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Abstract
Background Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for 
decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the 
diagnosis and therapy.

Objective We aimed to explore the key genes and pathways that affect the rate progression of DN.

Methods Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN 
patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6).

Results Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 
1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. 
Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) 
between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved 
in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, 
Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, 
autophagy/mitophagy, apoptosis/necroptosis pathway.

Conclusion Collectively, our study provided a full-length transcriptome data source for the future DN research, 
and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow 
progression of DN.
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Introduction
Diabetic nephropathy (DN) has been the main cause of 
end-stage renal disease (ESRD) for decades [1, 2]. The 
prevalence of DN is about 25–40% [3]. The number of 
diabetes patients has risen sharply. Meanwhile, the inci-
dence rate and the number of DN patients have also 
increased significantly, and the clinical treatment, eco-
nomic development, and social pressure have become 
increasingly heavy. At present, clinical treatment of DN 
mainly focuses on controlling glycemic levels, normaliz-
ing blood pressure, and blocking the renin–angiotensin–
aldosterone system (RAAS) [4]. However, most of these 
treatments have side effects, and their curative effects 
are limited. Hence, there is an urgent need to explore the 
molecular mechanism of DN progression.

The pathogenesis of DN is a complex process, which 
involves multiple mechanisms and factors [5, 6]. Increas-
ing evidence have found that inflammatory pathways play 
a crucial role in the pathogenesis of DN in recent years 
[7, 8]. It has been proved that proinflammatory cytokines 
are involved in the progress of DN, including interleu-
kin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis 
factor-α (TNF-α) [9, 10]. Nevertheless, the specific mech-
anism regarding the disease progression of DN is still 
unclear. Therefore, it is urgent to find out the effective 
molecular targets and key signaling pathways involved in 
the disease progression of DN.

Oxford Nanopore Technologies (ONT) sequencing is 
a new generation single molecule real-time electrical sig-
nal sequencing technology based on nanopore [11]. The 
sequencing principle is to calculate the type of the cor-
responding base and complete the real-time determina-
tion of the sequence by detecting and corresponding the 
electrical signal [12, 13]. Transcriptome research could 
help us deeply understand life processes. However, tra-
ditional RNA-Seq2.0 technology cannot exactly provide 
or assemble complete transcripts, and can no longer keep 
up with the rapid development of bioinformatics. Con-
versely, ONT-based full-length transcriptome sequencing 
does not need to interrupt RNA fragments, and full-
length cDNA is obtained by reverse transcription. The 
ultra-long reading of the platform contains the sequence 
information of a single complete transcript, and the later 
analysis does not require assembly, and the result is what 
is measured [12]. Therefore, the main advantages of ONT 
are real-time sequence analysis, ultra-long read length, 
high-fidelity, and base modification detection allowed. 
There are already some studies using ONT technol-
ogy to resolve disease progression. For example, Xue et 
al. used full-length transcriptome sequencing to analyze 

differentially expressed genes and signaling pathways 
related to oxymatrine treatment of psoriasis [14]. The 
full-length transcriptome data obtained by Oehler et al. 
revealed that transcriptional regulation and alternative 
splicing may influence PGC-1α function expression in 
injured and metabolically challenged hearts [15]. How-
ever, there are no relevant reports exploring the rapidity 
of DN progression based on ONT.

In this study, aim to deeply understand the regulatory 
mechanism of DN progress, we used the ONT sequenc-
ing method to obtain full-length transcriptome in serums 
of DN patients with slow progression (DNSP, 5 samples) 
and rapid progression (DNRP, 6 samples). Next, we fur-
ther analyzed the differentially expressed transcripts 
(DETs) and differentially expressed genes (DEGs) in 
DNSP and DNRP groups, and revealed the key signaling 
pathways that promote rapid progression of DN. These 
results are expected to provide a new direction for study-
ing the molecular mechanism of the rapid progression of 
DN in the future.

Materials and methods
Clinical samples
Whole blood (20 mL) was drawn from 11 patients, 
including 5 cases in the DNSP group and 6 cases in 
the DNRP group. The detailed clinical information of 
patients is presented in Table 1.

