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Abstract 

Patients with neurogenic rosacea (NR) frequently demonstrate pronounced neurological manifestations, often 
unresponsive to conventional therapeutic approaches. A molecular-level understanding and diagnosis of this patient 
cohort could significantly guide clinical interventions. In this study, we amalgamated our sequencing data (n = 46) 
with a publicly accessible database (n = 38) to perform an unsupervised cluster analysis of the integrated dataset. 
The eighty-four rosacea patients were partitioned into two distinct clusters. Neurovascular biomarkers were found 
to be elevated in cluster 1 compared to cluster 2. Pathways in cluster 1 were predominantly involved in neurotrans-
mitter synthesis, transmission, and functionality, whereas cluster 2 pathways were centered on inflammation-related 
processes. Differential gene expression analysis and WGCNA were employed to delineate the characteristic gene 
sets of the two clusters. Subsequently, a diagnostic model was constructed from the identified gene sets using linear 
regression methodologies. The model’s C index, comprising genes PNPLA3, CUX2, PLIN2, and HMGCR, achieved 
a remarkable value of 0.9683, with an area under the curve (AUC) for the training cohort’s nomogram of 0.9376. 
Clinical characteristics from our dataset (n = 46) were assessed by three seasoned dermatologists, forming the NR 
validation cohort (NR, n = 18; non-neurogenic rosacea, n = 28). Upon application of our model to NR diagnosis, 
the model’s AUC value reached 0.9023. Finally, potential therapeutic candidates for both patient groups were pre-
dicted via the Connectivity Map. In summation, this study unveiled two clusters with unique molecular phenotypes 
within rosacea, leading to the development of a precise diagnostic model instrumental in NR diagnosis.
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Introduction
Rosacea is a prevalent chronic inflammatory cutane-
ous disorder of the face. Epidemiological surveys report 
its prevalence to range between 0 and 22% [1, 2]. Com-
monly characterized by facial erythema reminiscent of 
a "drunken" appearance and accompanied by sensations 
of burning and tingling, rosacea significantly affects 
patients’ appearance, quality of life, and psychological 
well-being [3, 4]. A distinct subset of rosacea patients 
exhibits distinct clinical features, characterized by pro-
nounced facial redness, burning, tingling, and sensory 
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disturbances extending beyond mere inflammation. In 
2011, Scharschmidt designated this subgroup as neuro-
genic rosacea (NR), [5] based on sensations rather than 
cutaneous manifestations. NR patients commonly pre-
sent with neurological or neuropsychiatric conditions 
such as complex regional pain syndrome, idiopathic 
tremor, depression, and obsessive–compulsive disorder 
[5–7]. Conventional rosacea treatments like metronida-
zole, [8] isotretinoin, [9] and oral tetracycline, [10] are 
largely ineffective for NR, while neurological treatments, 
including oral gabapentin, pregabalin, and tricyclic anti-
depressants, [5, 7] may yield superior therapeutic out-
comes. Despite these distinctions, NR lacks international 
recognition as a separate diagnostic entity, and its diag-
nosis remains largely subjective, based on clinical judg-
ment rather than objective molecular markers. This lack 
of standardized diagnostic criteria can lead to misman-
agement and worsening of NR symptoms, highlighting 
the urgent need for a precise, molecularly based diagnos-
tic model for NR, especially in primary care dermatologi-
cal practice.

Although the pathogenesis of rosacea remains elusive, 
factors including innate immune system imbalance, [11] 
gut microbiota, [12] physical triggers like ultraviolet 
radiation, [13] skin barrier dysfunction, [14] and aber-
rant neurovascular signaling [15] are implicated in rosa-
cea’s onset and progression. The role of neurovascular 
homeostasis in rosacea has gained recognition, particu-
larly regarding the hypersensitivity of neural responses 
in NR patients and prevalent neurological complications 
[5]. This highlights the significance of neurovascular dys-
function in NR, warranting exploration of the molecular 
mediators involved. Two principal molecular categories 
are implicated in mediating neural functions in rosacea: 
ion channel-associated proteins and neuropeptides. Ion 
channel-associated proteins, such as the Mas-related G 
protein-coupled receptors (Mrgpr) family and transient 
receptor potential (TRP) channels, play crucial roles [16]. 
For instance, the activation of neurogenic TRP channels 
can stimulate the skin’s vascular systems, leading to flush-
ing—a characteristic symptom of rosacea. Additionally, 
specific G-protein–coupled receptors within the Mrgpr 
family are primarily involved in cutaneous neurogenic 
inflammation, promoting interactions between mast 
cells, sensory nerves, and skin cells [17–19]. Neuropep-
tides, including substance P and calcitonin gene-related 
peptide (CGRP), are also key players in this complex 
interaction. These molecular mechanisms may be pivotal 
in the development of NR, highlighting potential targets 
for therapeutic intervention.

Currently, numerous machine learning studies are 
being conducted for the diagnosis of rosacea utiliz-
ing facial photos or dermoscopy. For instance, Ge et  al. 

implemented a machine learning approach based on der-
moscopy results, where the accuracy of their Gradient 
Boosting Machine (GBM) algorithm for classifying skin 
diseases was significantly superior to that of less experi-
enced physicians [20]. Similarly, Binol et al. investigated 
the efficacy of machine learning methods to automati-
cally identify erythematous acne lesions in facial images 
[21]. Additionally, Aggarwal et  al. developed a diagnos-
tic model for rosacea that employed machine learning 
techniques on facial photos, achieving an Area Under 
the Curve (AUC) of 0.89 [22]. However, biomarker-based 
diagnostics, owing to its objectivity and accuracy, is 
employed across a range of diseases [23–25]. Construc-
tion of disease-specific biomarkers and auxiliary diag-
nostic models have become the prevailing diagnostic 
methodology. In this context, our study assembled 43 
biomarkers, encompassing mRNAs encoding neuropep-
tides like substance P, PACAP, VIP, and CRGP, as well as 
mRNAs for ion channel-related proteins like TRP chan-
nels and the Mrgpr family. Through clustering, we differ-
entiated two patient groups and constructed an auxiliary 
diagnostic model to facilitate NR diagnosis.

