the 4 ARDEGs
ERN1/Rank TFs Mean 

Rank
CTSB/Rank TFs Mean 

Rank
1 BHLHA15 19 1 NFE2L2 71.4
2 IRF4 62 2 ZNF581 71.67
3 MAFB 113.3 3 GLMP 105
4 CEBPA 129.4 4 MAFB 113.3
5 CEBPB 141 5 MITF 114.8
6 PPARD 144.3 6 CEBPA 129.4
7 ZNF710 159 7 PAX8 132.3
8 ZNF217 167.8 8 ATF5 137
9 XBP1 175.3 9 CEBPB 141
10 ELF1 178.2 10 PPARD 144.3
ATG3/Rank EIF2AK3/Rank
1 C11ORF95 31 1 BHLHA15 19
2 IRF4 62 2 IRF4 62
3 GZF1 68.33 3 GZF1 68.33
4 DUX4 109.5 4 MITF 114.8
5 MITF 114.8 5 ZBTB32 140.3
6 CEBPA 129.4 6 CEBPB 141
7 CEBPB 141 7 IKZF2 147
8 KDM5B 192.4 8 ZNF710 159
9 USF1 202 9 SPI1 165
10 NFE2 213.4 10 ZBTB42 165.5
This provides a ranking of transcription factors whose putative transcriptional 
targets are most closely similar to the query set. Integrated results, which take 
into account results from all libraries, are sorted in ascending order by score. 
Lower scores indicate more relevancy to the transcription factor



Page 12 of 14Cao et al. BMC Medical Genomics          (2024) 17:231 

microenvironment of BPD [26]. Additionally, dendritic 
cells have been linked to the genesis of BPD. They exhibit 
abnormalities in BPD and totally recover or even activate 
after receiving lithium in vivo [55, 56]. In light of the fact 
that our study’s findings agree with other studies, bioin-
formatics analysis is used to highlight the importance of 
the aforementioned immune cells in the pathogenesis of 
BPD.

Based on the significance of autophagy and immuno-
logical infiltration in BPD, the link between four effi-
cient autophagy-related biomarkers (i.e., ERN1, ATG3, 
CTSB, and EIF2AK3) and various immune cells in BPD 
was further investigated. The results for Macrophage 
and Monocyte, which have a strong correlation with the 
four ARDEGs, are the most interesting. Macrophage and 
monocyte demonstrated positive correlations with ERN1, 
ATG3, and CTSB. Conversely, Macrophage and Mono-
cyte had a negative connection with EIF2AK3. Existing 
research has suggested that ERN1 and EIF2AK3 medi-
ate oxidative stress and induce macrophage autophagy 
[57], and they have a specific function in the control of 
monocyte alterations brought on by inflammation [58]. 
CTSB is mainly expressed in macrophage and promotes 
collagen synthesis in the infiltrated region of macrophage 
[59]. Thus, the notion that the autophagy-related gene-
immune cell axis plays a crucial role in the early patho-
genesis of BPD was put out. This theory still requires 
experimental confirmation.

Discussion section: limitations
In the pursuit of scientific inquiry, it is imperative to 
acknowledge and critically evaluate the limitations inher-
ent in our study. By transparently addressing these limita-
tions, we aim to provide a comprehensive understanding 
of the scope and potential impact of our findings.

One notable limitation of our study lies in the reliance 
on a single database, namely the Gene Expression Omni-
bus (GEO). While GEO offers valuable and relevant gene 
expression data related to bipolar disorder, the exclusiv-
ity of this database introduces a potential constraint. The 
lack of multiple database inclusion may limit the general-
izability of our findings and could impact the robustness 
of the conclusions.

This study conducted a thorough exploration of 
the GEO database and considered datasets such as 
GSE46449, GSE62191, and GSE124326 for multifaceted 
validation of our experiments. However, discrepancies 
in sample composition and experimental design were 
identified, rendering these datasets unsuitable for meet-
ing the specific objectives of our research. To elaborate, 
GSE46449 employed leukocyte samples, whereas our 
training dataset GSE23848 utilized peripheral blood tis-
sue samples. This divergence may introduce distinct gene 
expression patterns, making GSE46449 inadequate for 

robustly validating our hypotheses. Similarly, GSE62191 
utilized cells from the cerebral cortex, representing a sig-
nificantly different tissue source compared to our study 
population, and was consequently excluded. Further-
more, the datasets from GSE124326 involved subjects 
under intense lithium treatment, introducing a potential 
confounding factor related to lithium therapy. To ensure 
the precision of our study in reflecting the distinct char-
acteristics of bipolar disorder, we chose to exclude datas-
ets with these specific limitations.

Furthermore, in this study, we included a total of 20 
BPD patient samples and 15 control group patient sam-
ples. However, it is crucial to explicitly acknowledge that 
this relatively small sample size may introduce potential 
bias, impacting the generalizability of our research find-
ings. Due to the limitation in sample size, the statistical 
power of our study may be constrained, preventing a 
comprehensive representation of the entire patient pop-
ulation. It is noteworthy that, particularly for diagnostic 
purposes, the small sample size could affect the accu-
racy of our understanding of the patient group. Future 
research endeavors should focus on enlarging the sample 
size, employing larger-scale study designs to ensure the 
reliability and generalizability of the results.

Conclusion
The autophagy-immune cell axis takes on a critical signif-
icance in the early pathogenesis of BPD. Four important 
ARDEGs (i.e., ERN1, ATG3, CTSB, and EIF2AK3) serve 
as potential biomarkers correlated with immune infiltra-
tion in BPD and be helpful for the prediction or diagnosis 
of BPD.
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