Currently, there are no detailed clinical diagnostic cri-
teria for DN patients with rapid and slow progression in 
various clinical nephropathy guidelines and uptodate. 
We have found in clinical practice that the onset of DN 
is not necessarily related to the history of diabetes, nor 
to the control of blood sugar levels. Some patients may 
have a history of diabetes for more than 20 years with-
out cumulative kidney damage, while others may be 
newly diagnosed with diabetes and already exhibit kid-
ney involvement with rapid disease progression. There-
fore, our study classified patients into two groups (DNSP 
and DNRP), based on the clinical history of diabetes, 
laboratory tests, and complications. Inclusion criteria: (1) 
Patients aged 18–80 years with a definite diagnosis of dia-
betes. (2) The DNSP group is the patients with diabetes 
for more than 20 years, without DN or only with urinary 
microalbumin, which has been maintained for a long 
time. (3) The DNRP patients have a history of diabetes 
for less than 10 years and have been clearly diagnosed as 
clinical stage IV of DN (characterized by significant pro-
teinuria) through kidney biopsy or rapidly progressing 
to end-stage renal disease. The kidney biopsy pathology 
revealed stage IIb or III glomerular lesions. (4) Not using 
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medications such as traditional Chinese medicine, non-
steroidal anti-inflammatory drugs, and others known to 
cause kidney damage. (5) Complete data, regular follow-
up in outpatient clinics. Exclusion criteria: (1) Patients 
with kidney biopsy showing concurrent other types of 
nephritis; (2) Patients with conditions such as conges-
tive heart failure, liver cirrhosis, malignant hyperten-
sion, tumors, which promote the progression of kidney 
disease. Patients with uremia, that is patients diagnosed 
with stage 5 chronic kidney disease (CKD) according to 
the 2023 KDIGO CKD guidelines. Blood samples were 
stored at normal temperature for 2 h and centrifuged at 
2500  rpm for about 15  min. Then serum was collected. 
Finally, we kept serum samples at -80 °C before use. Writ-
ten informed consent of all patients was obtained for this 
study.

It needs to be clarified that nephropathy-related drugs 
were added after the patient was diagnosed with diabetic 
nephropathy after renal puncture, and blood samples 
were collected and sent for gene sequencing immediately 
after diabetic nephropathy, and there was little effect of 
drugs. In addition, Tripterygium wilfordii polygluco-
side and Kunxian capsule are non-steroidal immuno-
suppressive agents, which can inhibit cell proliferation 
and induce cell apoptosis. Several studies in China have 
reported that these drugs can delay the progression of 
diabetic nephropathy [16–19]. Shenshuanning capsule is 
an original product developed in China. Its main ingre-
dients include Radix pseudotumor, Pinellia, rhubarb and 
salvia miltiorrhiza, etc. It can be used in patients with 
chronic renal insufficiency and has the effect of reliev-
ing turbidity. Thus, these drugs had little effect on sample 
sequencing.

Library construction and sequencing
We prepared 1 µg total RNA for building cDNA libraries 
using cDNA-PCR Sequencing Kit (SQKLSK110 + EXP-
PCB096) provided by ONT. Full-length cDNA was 
richened in template switching activity by reverse tran-
scriptase, and defined PCR adapters were added to both 
ends of the first strand of cDNA. Then, cDNA was sub-
jected to PCR for 14 circles using LongAmp Tag (NEB), 
followed by the PCR products connected to ONT adap-
tor ligation with T4 DNA ligase (NEB). XP reagent 
beads were applied to DNA purification based on ONT 
instructions. Finally, the cDNA libraries were loaded on 
FLO-MIN109 flow cells and sequenced on PromethION 
platform (Biomarker Technology Company, Beijing, 
China).

ONT long read processing
First, we filtered raw reads with a minimum average read 
quality score = 6 and minimum read length = 350  bp. 
Ribosomal RNA was mapped to the rRNA database and Ta
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then discarded. Secondly, we identified full-length, non-
chimeric transcripts by searching for primers at both 
ends of reads. Furthermore, we obtained consensus iso-
forms after polishing full-length sequences. Finally, we 
clarified transcript sequences by mapping consensus 
sequences to the reference genome using minimap2.

Structure analysis
Using gffcompare to confirm transcripts according to 
known reference transcript annotations. The AStalav-
ista tool was used to determine alternative splicing (AS) 
events. Simple sequence repeat (SSR) was analyzed by 
multiple intelligent software agents (MISA) software. 
The coding sequence (CDS) was predicted using Trans-
Decoder. Transcription factors (TF) were identified from 
the animal transcription factor binding site (TFDB).