Materials and methods
Clinical diagnosis
Three seasoned dermatologists from the Xiangya Hos-
pital’s dermatology department, well-versed in diagnos-
ing and treating rosacea, collaborated with three highly 
experienced psychiatric clinicians from the same hospi-
tal to categorize 46 rosacea patients in our cohort. The 
diagnostic criteria for NR encompassed:: First, rosacea 
could be diagnosed according to the 2017 edition of the 
International Diagnostic guidelines [26] for rosacea and 
the patient’s facial symptoms and other clinical data. Sec-
ond, there were no obvious papules and pustules in the 
patient’s facial photos. Third, the patient had obvious 
facial redness, burning, tingling, and sensory disorders 
beyond blushing or inflammation. Fourth, patients might 
have had neurological or neuropsychiatric disorders, 
including complex regional pain syndrome, idiopathic 
tremor, depression, and obsessive–compulsive disorder 
[27]. Fifth, topical or oral metronidazole, isotretinoin, 
and other first-line treatment drugs were ineffective, but 
the symptoms significantly improved after using gabap-
entin or tricyclic antidepressants [5, 6]. Finally, demodex 
acne, contact dermatitis, and other differential diagnoses 
were excluded. Participants had to meet the above six 
diagnostic criteria at the same time to be diagnosed as 
NR. We used a questionnaire survey and physician evalu-
ation to evaluate the clinical phenotype of patients with 
rosacea. Specifically, we used the Global flush severity 
score (GFSS) scale to evaluate paroxysmal flashes [28]. 
The researcher erythema rating scale (CEA) [28] and 
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the patient erythema self-rating scale (PSA) [28] were 
used to evaluate persistent erythema. The evaluation of 
papules and pustules was carried out by the combina-
tion of “Statistics of the number of papules and pustules” 
and “researcher Global Evaluation (IGA) scale.” The psy-
chological burden of patients with rosacea was mainly 
assessed by the Chinese version of the Rosacea Quality 
of Life (RosaQoL) scale, the Dermatology Life Quality 
Index (DLQI) [28], and the Penn State Worry Question-
naire (PSWQ) [28]. All evaluation forms are available in 
Table S1.

The clinical data (Table S2) of 46 patients with rosacea 
are provided as supplementary data.

Data acquisition and integration
Our previous research involved collecting skin biopsy 
samples from the central facial area of patients diag-
nosed with rosacea, aged between 20 and 60, and healthy 
females undergoing cosmetic procedures, herein referred 
to as the Healthy Skin (HS) group. These samples were 
obtained from the Dermatology Department at Xiangya 
Hospital, Central South University, between June 1, 
2014, and April 4, 2020. The study included 46 clinically 
and pathologically confirmed rosacea patients and 19 
age-matched HS participants. Upon collection, all sam-
ples were immediately preserved at − 80  °C until further 
analysis. Each sample and its corresponding clinical data 
were collected following informed consent from all par-
ticipants. The study’s protocol was rigorously reviewed 
and approved by the Ethics Review Board of Xiangya 
Hospital, Central South University, ensuring all methods 
adhered to relevant guidelines and regulations. Sequenc-
ing data from the rosacea patients were archived in the 
Genome Sequence Archive under accession number 
HRA000379 (http://​bigd.​big.​ac.​cn/​gsa-​human/). Addi-
tionally, the GSE65914 datasets, which include micro-
array data for 38 rosacea and 20 normal samples, were 
obtained from the Gene Expression Omnibus (GEO) 
database (https://​www.​ncbi.​nlm.​nih.​gov/​gds/). These 
datasets underwent a log2 transformation and quantile 
normalization. To integrate the GSE65914 dataset with 
our local dataset and mitigate batch effects, we employed 
the ’combat’ function from the R package ‘sva’.

Unsupervised clustering
Utilizing the expression patterns of the 43 identified 
biomarkers (Table 1), we embarked on an unsupervised 
cluster analysis for the 84 rosacea patients via the Con-
sensusClusterPlus software package [29]. Detailed infor-
mation about these 43 biomarkers is shown in Table  1. 
Using agglomerative km clustering with a Pearson cor-
relation distance of 1 and resampling 80% of the samples 
for 10 repetitions, the number and stability of clusters 

were determined according to the consensus clustering 
algorithm [30]. To enhance the stability of classification, 
this process was repeated 1,000 times.

Gene differential expression analysis
The linear model for microarray analysis (Limma) [31] is 
a differential expression screening method based on the 
generalised linear model. Here, we used the R software 
package limma (version 3.40.6) for differential analysis to 
obtain differential genes between different comparison 
and control groups. We used the criterion that the abso-
lute value of the fold change (FC) is greater than 1.5 and 
the adjusted-P value is less than 0.05 to screen for signifi-
cant differentially expressed genes.

Principal component analysis (PCA)
We conducted PCA using the "FactoMineR" package in 
R. Initially, the dataset was standardized to ensure each 
variable contributed equally to the analysis. We then 
computed the eigenvalues and explained variances to 
assess the significance of each principal component. 
The contribution of each variable to the principal com-
ponents was also evaluated. The results of the PCA were 
visualized using the "factoextra" package.

Analysis of immune cell infiltration
Based on the merged data matrix, we used the ssGSEA 
method of the GSVA package [32], MCPcounter [33], and 
Xcell (https://​xcell.​ucsf.​edu/) [34] to calculate the abun-
dance of immune cells and excluded the samples with 
P > 0.05. Finally, the Mann–Whitney U test was used to 
analyse the differences in immune cell subtypes among 
different groups.

Gene enrichment analysis and gene set enrichment 
analysis
We used the clusterProfiler [35] package for GO-BP and 
KEGG enrichment analysis, and the cutoff values of the 
P value and adjusted-P value were 0.05. There were fewer 
than three mRNAs covered in the enrichment path. The 
clusterProfiler [35] package was used for gene set enrich-
ment analysis (GSEA). The input files were gene names, 
and their values of log2 (fold change) were between the 
high- and low-risk groups.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA was initiated by calculating the Median Abso-
lute Deviation (MAD) for each gene from the gene 
expression profile. We discarded the top 50% of genes 
with the lowest MAD values and removed outlier genes 
and samples utilizing the "good Sample Genes" method 
from the WGCNA package in R [36]. Subsequently, we 
constructed a scale-free co-expression network using 

http://bigd.big.ac.cn/gsa-human/
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WGCNA. Specifically, first, Pearson’s correlation matri-
ces and average linkage method were performed for all 
pair-wise genes. Then, a weighted adjacency matrix was 
constructed using the power function A_mn =|C_mn|^β 

(C_mn = Pearson’s correlation between Gene_m and 
Gene_n; A_mn = adjacency between Gene m and 
Gene n). Here, β is a soft-thresholding parameter that 
emphasises strong correlations between genes and 

Table 1  Detailed information of 43 neurogenic rosacea related genes

SYMBOL ENSEMBL ENTREZID GENENAME

ADCYAP1 ENSG00000141433 116 adenylate cyclase activating polypeptide 1

ADCYAP1R1 ENSG00000078549 117 ADCYAP receptor type I

ADM ENSG00000148926 133 adrenomedullin

ADM2 ENSG00000128165 79,924 adrenomedullin 2

ADRA1A ENSG00000120907 148 adrenoceptor alpha 1A

ADRA1B ENSG00000170214 147 adrenoceptor alpha 1B

ADRA1D ENSG00000171873 146 adrenoceptor alpha 1D

ADRA2A ENSG00000150594 150 adrenoceptor alpha 2A

ADRA2B ENSG00000274286 151 adrenoceptor alpha 2B

ADRA2C ENSG00000184160 152 adrenoceptor alpha 2C

ADRB1 ENSG00000043591 153 adrenoceptor beta 1

ADRB2 ENSG00000169252 154 adrenoceptor beta 2

ADRB3 ENSG00000188778 155 adrenoceptor beta 3

CALCA ENSG00000110680 796 calcitonin related polypeptide alpha

CALCR ENSG00000004948 799 calcitonin receptor

CALCRL ENSG00000064989 10,203 calcitonin receptor like receptor

DRD1 ENSG00000184845 1812 dopamine receptor D1

F2RL1 ENSG00000164251 2150 F2R like trypsin receptor 1

F2RL3 ENSG00000127533 9002 F2R like thrombin or trypsin receptor 3

HRH1 ENSG00000196639 3269 histamine receptor H1

HRH2 ENSG00000113749 3274 histamine receptor H2

HRH3 ENSG00000101180 11,255 histamine receptor H3

HRH4 ENSG00000134489 59,340 histamine receptor H4

HTR2A ENSG00000102468 3356 5-hydroxytryptamine receptor 2A

HTR3A ENSG00000166736 3359 5-hydroxytryptamine receptor 3A

MMEL1 ENSG00000277131 79,258 membrane metalloendopeptidase like 1

MRGPRX1 ENSG00000170255 259,249 MAS related GPR family member X1

MRGPRX2 ENSG00000183695 117,194 MAS related GPR family member X2

MRGPRX4 ENSG00000179817 117,196 MAS related GPR family member X4

NGFR ENSG00000064300 4804 nerve growth factor receptor

NPFFR2 ENSG00000056291 10,886 neuropeptide FF receptor 2

NPY ENSG00000122585 4852 neuropeptide Y

TAC1 ENSG00000006128 6863 tachykinin precursor 1

TACR1 ENSG00000115353 6869 tachykinin receptor 1

TRPA1 ENSG00000104321 8989 transient receptor potential cation channel subfamily A member 1

TRPV2 ENSG00000187688 51,393 transient receptor potential cation channel subfamily V member 2

TRPV3 ENSG00000167723 162,514 transient receptor potential cation channel subfamily V member 3

TRPV4 ENSG00000111199 59,341 transient receptor potential cation channel subfamily V member 4

TRPV5 ENSG00000127412 56,302 transient receptor potential cation channel subfamily V member 5

TRPV6 ENSG00000276971 55,503 transient receptor potential cation channel subfamily V member 6

VIP ENSG00000146469 7432 vasoactive intestinal peptide

VIPR1 ENSG00000114812 7433 vasoactive intestinal peptide receptor 1

VIPR2 ENSG00000106018 7434 vasoactive intestinal peptide receptor 2
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penalises weak correlations. After choosing the power of 
4, we transformed the adjacency into a topological over-
lap matrix (TOM), which could measure the network 
connectivity of a gene defined as the sum of its adjacency 
with all other genes for the network gene ratio, and the 
corresponding dissimilarity (1-TOM) was calculated. To 
classify genes with similar expression profiles into gene 
modules, average linkage hierarchical clustering was 
conducted according to the TOM-based dissimilarity 
measure, with a minimum size (Gene group) of 30 for the 
genes’ dendrogram. We set the sensitivity to 3. To fur-
ther analyse the module, we calculated the dissimilarity 
of module eigen genes, chose a cut line for the module 
dendrogram and merged some modules. In addition, we 
merged the modules with a distance of less than 0.25 and 
finally obtained three co-expression modules. Note that 
the grey module is considered a collection of genes that 
cannot be assigned to any module.

Correlations between module membership and sample 
traits were assessed, and a correlation heatmap was gen-
erated. Modules were prioritized based on their correla-
tion with traits, the significance of module eigengenes, 
and p-values. The module exhibiting the highest mean 
correlation with the trait across all gene expressions 
within the module was considered most significant. 
Identification of hub genes related to the trait involved 
calculating the gene’s internal connectivity and module 
membership. Internal connectivity assessed the gene’s 
role within its module, while module membership deter-
mined its module affiliation.

Protein–protein interaction analysis
We used the Metascape (https://​metas​cape.​org/​gp/​index.​
html#/​main/​step1) website [37] for protein–protein (PPI) 
analysis of the modular hub gene, and the PPI analysis of 
the website was based on the Molecular Complex Detec-
tion (MCODE [38]) tool. Finally, we used Cytoscape (ver-
sion 3.8.2) to visualise the PPI network.

Drug prediction
The Connectivity Map (CMap) is an expansive resource 
comprising over 3 million perturbational profiles that are 
accessible to the global scientific community. The plat-
form clue.io (https://​clue.​io) provides a suite of applica-
tions designed to analyze these data effectively. Utilizing 
the QUERY CMap module available on the CLUE web-
site, we uploaded the hub gene identified in the WGCNA 
module and configured the query parameters to target 
"Gene expression (L1000)."