LncRNA prediction
Using Coding Potential Calculator (CPC; http://cpc2.cbi.
pku.edu.cn), Coding-Non-Coding Index (CNCI; https://
github.com/www-bioinfo-org/CNCI), Coding Potential 
Assessment Tool (CPAT http://lilab.research.bcm.edu/
cpat/), and Pfam (http://www.sanger.ac.uk/Software/
Pfam/) calculation methods to determine non-protein 
coding RNA from hypothetical protein-coding RNAs in 
the transcripts. Next, we utilized minimum length and 
exon number threshold to remove hypothetical protein-
coding RNAs. Besides, transcripts longer than 200 nt 
with more than two exons were identified as candidate 
lncRNA. Finally, CPC/CNCI/CPAT/Pfam were used to 
demonstrate the protein-coding genes from the non-cod-
ing genes.

DETs and DEGs analysis
Genes are the basic units that control the transmission of 
genetic information in an organism, while transcripts are 
the products of gene expression. Since several different 
transcripts of the same gene can exist at the same time, 
many reads can be perfectly matched to multiple tran-
scripts at the same time. For the gene, full-length reads 
were mapped to the reference transcriptome sequence, 
and quantification of a gene by counting all transcripts 
of the gene as quantitative results of the gene. For the 
transcript, full-length reads were also mapped to the 
reference transcriptome sequence, and quantification of 
a transcript by counting all transcripts as quantitative 
results. Reads with a match quality greater than 5 were 
used for quantification. Then, we assessed the expression 
levels by mapping reads per gene/transcript per 10,000 
reads. Differential expression analysis for DETs/DEGs 
of two groups was performed by the DESeq2 R package. 
DESeq2 provided statistical routines for determining dif-
ferential expression in digital gene expression data using 
a model based on the negative binomial distribution. 

Using Benjamini and Hochberg’s approach to adjust 
P-value. Genes with adjusted P-value < 0.05 and fold 
change ≥ 1.5 were recognized DEGs. Transcripts with 
adjusted P-value < 0.01 and fold change ≥ 1.5 were recog-
nized DETs. R package pheatmap was applied to draw the 
clustered heatmap.

Functional enrichment analysis
Gene Ontology (GO) analysis was realized using the 
GOseq R packages based on Wallenius non-central hyper 
geometric distribution. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a database resource that can help 
us better understand the advanced functions and uses 
of biological systems from molecular-level information. 
We detected the enrichment degree of DETs and DEGs 
in KEGG signaling pathways by KO-Based Annotation 
System (KOBAS) software. Moreover, Non-Redundant-
Protein Sequence Database (NR; ftp://ftp.ncbi.nlm.nih.
gov/blast/db), SwissProt (http://www.uniprot.org/unipr
ot/?query=*&fil=reviewed%3Ayes), Clusters of Orthol-
ogous Groups (COG; https://www.ncbi.nlm.nih.gov/
COG/), Clusters of orthologous groups for eukaryotic 
complete genomes (KOG; http://www.ncbi.nlm.nih.gov/
KOG/), Pfam, and Gene set enrichment analysis (GSEA; 
https://www.broadlnstitute.org/gsea/) were used to per-
form functional prediction analysis for all the novel tran-
scripts, DETs, and DEGs.

Protein-protein interaction (PPI)
The sequences of the DEGs were blast (blastx) to the 
genome of a related species and then constructed the 
predicted PPI network of these DEGs based on the inter-
action pairs of homologous proteins in the STRING data-
base (http://string-db.org/). Using Cytoscape to visualize 
the PPI network diagram.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from 6 serum samples (3 
samples in each group) using Trizol and quantified by 
scandrop 100 (Analytik Jena AG, factories at Konrad-
Zuse-Str.1, D-07745 Jena, Germany). Set 3 technical 
repetitions for each cell sample. Reverse transcription 
reaction was conducted by TransScript First-Strand 
cDNA Synthesis kit (AiDLAB Biotech, Beijing, China) 
to synthesize the first strand of cDNA. The qRT-PCR 
was performed on qTOWER 2.0/2.2 Quantitative Real-
Time PCR Thermal Cyclers (Analytik Jena AG, factories 
at Konrad-Zuse-Str.1, D-07745 Jena, Germany) using 
2×SYBR® Green Master Mix (DF Biotech., CHENGDU, 
China). Primers were designed by Beacon Designer 7.9 
and shown in Additional file 1. GAPDH served as an 
internal control gene. The relative gene expression was 
calculated by the qPCRsoft3.2 software automatically 
using the Pfaffl method [20].