Random forest analysis
We used the expression matrix of 696 differential genes 
and 84 rosacea samples as input files and standardized 

the data. After setting the random number seed, we ana-
lyzed the data with the “randomForest” R software pack-
age. When building 500 trees, the error rate estimated 
by OOB was 5.3%. The experimental and control group’s 
classification error rates were 0.02 and 0.06, respectively. 
Then, we used the “caret” package to split the train-
ing and test sets and the “Boruta” package to select and 
identify the key classification variables. A total of 51 
important variables, 40 potentially important variables 
(tentative variable, no statistical difference between the 
importance score and the best shadow variable score), 
and 605 unimportant variables were identified. Next, we 
used the “dplyr” package to define a function to extract 
the important values corresponding to each variable and 
used the “ImageGP” package to draw important variable 
results. Finally, we used the “Caret” package cross-valida-
tion to select parameters and fit the model; specifically, 
we defined a function to generate some columns of mtry 
(mtry = 19) for testing (a series of values not greater than 
the total number of variables), select data related to key 
feature variables, and select data related to key feature 
variables. We rigorously assessed the performance of 
the random forest model using the training dataset. The 
model demonstrated high effectiveness with an Accu-
racy and Kappa value of 1. Additionally, during the blind 
evaluation phase with an independent test set, the model 
achieved an AUC value of 1, indicating perfect classifica-
tion performance.

Construction of the diagnostic model
The least absolute shrinkage and selection operator 
(LASSO) method, which is suitable for a reduction in 
high-dimensional data [39, 40], was used to select the 
best predictive characteristics. Features with nonzero 
coefficients in the LASSO regression model were 
selected [41]. Based on the standard lambda.1se (lambda 
value = 4), we identified 10 molecules for the construc-
tion of the model. All of the potential predictors selected 
by lasso analysis were applied to develop a predicting 
model for the diagnosis of NR (R packages “glmnet” and 
“rms”) [42].

Calibration curves were plotted to assess the calibra-
tion of the diagnosis nomogram (R package “rms”). We 
employed the bootstrap method to assess both the sta-
bility and performance of a given model. To quantify the 
discrimination performance of the diagnosis nomogram, 
Harrell’s C-index was measured (R package “rms”) [43]. 
Decision curve analysis was conducted to determine 
the clinical usefulness of the diagnosis nomogram by 
quantifying the net benefits at different threshold prob-
abilities in the cohort [44]. The net benefit was calculated 
by subtracting the proportion of all of the patients with 
false-positive results from the proportion of patients with 

https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://clue.io
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true-positive results and by weighing the relative harm 
of forgoing interventions compared with the negative 
consequences of an unnecessary intervention (R pack-
ages “rms” and “rmda”). Receiver operating characteristic 
(ROC) curve analysis was employed to compare predic-
tions concerning the sensitivity and specificity (R pack-
ages “pROC” and “rms”).

Results
Data processing
We integrated GSE65914 with our own sequencing 
cohort after removing the batch effect through the sva 
package as a training cohort. As delineated in Figure S1A 
and S1B’s bar chart, post-elimination of the batch effect, 
the data distribution between the two datasets demon-
strated a trend towards uniformity with the median lying 
on the same axis Analysis through UPSET [45] revealed 
the intersection of the two cohorts yielding a total of 
18,384 common protein-coding genes (Figure S1C). The 
density maps (Figure S1D and S1E) reveal significant dis-
crepancies in the sample distribution across each dataset 
prior to batch effect removal, indicative of a batch effect. 
Subsequent to this removal, data distribution within each 
dataset appeared congruent, with analogous mean and 
variance. Furthermore, the PCA diagrams (Figure S1F 
and S1G) illustrated that prior to batch effect removal, 
the dataset samples were homogeneously clustered, sug-
gestive of a batch effect. However, post-removal, samples 
from each dataset were both clustered and interspersed, 
a strong indication of effective batch effect elimination. 
The final product was a data matrix comprised of 123 
samples and 18,384 protein-coding genes.

Cluster Characteristics and Inflammatory Profiles
Cluster analysis was carried out utilizing using Consen-
susClusterPlus (Fig. 1A). The optimal number of clusters 
was discerned via the empirical cumulative distribution 
function (CDF) plot (Fig.  1B and C) and the evaluation 
of average intra-group consistency (Fig.  1D and E). The 
analysis revealed that at K = 2, intra-group consistency 
was at its zenith, thereby resulting in the most efficacious 
clustering. Consequently, 84 rosacea patients were cate-
gorized into two clusters: Cluster 1 (n = 46) and Cluster 2 
(n = 38). The expression differences of 43 established neu-
rovascular loop biomarkers in rosacea between clusters 1 
and 2 were then assessed. A total of 17 biomarkers were 
discovered to be highly expressed in Cluster 1 (Fig. 1F). 
These included nerve growth factor receptor (NGFR), 
tachykinin precursor 1 (TAC1), adrenomedullin (ADM 
and ADM2), adrenoceptor (ADRA1A, ADRB1, and 
ADRA2A), calcitonin (CALCA and CALCRL), histamine 
(HRH1, HRH2, and HTR3A), and TRPV family genes 
(TRPA1, TRPV2, TRPV3, and TRPV6). TAC1 encodes 

four products of the tachykinin family: substance P and 
neurokinin A, and neuropeptide K and neuropeptide γ. 
These hormones are thought to be neurotransmitters that 
interact with neuroreceptors and smooth muscle cells. It 
is well known that they induce behavioral responses and 
act as vasodilators and secretagogues [46]. CGRP induces 
vasodilation. It dilates various blood vessels, including 
coronary arteries, brain arteries, and systemic vascular 
system. The anchor-like receptor family (TRPA1) is a 
member of the ion channel transient receptor potential 
(TRP) superfamily. Receptor-activated non-selective cati-
onic channels are involved in pain detection and may also 
be involved in cold perception [47] and itching [48].

Initially, PCA was performed on 84 rosacea patients 
using 43 biomarkers (Fig.  2A), followed by analysis on a 
complete cohort (Fig.  2B) that included the aforemen-
tioned patients and 39 normal samples. The results showed 
that these 43 biomarkers were able to distinguish between 
cluster 1, cluster 2, and normal people in the two cohorts. 
According to the predicted results of Xcell (https://​xcell.​
ucsf.​edu/) [34], the abundance of nerve-related biomark-
ers in cluster 1 was significantly higher than in cluster 2 
(Fig.  2C). Subsequently, ssGSEA [32] was employed to 
assess differences in immune cell abundance between the 
clusters. The results indicated that the immuno-inflamma-
tory cell abundance in Cluster 1 was significantly reduced 
compared to Cluster 2 (Fig. 2E). Specifically, most immune 
cells, including B cells, CD4-positive T cells, CD8-positive 
T cells, macrophages, mast cells, natural killer cells, and 
neutrophils were considerably less abundant in cluster1 
than in cluster2 (Fig.  2D and F). Consistency in immu-
nocyte infiltration abundance was observed in the MCP 
(Figure S2) and Xcell (Figure S3) analyses, with Cluster 1 
significantly lower than Cluster 2.

The pathways in cluster 1 are mostly concentrated 
in the synthesis, transmission, and function 
of neurotransmitters
In an endeavor to delineate the disparities in functionality 
and pathway engagement between clusters 1 and 2, Gene 
Set Enrichment Analysis (GSEA) was executed for both 
groups. Utilizing the KEGG database, the GSEA find-
ings revealed that the functional pathways within cluster 
1 predominantly encompass the synaptic vesicle cycle, 
cholesterol metabolism, valine, leucine and isoleucine 
degradation, in addition to the biosynthesis of the amino 
acid pathway (Figure S4A). Moreover, the GSEA analysis 
grounded in the GO database ascertained that the path-
ways of synaptic signaling, cellular amino acid metabolic 
process, and cholesterol biosynthesis are predominantly 
augmented in cluster 1 (Figure S4B). Conversely, the 
GSEA-KEGG and GSEA-GO results of cluster 2 unveiled 
that the functional pathways within this cluster are 

https://xcell.ucsf.edu/
https://xcell.ucsf.edu/
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primarily associated with immune- and inflammation-
related processes, including but not limited to the IL–17 
signaling pathway, NF–kappa B signaling pathway, TNF 
signaling pathway, positive regulation of inflammatory 
response to an antigenic stimulus, regulation of CD8-
positive, alpha–beta T cell activation, and Th1 and Th2 

cell differentiation (Figure S4C and S4D). The forego-
ing results underscore that the pathways in cluster 1 are 
overwhelmingly concentrated on the synthesis, transmis-
sion, and functionalization of neurotransmitters, whereas 
the functionality of cluster 2 is largely oriented toward 
inflammation and immune responsiveness.

Fig. 1  Identification of neurogenic and non-neurogenic rosacea by unsupervised clustering. A Clustering heatmap; panel (B) shows the cumulative 
distribution function with different values of K, which is used to determine the approximate maximum value of CDF when the value of K is taken. 
At this time, the result of cluster analysis is the most reliable, usually taking the value of K with a small slope of CDF. Panel (C) shows the relative 
change of the area under the CDF curve between K and K minus 1; panels (D) and (E) show the consistent histogram and heat map of the group, 
respectively; panel (F) shows a histogram of NR-related biomarkers differentially expressed between RHNAG and RLNAG patients. *: P < 0.05; **: 
P < 0.01; ***: P < 0.001; ****: P < 0.0001
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Subsequently, we categorized cluster 1 as the rosacea 
group demonstrating a conspicuous neuromolecular phe-
notype (RHNAG) and cluster 2 as the rosacea group lack-
ing a neuromolecular phenotype (RLNAG). As delineated 
in Table S2, the onset symptoms of RHNAG patients pre-
dominantly manifested as paroxysmal flushing (n = 16; 
66.7%), while a minority exhibited persistent erythema 
(n = 1; 4.2%) or papular pustules (n = 6; 25.0%). Conversely, 
the RLNAG patients chiefly presented with papular pus-
tules (n = 15; 68.2%), with a smaller proportion experi-
encing paroxysmal flushing (n = 7; 31.8%). Furthermore, 

an evaluation of the Global Flush Severity Score (GFSS) 
scale revealed significantly elevated scores in RHNAG 
patients relative to their RLNAG counterparts. Assess-
ments employing the CEA, PSA, and IGA scales intimated 
that erythema was more pronounced in RHNAG patients, 
whereas papular pustules were markedly less prevalent 
compared to RLNAG patients. Noteworthy is the fact that 
according to the Dermatology Life Quality Index (DLQI), 
RHNAG patients suffered from a diminished quality of life 
compared to RLNAG patients, and the Penn State Worry 
Questionnaire (PSWQ) indicated exacerbated levels of 

Fig. 2  The abundance of inflammatory cell infiltration in RLNAG was significantly higher than that in RHNAG. According to the expression of 43 
NR biomarkers, PCA was performed in the cohort without normal samples (A) and the cohort containing 39 normal samples (B). We compared 
the abundance of nerve-related biomarkers expressed between the RHNAG and RLNAG, according to the predicted results of Xcell (C). According 
to the predicted results of ssGSEA, the differences in 26 immunocytes infiltration abundance between the RHNAG group and the RLNAG group 
were compared (D and F). E Columnar accumulation map of 26 types of immune cells’ infiltration abundance predicted by ssGSEA in 84 patients 
with rosacea. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001



Page 9 of 16Mao and Li ﻿BMC Medical Genomics          (2024) 17:232 	

anxiety and depression within the RHNAG group. Col-
lectively, these findings elucidate that the phenotype of 
RHNAG, characterized by elevated expression of neuro-
transmitters and receptor-associated markers, aggravated 
mental health conditions, and comparatively subdued 
inflammation, bears significant resemblance to that of NR 
in a clinical context.