http://cpc2.cbi.pku.edu.cn
http://cpc2.cbi.pku.edu.cn
https://github.com/www-bioinfo-org/CNCI
https://github.com/www-bioinfo-org/CNCI
http://lilab.research.bcm.edu/cpat/
http://lilab.research.bcm.edu/cpat/
http://www.sanger.ac.uk/Software/Pfam/
http://www.sanger.ac.uk/Software/Pfam/
http://www.uniprot.org/uniprot/?query=*&fil=reviewed%3Ayes
http://www.uniprot.org/uniprot/?query=*&fil=reviewed%3Ayes
https://www.ncbi.nlm.nih.gov/COG/
https://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/KOG/
http://www.ncbi.nlm.nih.gov/KOG/
https://www.broadlnstitute.org/gsea/
http://string-db.org/
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Statistical analysis
The data analysis of qRT-PCR was carried out using 
GraphPad Prism 9.0. Before data analysis, both normal-
ity of the distribution and homogeneity of variance were 
assessed. A t-test was applied for comparing differences 
between the two groups and p less than 0.05 was consid-
ered statistically significant.

Results
Overview the full-length sequences
In our initial analysis of the clinical data, we observed 
no significant differences in age and glycated hemoglo-
bin (HbA1c) levels between the DNRP and DNSP groups 
(Fig.  1). However, a notable difference was observed in 
the estimated glomerular filtration rate (eGFR) (Fig.  1). 
In our research, full-length transcriptome sequencing 
was performed in 11 serum samples from 5 DNSP and 

6 DNRP patients, and the clean data of each sample 
reached 3.16 GB. The number of full-length sequences 
per sample ranged from 3,036,243 to 6,512,168. Another, 
we mapped consensus isoform to the reference genome 
using minimap2 and dislodged redundancy. Eventually, 
we determined common 46,250 non-redundant tran-
script sequences. We compared the redundancy of all 
samples with the definitive reference genome annota-
tions, and then we found 12,720 new gene loci and 22,682 
novel transcripts.

Functional annotation of novel transcripts
All the novel transcripts were mapped to seven data-
bases: NR, SwissProt, GO, COG, KOG, Pfam, and KEGG, 
then we obtained functional annotation information of 
novel transcripts. A total of 15,121 isoforms were anno-
tated. Furthermore, 9,515 isoforms were annotated in the 

Fig. 1 Differences in clinical data of age, glycated hemoglobin (HbA1c) levels and the estimated glomerular filtration rate (eGFR) between DNRP and 
DNSP groups
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GO database and 11,020 isoforms were annotated in the 
KEGG database. The NR database had the largest num-
ber of isoform annotations, a total of 14,832. Conversely, 
the COG database had only 1,242 isoforms, which was 
the least (Additional file 2).

SSR and TF analysis
Transcripts with more than 500 bp were screened from 
the transcripts after redundancy removal, and SSR analy-
sis was carried out using MISA software. A total number 
of 107,610 sequences and a total size of 226,675,191  bp 
were detected by SSR analysis. Our result indicated that 
the total number of identified SSRs was 45,808, and the 
number of SSR containing sequences was 25,698 (Addi-
tional file 3). Seven types of SSRs were identified, includ-
ing Mono-nucleotide, Di-nucleotide, Tri-nucleotide, 
Tetra-nucleotide, Penta-nucleotide, Hexa-nucleotide, and 
compound SSR. The number of Mono-nucleotide was 
the highest (26,386), and the number of Hexa-nucleotide 
was the lowest (80) (Additional file 3, Fig. 2A).

Besides, the identification of animal TF predicted com-
mon 1,815 TFs in the new transcripts. The main TF types 
were zi-C2H2, Homeobox, bHLH, HMG, ZBTB, TF_
bZIP, Fork_head, ETS, MYB, IRF, zi-CCCH, THR-like, 
T-box, zi-GATA, Pou, THAP, SAND, RXR-like, and E2F. 
Among them, zi-C2H2 is the most TFs, while E2F is the 
least (Fig. 2B).

CDS and lncRNA prediction
TransDecoder software was used to predict the cod-
ing region sequence and its corresponding amino acid 
sequence of the novel transcript. A total of 12,128 ORFs 
were obtained, including 5,993 complete ORFs. The num-
ber of complete ORFs in the 0–100 aa section was the 
largest. As the length increased, the number of complete 
ORFs decreased (Fig. 2C). Moreover, we predicted 1,050 
lncRNA transcripts using CPC, CNCI, CPAT, and Pfam 
methods (Fig.  2D). All identified lncRNAs were subdi-
vided into the following four types: lincRNAs (long inter-
genic noncoding RNAs, 568, 54.1%), antisense-lncRNAs 
(209, 19.9%), intronic-lncRNAs (188, 17.9%), and sense-
lncRNAs (85, 8.1%) (Fig.  2E). Ferroptosis has been 
reported to involve in DN progression [21]. We found 
that lncRNA ONT.3784.1 was targeted to SLC7A11, 
a ferroptosis marker gene [22], so we speculated that 
lncRNA ONT.3784.1 may affect the rate of process of DN 
by targeting SLC7A11 to regulate ferroptosis.