The function of the hub gene in the blue module 
of WGCNA is mainly concentrated in the synthesis 
and function of neurotransmitters
In the quest to isolate the gene modules most pertinent 
to RHNAG or RLNAG, we scrutinized the genetic vari-
ances between these patient cohorts. Our examination 
unveiled a total of 1071 differentially expressed genes, 
comprising 411 genes that were upregulated in the 
RHNAG group and 660 genes that were upregulated in 
the RLNAG group (Figure S5A and S5B). Pursuant to 
this, we employed Weighted Gene Co-expression Net-
work Analysis (WGCNA) on 3379 genes, all of which 
exhibited a variance exceeding 0.2 across the samples, 
and subsequently segmented these genes into four dis-
tinct modules (Figure S6A-S6D). Correlational analysis 
between the modules and clinical attributes revealed that 
the blue module exhibited positive correlations with the 
RHNAG group and negative correlations with immune 
cell abundance, including T cells, cytotoxic lymphocytes, 
and natural killer cells (Figure S6E). In contrast, the tur-
quoise module manifested a pronounced positive cor-
relation with the RLNAG group and an abundance of 
immune cell infiltration. The eigengene distance heatmap 
showcased the maximum distance between the blue and 
turquoise modules, indicative of a substantial divergence 
in gene expression patterns (Figure S6F). Furthermore, 
the scatter plot correlating Gene Significance (GS) with 
Module Membership (MM) confirmed that the genes 
most intimately associated with the RHNAG group were 
also pivotal within the blue module (Figure S6G).

To further explore the function of hub genes in the 
blue and turquoise modules, we carried out PPI analysis 
and functional enrichment analysis of hub genes in the 
two modules. The analysis results of MCODE software 
show that the hub genes of the blue module were mainly 
focused on the synthesis and function of neurotrans-
mitter materials, such as cholesterol synthesis, amino 
acid synthesis, and steroid metabolism (Figure S7A). 
The results of KEGG and GO-BP enrichment analysis 
of the hub genes of the blue module also indicate that 
the functions of these genes are mainly focused on the 
pathways related to the synthesis and function of neuro-
transmitters such as amino acid metabolism, cholesterol 
metabolism, and steroid metabolism (Figures  S7B and 
S7C). On the contrary, the functions of the core genes 

of the turquoise module are mainly concentrated in 
immune and inflammatory pathways, such as activation 
of the immune response, T cell receptor signaling path-
way, JAK–STAT signaling pathway, NF–kappa B signal-
ing pathway, and positive regulation of T cell activation 
(Figures S8A–S8C).

Construction of the diagnostic model of RHNAG 
and RLNAG
Initially, a random forest analysis was executed on a set 
of 696 differentially expressed genes contrasting RHNAG 
and RLNAG, from which 51 pivotal genes were identi-
fied as key differentiators between the phenotypes of 
RHNAG and RLNAG (Fig.  3A). Subsequently, a scat-
terplot delineating the top 20 genes based on impor-
tance scores was generated (Fig. 3B). From this pool, 16 
molecular entities boasting importance scores surpass-
ing 50 were earmarked for ROC analysis. Out of these, 
10 molecules demonstrating AUC values exceeding 0.9 
were further shortlisted for lasso regression scrutiny 
(Fig.  3C). The subsequent lasso regression pinpointed 
four genes—HMGCR, CUX2, PLIN2, and PNPLA3—
from the aforementioned 10 for model construction, 
with a lambda value set at 4 (Figs.  3D and E). Utilizing 
the nomogram approach, a linear diagnostic prediction 
model for RHNAG was formulated based on these four 
genes (Fig. 3G). According to the algorithm in the pack-
age, the scores corresponding to the expression of the 
four molecules are obtained from the following linear 
formulas, respectively.

The formula for calculating the RHNAG diagnostic 
probability corresponding to the total score of the four 
molecules is as follows:

For example, the expression of HMGCR, CUX2, 
PLIN2, and PNPLA3 in patient numbered GSM1611085 
was 8.86, 4.4, 7.29, and 6.78, corresponding respectively 
to 73, 36, 74, and 91 points according to the formula. 
Therefore, the patient’s overall score was 274, corre-
sponding to the probability of 0.984 according to the 
formula that they had RHNAG. The final result shows 

(score of PNPLA3 = −20.154(exp ofPNPLA3)+ 147.73;

score of CUX2 = 19.133(exp ofCUX2)− 19.4;

score of PLIN2 = −21.473(exp ofPLIN2)+ 181.47;

score of HMGCR = −10.7 exp ofHMGCR)+ 120.85 .

probability = 1.06777 ∗ ln(totalscore)− 19.4



Page 10 of 16Mao and Li ﻿BMC Medical Genomics          (2024) 17:232 

that the patient was indeed an RHNAG patient. Harrell’s 
C-index of this model was 0.9683. The results of BOOT-
STRAT indicated a robust C-index of 0.908 (95% CI 
[0.901, 0.915]), suggesting high predictive accuracy and 
reliability of our model. The calibration curve analysis 
results show that the model’s predicted value was close 

to the ideal (Fig.  3H). The above results indicate that 
the diagnostic model can predict whether a patient has 
the RHNAG type of rosacea. Finally, the results of DCA 
show that the benefits order of each of the four genes as 
a model to predict the clinical rate of return of RHNAG 
was HMGCR > CUX2 > PLIN2 > PNPLA3. The clinical 

Fig. 3  Construction of the diagnostic model of RHNAG. A Histograms of standardized importance scores of 54 biomarkers that are very important 
for diagnostic typing obtained by random forest analysis; B The histogram of the biomarkers of the top 20 importance scores was obtained 
by random forest analysis. The red ones are markers with an importance score greater than 50; C. ROC analysis results of 16 biomarkers. D and E 
The result chart of LASSO regression analysis of 10 biomarkers with AUC value greater than 0.9. The red dotted line in the middle indicates 
that the lambda value of our selection is 4, so we have four genes to model; F Analysis of clinical decision curve of the whole model and single 
molecular model. The y-axis measures the net benefit. The black line represents the non-remission risk nomogram. The thin solid line represents 
the assumption that all patients are in RHNAG. The thick solid line represents the assumption that all patients are in RLNAG. The decision curve 
shows that if the threshold probability of a patient and a doctor is > 2% and < 100%, respectively, using this RHNAG nomogram in the current 
study to diagnose RHNAG adds more benefit than the intervention-all scheme or the intervention-none scheme; G Diagnostic model based 
on the expression of four biomarkers; on the right is the score corresponding to the expression of a specific biomarker; H Calibration curves 
of the RHNAG diagnostic nomogram in the primary cohorts
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benefit rate of the predictive model of the four genes was 
higher than that of each gene alone (Fig. 3F).

The model has high sensitivity and specificity 
in the diagnosis of NR
In line with the diagnostic categorization by three expe-
rienced dermatologists from Xiangya Hospital, 18 of the 
46 rosacea patients were diagnosed with Neurogenic 
Rosacea (NR) while the remaining 28 were classified as 
Non-Neurogenic Rosacea (NNR) patients (Table  S3). 
Visual documentation, comprising images of five NR 
and five NNR patients, revealed a notable absence of 
papules and pustules on the facial region of NR patients, 
replaced instead by pervasive flushing (Fig.  4A). Con-
versely, NNR patients exhibited pronounced papules 
and pustules either locally or encompassing the entire 
visible region (Fig.  4B). Finally, the total scores of 84 
patients with rosacea were calculated according to the 
diagnostic model, and the ROC analysis was carried out 
according to the total scores. The results show that the 
AUC for the nomogram was 0.9376 (95% confidence 
interval (CI): 0.8898–0.9855; P < 0.001), the best cutoff 
value was 156, and the sensitivity and specificity were 
0.974 and 0.861, respectively, in the total cohort of 84 
patients with rosacea (Fig. 4C). Remarkably, an isolated 
ROC analysis on the cohort of 46 rosacea patients (NR: 
n = 18; NNR: n = 28), as assessed by the trio of derma-
tologists, showcased an AUC of 0.9023 for NR diagno-
sis (95% CI: 0.826–0.9925; P < 0.001). The prime cutoff 
value was determined to be 169, with a corresponding 
sensitivity and specificity of 0.926 and 0.870, respec-
tively (Fig. 4D). Cumulatively, these findings underscore 
the robustness and elevated precision of our diagnostic 
model in clinical applications.

Prediction of Therapeutic Agents
Leveraging the cardinal genes identified within the 
blue and turquoise modules, potential therapeutic 
agents were prognosticated utilizing the Connectivity 
Map function on the clue.io platform. Agents with pre-
dictive scores beneath -0.6 were earmarked as poten-
tial treatment options. Our analysis indicated that the 
prospective therapeutic agents for RHNAG, as gleaned 
from the blue module, predominantly belonged to 
classes such as dopamine receptor antagonists, norepi-
nephrine inhibitors, tricyclic antidepressants, opioid 
receptor antagonists, and sigma receptor antagonists 
(Refer to Figure S9A). Contrarily, the turquoise mod-
ule’s hub gene projections for RLNAG treatments were 
primarily aligned with mTOR inhibitors, JAK inhibi-
tors, protein kinase inhibitors, MEK inhibitors, and 
STAT inhibitors (Figure S9B).

Discussion
In this study, leveraging neurovascular biomarkers, 
we stratified rosacea patients into two distinct groups: 
RHNAG and RLNAG. Intriguingly, the RLNAG group 
demonstrated a markedly heightened abundance of 
immune cells compared to the RHNAG cohort. Com-
prehensive GSEA, KEGG, and GO-BP enrichment 
analyses revealed that genes specific to RHNAG are 
predominantly enriched in pathways involving synap-
tic neurotransmitters, phospholipids, unsaturated fatty 
acids, amino acids, and cholesterol metabolism. Con-
versely, RLNAG-specific genes predominantly aligned 
with immune and inflammatory pathways. This molecu-
lar distinction was mirrored clinically; RHNAG patients 
typically presented absent of facial papules and pustules, 
but with pronounced flushing, burning, and tingling 
sensations. Additionally, a significant portion of the 
RHNAG group manifested neurotic symptoms includ-
ing anxiety, depression, and neuroticism, and standard 
treatments often proved ineffectual. In stark contrast, the 
RLNAG patients, as observed in the clinical validation 
cohort, predominantly exhibited facial papules and pus-
tules with a scant occurrence of neurological symptoms 
such as sensory aberrations and depression. Notably, 
their symptoms were ameliorated by conventional treat-
ments. A salient observation from the clinical validation 
cohort, as assessed by a trio of seasoned dermatologists, 
was the unanimous categorization of all NR patients into 
the RHNAG group, while the majority of NNR patients 
predominantly clustered within the RLNAG cohort. 
Thus, we postulate that RHNAG patients share striking 
clinical parallels with NR patients, primarily presenting 
with neurological symptoms. In juxtaposition, RLNAG 
patients align closely with NNR patients, typified by pro-
nounced inflammation and the presence of facial papules 
and pustules. This concordance underscores why the 
RHNAG diagnostic model boasts such elevated sensitiv-
ity and specificity in NR diagnosis, reinforcing its poten-
tial as a diagnostic surrogate for NR.

Cholesterol stands as the primary lipid collaborator 
with sphingolipids within membrane microdomains. 
Within the nervous system, cholesterol predominantly 
constitutes the primary lipid component of myelin 
(28%) [49]. Importantly, pivotal synaptic transmission 
processes, such as endocytosis, exocytosis, and the lat-
eral diffusion of neurotransmitter receptors within the 
membrane, are profoundly modulated by cholesterol 
concentrations [50]. The functionality of neurotrans-
mitter receptors is modulated by lipid domains [51], 
cholesterol [52], and sphingolipids [53]. Cholesterol’s 
modulatory effects on membrane receptor function are 
largely attributed to either its direct receptor interaction 
or its overarching influence on the biophysical attributes 
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of the lipid bilayer of membranes [52, 53]. In the nerv-
ous milieu, lipids emerge as the predominant organic 
compounds. Glycerol phospholipids, sphingolipids, and 
cholesterol primarily constitute the neural lipid reper-
toire within both central and peripheral domains [49, 54]. 
Sphingolipids, glycerolipids, and their derivates (namely 
glycosphingolipids, GSLs) are intricately associated with 
neurogenesis, synaptic transmission, and the synthesis, 

functionality, and transport of neurotransmitter recep-
tors [55]. Within the architecture of our NR diagnos-
tic model, 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGCR) occupies a crucial position. HMGCR facili-
tates the conversion of (3S)-hydroxy-3-methylglutaryl-
CoA (HMG-CoA) to mevalonic acid, representing the 
pivotal regulatory step in cholesterol synthesis and other 
isoprenoid formations, thereby orchestrating cellular 