Identification, annotation and PPI network analysis of DETs
The number of DETs in the DNSP and DNRP compari-
son was 341, including 87 up-regulated transcripts and 
254 down-regulated transcripts (Fig.  3A, Additional 
file 4). Cluster heatmap could more intuitively observe 
the difference in DETs expression level between groups 

(Fig. 3B). To further identify the functional annotation of 
DETs, we performed GO, KEGG, and GSEA analysis. We 
found that the DETs were primarily enriched in the GO 
category of molecular function regulator and antioxidant 
activity (Fig. 4A). Furthermore, the DETs mainly enriched 
in oxidative phosphorylation, mitophagy, and primary 
immunodeficiency in the KEGG database (Fig.  4B). As 
shown in Fig. 4C, GSEA analysis of DETs discovered that 
DETs distributed in the process of oxidative phosphory-
lation and iron ion binding. Interestingly, signaling path-
ways such as oxidative phosphorylation, iron ion binding, 
and mitophagy are all closely associated with ferroptosis 
[23]. Therefore, we conjectured that ferroptosis may be 
one of the mechanisms by which DETs determine the 
rate of DN progression.

To explore the interactions among proteins in DNSP vs. 
DNRP, we constructed a PPI network diagram based on 
DETs. The gene regulatory relationship of DN progres-
sion can be quickly identified by network structure anal-
ysis. Here, the nodes with the largest number of edges 
were supposed to be potential key genes, for example, 
HBB-206, CD163-209, HBA1-201, HSPA1A, and AHSP-
201 were the most remarkable node genes (Fig. 4D). The 
PPI also suggested that many novel transcripts also play 
a central role in the DN progression, such as ONT.4235 
and ONT.8261 cluster (Fig. 4D).

Identification and functional profiles of DEGs
Furthermore, we determined a total of 456 DEGs in the 
DNRP group compared with the DNSP group, including 
141 up-regulated DEGs and 315 down-regulated DEGs 
(Fig.  5A, Additional file 5). Interestingly, we found that 
the previously mentioned TF, E2F, which is also in the 
list of DEGs, had a significantly lower expression level 
in the DNRP group than in the DNSP group (Additional 
file 5). Heatmap cluster analysis was also conducted on 
DEGs (Fig. 5B). To further identify the functional anno-
tation of DEGs, we performed GO, KEGG, COG, and 
eggNOG analysis. We found that the DEGs were primar-
ily enriched in the GO category of metabolic process, 
molecular function regulator, and antioxidant activity 
(Fig.  6A). Moreover, DEGs were mainly involved in the 
pathways of oxidative phosphorylation and sphingolipid 
metabolism (Fig.  6B). In the COG database, the DEGs 
were significantly enriched in lipid transport and metab-
olism, inorganic ion transport and metabolism (Fig. 6C). 
Similarly, in the eggNOG database, DEGs were also sig-
nificantly enriched in lipid transport and metabolism 
(Fig.  6D). Together, the analysis of DEGs enrichment in 
GO, KEGG, COG, and eggNOG showed certain consis-
tency and correlation, we hypothesized that DEGs may 
be involved in the progression rate of DN by affecting 
lipid metabolism and oxidative phosphorylation.
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Fig. 2 The structural analysis of novel transcripts. A The type distribution of SSR. B The type distribution of TF. C Length distribution of CDS of complete 
ORFs. D Venn diagram of lncRNA transcripts were verified by CPC, CNCI, CPAT, and Pfam databases. E The type classification of lncRNAs
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Ferroptosis related DEGs are involved in DN process
As recently reported that ferroptosis was involved in DN 
progression [21]. In this study, using ferroptosis database 
FerrDb V2 (http://www.zhounan.org/ferrdb/current/), 
we identified 33 ferroptosis-related DEGs, including 
MMD, ZEB1, PCBP1, and NF2 (Fig. 7). These ferroptosis-
related DEGs were mainly involved in MAPK signaling 
pathway, ferroptosis pathway, oxidative phosphorylation, 
PI3K-Akt signaling pathway, glutathione metabolism, 
and p53 signaling pathway. Compared with the DNSP 
group, most ferroptosis-related DEGs were down-regu-
lated in the DNRP group (Fig. 7). Moreover, interestingly, 
7 DEGs in the SLC family were identified (Additional file 
4), including SLC4A1, SLC38A5, SLC25A40, SLC12A7, 
SLC16A7, SLC35E1, and SLC47A1. Therefore, these data 
further demonstrated that ferroptosis plays a role in the 
rate of progression of DN.

Autophagy/mitophagy pathway are involved in DN 
progression
There were reports in the literature suggesting that 
autophagy affects DN progression by targeting mTOR 
signaling pathway [24, 25]. Likewise, in our KEGG 
enrichment results, DEGs were found involved in 
autophagy, mitophagy, and mTOR signaling pathway, 
which was displayed by the network plot. The DEGs 
enriched in mitophagy were BNIP3L [26], RRAS2, UBB, 
UBA52, and ONT.15,763. The mTOR signaling pathway 
enriched DEGs include STRADB, MIOS, ONT.18,929, 
ONT.21,457, and ONT.670. Moreover, autophagy-
enriched DEGs were IGBP1, PPP2CA, PIK3R4, RB1CC1 
[27], RRAS2, MAP3K7CL, ONT.15,763, ONT.18,929, 
and ONT.8101 (Fig.  8). Together, autophagy/mitophagy 
is involved in the rate of DN progression.

Apoptosis/necroptosis pathway are involved in DN 
progression
The involvement of apoptosis in the pathogenesis of DN 
has also been reported in previous studies [28]. Hence, 
we further uncovered the DEGs in the apoptosis/necrop-
tosis pathway associated with the rate of DN progres-
sion. According to the results of KEGG, only ONT.18,929 
and ONT.3200 were annotated into the apoptosis path-
way. Moreover, The DEGs annotated to the necropto-
sis pathway include H2AFV, CAMK2D, NLRP3 [29] 
and ONT.8101 (Table  2). Therefore, these DEGs may 
be key genes in the rate of DN progression affected by 
apoptosis/necroptosis.

Validation by GSE142025 dataset and qRT-PCR
To validate the sequencing results of this study, we 
searched the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) for “diabetic nephropathy”, expectedly, 
there were no transcriptomic data consistent with the 
design of this study protocol (comparison of the DNSP 
and DNRP groups), and as a result, the GSE142025 
dataset was selected for analysis and comparison. The 
GSE142025 dataset contains transcriptomic data from 
patients with early and advanced DN. Compared with 
early DN patients, a total of 1765 genes were differen-
tially expressed in the advanced DN group (Fig.  9A). 
Only 32 DEGs overlapped in our ONT sequencing and 
GSE142025 dataset (Fig. 9B). Interestingly, KEGG enrich-
ment showed that these DEGs in the GSE142025 dataset 
were also involved in oxidative phosphorylation, sphin-
golipid metabolism, ferroptosis, apoptosis, and necrop-
tosis pathways (Fig.  9C), which was consistent with our 
results.

Fig. 3 Differential expression of transcripts in DNSP vs. DNRP. A Volcanic plot of the DETs. Red: up-regulated; Green: down-regulated; Black: normal. The 
y axis shows the -log10(P- adjusted value). B Cluster heatmap of the DETs

 

http://www.zhounan.org/ferrdb/current/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Fig. 4 Functional annotation of DETs. A Annotation of GO function. B Bubble plot of KEGG signaling pathway enrichment. C Annotation of GSEA func-
tion. D PPI network analysis of DETs
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To validate the sequencing results, 5 DEGs from the 
sequencing results were selected for detection by qRT-
PCR. These DEGs include a randomly selected gene 
COX5A, a ferroptosis-associated gene CCNG2, an 
autophagy/mitophagy-associated gene RB1CC1, and two 
apoptosis/necroptosis -associated genes ONT.8101 and 
ONT.18,929. As shown in Fig.  10, the expression pat-
terns of the four DEGs were consistent with the ONT 
sequencing results, with the exception of RB1CC1. Com-
pared to the DNSP group, the expression of ONT.8101, 
CCNG2, and ONT.18,929 were significantly down-regu-
lated in the DNRP group, while COX5A was significantly 
elevated. These results not only verified the reliability of 
ONT sequencing results, but also showed that COX5A, 
ONT.8101, CCNG2, and ONT.18,929 may be related to 
the rate of DN progression.