Fig. 4  The model has high sensitivity and specificity in the diagnosis of NR. A Typical facial photos of five patients with neurogenic rosacea 
in RHNAG; B Typical facial photos of five patients with non-neurogenic rosacea in RLNAG; C We performed ROC analysis on the total score 
of the model in a cohort of 84 patients with rosacea. D We performed ROC analysis on the total score of the model in a clinical validation cohort 
of 46 patients with rosacea (NR = 18, NNR = 28)
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cholesterol equilibrium [56, 57]. Consequently, we pos-
tulate HMGCR’s involvement in the synthesis of neuro-
transmitters and their receptor engagement, potentially 
mediated through cholesterol synthesis regulation, which 
may underscore its role in NR’s pathogenesis. Further, 
the protein encoded by perilipin 2 (PLIN2) is aligned 
with the perilipin family, known for coating intracellular 
lipid storage vesicles, suggesting its potential as a lipid 
accumulation marker across diverse cellular environ-
ments and pathologies [58]. Another protein of interest, 
encoded by the patatin-like phospholipase domain con-
taining 3 (PNPLA3), functions as a triacylglycerol lipase, 
mediating triacylglycerol hydrolysis in adipocytes and 
intricately involved in glycerol phospholipid biosynthesis 
[59]. In our investigations, these phospholipid biosyn-
thesis-centric genes exhibited a positive correlation with 
the composite score of the NR diagnostic model, suggest-
ing their potential to amplify the synthesis, transport, 
and functional attributes of neurotransmitters and their 
receptors, possibly through phospholipid and sphingo-
myelin synthesis, thereby elucidating their role in NR’s 
etiology.The Cut-like homeobox  2 (CUX2) molecule, 
uniquely characterized by its negative correlation with 
the model score, encodes a protein housing three CUT 
domains and a homeodomain, both serving as DNA-
binding moieties. This transcription factor critically gov-
erns neuronal proliferation and differentiation within 
the cerebral landscape, specifically modulating dendrite 
evolution, branching, dendritic spine genesis, and synap-
togenesis within cortical strata II-III while demonstrat-
ing sequence-specific DNA binding. Markedly, CUX2 
epitomizes a differentiation hallmark of glutamatergic 
pathways [60]. Suzuki et al. [61] established that a deficit 
in CUX2 significantly augments glutamatergic synaptic 
transmission within the hippocampal domain. Our find-
ings resonate with this observation, underscoring that 
reduced CUX2 expression correlates with an elevated 
predisposition towards RHNAG diagnosis in rosacea-
afflicted patients. This suggests that rosacea patients, due 
to the attenuated expression of CUX2, might experience 
amplified glutamate-mediated synaptic transmission, 
potentially triggering neurological manifestations that 
evolve into NR.

Our investigation represents a pioneering endeavor 
in the formulation of an auxiliary diagnostic model for 
NR predicated on biomarker profiling. Within a clini-
cal milieu, it becomes feasible to ascertain the expres-
sion levels of these quartet molecules in peripheral blood. 
This allows for computation of the susceptibility to NR 
using the provided model equation. Subsequently, the 
derived prognostication can inform the prescription of 
appropriate therapeutic agents, an advancement that 
holds profound implications for the clinical diagnostic 

and therapeutic paradigms of NR. To elucidate, RHNAG-
afflicted individuals might benefit from the administra-
tion of tricyclic antidepressants such as nortriptyline 
and protriptyline (traditionally prescribed for depressive 
disorders), sigma receptor antagonists like rimcazole 
(prevalently utilized in schizophrenia management), and 
dopamine receptor antagonists, including trifluoperazine 
and fluphenazine (typically prescribed for schizophrenia). 
Conversely, for those diagnosed with RLNAG, therapeu-
tic options might encompass JAK inhibitors like Ruxoli-
tinib (predominantly used for primary myelodysplasia 
and post-thrombocythemic myelodysplasia, with recent 
trials for autoimmune pathologies such as psoriasis) and 
MTOR inhibitors, e.g., everolimus (commonly incorpo-
rated in immunosuppressive regimens post-transplanta-
tion).Abnormal neurovascular regulation and imbalance 
of the inflammatory immune system are two intertwined 
pathogenetic factors of rosacea. Depending on the differ-
ent clinical phenotypes of rosacea, the emphasis on these 
two mechanisms may differ. An intriguing query emerges: 
Why does NR predominantly exhibit neurological symp-
toms while manifesting attenuated inflammation? Stud-
ies by Kronfol et al. and Rothermundt et al. revealed that 
individuals without melancholic tendencies or depression 
often display proinflammatory states. Conversely, those 
with melancholic characteristics or diagnosed depres-
sion typically demonstrate diminished proinflammatory 
cytokine production [62–64]. Significantly, anti-inflam-
matory cytokines such as transforming growth factor 
(TGF)-β and IL-10 often present at elevated levels in 
major depression (MD) [65–67]. Melancholic and non-
melancholic patients show different immune patterns. 
It’s plausible that neurosystemic aberrations in RHNAG 
patients could be inhibiting systemic inflammation. On 
the other hand, RLNAG rosacea patients exhibit inflam-
matory levels that align with their clinical manifestations.

Nonetheless, our study is not devoid of limitations. 
A primary limitation is the paucity of valid samples, 
amounting to only 84, used in constructing the model. 
While we integrated all publicly available rosacea tran-
scriptome data with our sequencing cohort, current 
constraints preclude further expansion of the sequenc-
ing sample size. Should additional rosacea data emerge 
in public repositories, we are poised to reassess our 
model. Another shortcoming stems from our mod-
el’s reliance solely on mRNA expression levels within 
lesions. In a clinical setting, biomarkers sourced from 
blood or urine might be more feasible and palatable to 
patients. It’s also noteworthy that our study observed 
five RHNAG patients manifesting pronounced papules 
and pustules, which are uncharacteristic for NR. This 
highlights the inherent challenge in perfectly align-
ing the NR phenotype through molecular modeling. 
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Nevertheless, our RHNAG diagnostic model retains 
commendable accuracy and sensitivity in diagnosing 
NR. Future endeavors encompassing more extensive 
sequencing of both NR and NNR patients might pave 
the way for a refined and more accurate NR diagnostic 
model.

In general, our pioneering approach combined 
machine learning with linear regression to devise a 
molecular diagnostic model for NR. This model, char-
acterized by its high sensitivity and specificity, heralds 
a promising advancement in the diagnosis and treat-
ment of NR. This could be particularly transformative 
in regions or among clinicians who might have previ-
ously overlooked NR.
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