Discussion
DN is one of the main causes of end-stage renal disease 
and has always been a complex worldwide clinical prob-
lem. In this study, we used full-length transcriptome 
sequencing to depict the transcriptome landscape that 
leads to differences in the fast and slow progression of 
DN, identifying and characterizing the 1,815 TFs, 45,808 
SSRs, 1,050 lncRNA, 341 DETs, and 456 DEGs that may 
be involved. Importantly, based on the functional analy-
sis of DETs, we found that ferroptosis-related pathways 
oxidative phosphorylation, iron ion binding, and mitoph-
agy may mediate the fast and slow progression of DN. 

Moreover, Functional analysis of DEGs suggests that 
DEGs may determine the rate of DN progression through 
pathways such as ferroptosis, autophagy/mitophagy, 
apoptosis/necroptosis, and lipid metabolism.

TFs family E2F has been shown to be involved in DN, 
such as the transcription factor E2F3. Increasingly stud-
ies pursued the potential mechanism of DN pathogenesis 
and confirmed that E2F3 regulation plays a crucial role in 
DN. For example, a previous study revealed that up-regu-
lating miR-503 expression promoted podocyte injury via 
targeting E2F3 in DN [30]. Another finding indicated that 
the high expression of miR-770-5p stimulated podocyte 
injury by targeting E2F3 to involve in DN progression 
[31]. Furthermore, overexpression of MIAT accelerated 
mesangial cell proliferation and fibrosis by sponging miR-
147a and regulating E2F3 [32]. Similar to these findings, 
we identified that the transcription factor E2F may be 
involved in DN progression. Moreover, we also identi-
fied some TFs not previously reported to be associated 
with DN, such as zf-C2H2 and ZBTB. These TFs may 
also affect the development of DN but it still needs more 
effort for future DN research.

In recent years, there have been many studies on the 
relationship between ferroptosis and DN. For instance, 
Jin et al. revealed that umbelliferone suppressed ferropto-
sis induced by high glucose via activating the Nrf2/HO-1 
pathway to relieve DN progression [33]. Glab protected 
the kidney of diabetic rats may be through the inhibi-
tion of ferroptosis and VEGF/Akt/ERK signaling pathway 

Fig. 5 Differential expression of genes in DNSP vs. DNRP. A Volcanic plot of the DEGs. Red: up-regulated; Green: down-regulated; Black: normal. The y axis 
shows the -log10(P- adjusted value). B Cluster heatmap of the DEGs
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[34]. Meanwhile, recent reports suggested that mmu_cir-
cRNA_0000309 is involved in Germacrone-mediated 
improvement of DN through regulating ferroptosis by 
targeting miR-188-3p/GPX4 signaling axis [35]. Simi-
larly, our results also pointed out that ferroptosis may 
be involved in the pathogenesis of DN, and many DEGs 
that were involved in ferroptosis were identified, includ-
ing MMD [36], ZEB1 [37], PCBP1 [38], and NF2 [39]. In 
addition, it is well known that SLC7A11 is the classical 
ferroptosis marker gene, and other members of the SLC 
family including SLC1A5, SLC3A2, SLC38A1, SLC1A5, 
and SLC39A14 have also been reported to be possi-
bly associated with ferroptosis [40, 41]. Interestingly, 
we identified 7 SLC family members of DEGs, SLC4A1, 
SLC38A5, SLC25A40, SLC12A7, SLC16A7, SLC35E1, 
and SLC47A1, in the DNSP and DNRP comparison 
groups. Although their involvement in ferroptosis has 

not yet been reported, given our current incomplete 
understanding of the SLC family and the large number of 
SLC family members involved in ferroptosis, we venture 
to guess that these 7 SLC family members may also be 
involved in the rate of DN progression through ferropto-
sis or some other pathway.

Moreover, autophagy/mitophagy and apoptosis/
necroptosis are significant pathways in the DN, and 
a large number of studies support this. For example, 
PACS-2 ameliorated renal tubular injury in DN by pro-
moting mitochondria-associated endoplasmic reticulum 
membrane formation and mitophagy [42]. Disrupting 
PHB2-mediated mitophagy by TIPE1 up-regulating in 
the tubular epithelial cell lead to aggravating DN [43]. Sar 
improved DN by targeting the GSK3β pathway and stim-
ulating podocyte autophagy [44]. Apoptosis/necroptosis 
participated in DN through many different pathways has 

Fig. 6 Functional annotation of DEGs. A Annotation of GO function. B Bubble plot of KEGG signaling pathway enrichment. C Annotation of COG function. 
D Annotation of eggNOG function
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also been reported, such as p38 MAPK or mTOR signal-
ing pathway [24] or RIP-1/RIP-3-p-p38MAPK signaling 
pathway [28] In our study, autophagy/mitophagy and 
apoptosis/necroptosis related DEGs were also identified, 
and they may play an important in the rate of DN pro-
gression. However, the specific mechanism of these DEGs 

in DN is still unclear, and further studies are needed to 
determine the pathogenesis.

Our results indicated that oxidative phosphorylation, 
primary immunodeficiency, and sphingolipid metabo-
lism may be involved in DN, and past research backed 
this up. For example, the substantial contribution of 

Fig. 8 Network diagram of autophagy/mitophagy-related DEGs

 

Fig. 7 Sankey diagram of ferroptosis-related DEGs in DNSP vs. DNRP
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oxidative stress in DN has been summarized in a review 
by Kashihara et al. [45] and Singh et al. [46]. Other results 
suggested that diabetes impaired epithelial immunity 
as a consequence of chronic and inappropriate activa-
tion of anti-regulatory immune responses [47]. The early 
intervention of mesenchymal stem cells can prevent 
renal injury through immune regulation of diabetes rats, 
thereby restoring the homeostasis of the immune micro-
environment and helping to prevent renal dysfunction 
and glomerulosclerosis [48]. Previous studies have shown 

that there is an association between the elevated level of 
glycosphingolipids and DN [49–51]. Lopes-Virella et al. 
pointed out that the decrease of long and very long lacto-
sylceramides could predict the development of macroal-
buminuria in type 1 diabetes [51] and urinary ceramides 
might be associated with the pathological condition of 
DN [52]. Therefore, we suggest that in the future more 
efforts should be invested in the study of oxidative phos-
phorylation, primary immunodeficiency, and sphingo-
lipid metabolism in DN progression.

We obtained hub genes (HBB-206, CD163-209, HBA1-
201, HSPA1A, and AHSP-201) through the PPI network. 
Among them, CD163 and HSPA1A have been reported 
to be associated with DN progression. For example, 
soluble plasma protein CD163 could be served as early 
biomarker of DN in Swedish [53]. HSPA1A, the stress 
response gene, expression was increased in diabetic mice 
with kidney injury, but reduced after hyperbaric oxygen 
therapy [54].

Table 2 Apoptosis/necroptosis pathway enriched DEGs
Gene DNSP

(Mean CPM)
DNRP
(Mean CPM)

log2(FC) p-value

ONT.18,929 2.58668 0.984233 -0.892577 0.01145690
ONT.3200 5.06372 24.3465 0.945025 0.00268157
H2AFV 92.5562 54.1733 -0.767248 0.0263310
CAMK2D 10.9294 8.86908 -0.657166 0.0442141
NLRP3 4.32186 11.2620 0.597650 0.0199185
ONT.8101 3.10668 1.39987 -1.15754 0.000728629

Fig. 9 DEGs in GSE142025 dataset. A Volcanic plot of the DEGs. Red and blue dots mean up-regulated and down-regulated DEGs in the advanced DN 
group compared with the early DN group, respectively. B Venn diagram shows the DEGs that are shared in ONT sequencing and GSE142025 dataset. 
C Bar graph of DEGs enriched in pathways of mitophagy, necroptosis, apoptosis, ferroptosis, sphingolipid metabolism, and oxidative phosphorylation in 
the GSE142025 dataset
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However, the role of the remaining hub gene in DN has 
not yet been reported, which urges us to follow up with 
in-depth studies in this area.

Conclusions
In summary, we obtained the full-length transcripts 
by ONT sequencing technology and ascertained the 
structural analysis and functional annotation of novel 
transcripts. A total of 46,250 nonredundant transcript 
sequences and 22,682 novel transcripts were obtained. 
Afterward, we predicted 45,808 SSRs, 1,815 transcription 
factors, 5,993 complete ORFs, and 1,050 lncRNA from 
the new transcripts. The hub genes may be the critical 
genes regulating the progression of DN, including HBB, 
CD163, HBA1, HSPA1A, and AHSP. Furthermore, DETs 
may be involved in the determination of DN progression 
rate through signaling pathways such as oxidative phos-
phorylation, iron ion binding, and mitophagy. Functional 
analysis of DEGs suggests that DEGs may determine the 
rate of DN progression through pathways such as ferrop-
tosis, autophagy/mitophagy, apoptosis/necroptosis, and 
lipid metabolism. Our findings may help to understand 
the regulatory mechanisms underlying the differences in 
the fast and slow progression of DN.
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