
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Zhao et al. BMC Medical Genomics          (2024) 17:248 
https://doi.org/10.1186/s12920-024-02020-4

BMC Medical Genomics

†Zhicheng Zhao and Yu Wan contributed equally to this work.

*Correspondence:
Naikuan Fu
cdrfnk@163.com
1Graduate school of Tianjin Medical University, Tianjin 300070, China
2Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 
Hangzhou, Zhejiang, China
3Department of Cardiology, Tianjin Chest Hospital, Tianjin University, 
Tianjin 300222, China

Abstract
Background  Chronic kidney disease (CKD) patients face the risk of rapid kidney function decline leading to adverse 
outcomes like dialysis and mortality. Lipid metabolism might contribute to acute kidney function decline in CKD 
patients. Here, we utilized the Mendelian Randomization approach to investigate potential causal relationships 
between drug target-mediated lipid phenotypes and rapid renal function decline.

Methods  In this study, we utilized two methodologies: summarized data-based Mendelian randomization (SMR) 
and inverse variance-weighted Mendelian randomization (IVW-MR), to approximate exposure to lipid-lowering drugs. 
This entailed leveraging expression quantitative trait loci (eQTL) for drug target genes and genetic variants proximal 
to drug target gene regions, which encode proteins associated with low-density lipoprotein (LDL) cholesterol, 
as identified in genome-wide association studies. The objective was to investigate causal associations with the 
progression of rapid kidney function decline.

Results  The SMR analysis revealed a potential association between high expression of PCSK9 and rapid kidney 
function decline (OR = 1.11, 95% CI= [1.001–1.23]; p = 0.044). Similarly, IVW-MR analysis demonstrated a negative 
association between LDL cholesterol mediated by HMGCR and kidney function decline (OR = 0.74, 95% CI = 0.60–0.90; 
p = 0.003).

Conclusion  Genetically predicted inhibition of HMGCR is linked with the progression of kidney function decline, 
while genetically predicted PCSK9 inhibition is negatively associated with kidney function decline. Future research 
should incorporate clinical trials to validate the relevance of PCSK9 in preventing kidney function decline.
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Background
Chronic kidney disease (CKD) is a prevalent health con-
cern affecting up to 10% of the general population [1]. 
Patients with symptomatic CKD face a notable risk of 
progressing to acute kidney injury (AKI), heightening 
adverse outcomes such as dialysis and mortality [2]. The 
rapid deterioration in renal function, assessed through 
estimated glomerular filtration rate (eGFR), often culmi-
nates in end-stage renal disease, amplifying the risks of 
adverse outcomes including dialysis and mortality [3–7]. 
Accumulating evidence from animal experiments and 
observational studies suggests a potential role of lipid 
metabolism in the progression of acute kidney function 
decline in individuals with chronic kidney disease [8]. 
For instance, genetic susceptibility related to lipoprotein 
kinase is linked to a rapid decline in renal function dur-
ing early diabetic kidney disease [9]. Additionally, hemo-
lytic phosphatidylcholine may accelerate the decline 
in renal function by influencing local lipid metabolism 
and oxidative stress [10]. Lipid metabolism irregulari-
ties are frequently associated with renal dysfunction, 
posing a challenge to correction and leaving individuals 
with chronic kidney disease in a prolonged state of lipid 
abnormalities [11–13]. Several lipid proteins and post-
translational modifications have been identified in asso-
ciation with kidney function decline, potentially linked to 
iron apoptosis, inflammatory response, oxidative stress, 
and more [12–15]. Mendelian randomization studies 
use publicly available summary data from genome-wide 
association studies (GWAS) to eliminate confounding 
factors and investigate the relationship between exposure 
and outcomes. Mendelian randomization studies employ 
publicly available summary data from genome-wide 
association studies (GWAS) to mitigate confounding 
variables and explore the relationship between exposure 
and outcomes. These pQTL (Protein Quantitative Trait 
Locus) and eQTL (Expression Quantitative Trait Locus) 
are both types of QTLs (Quantitative Trait Loci) that 
help identify genetic variants associated with specific 
traits. Medication-targeted Mendelian randomization 
selects instrumental variables based on their association 
with protein or similar biological marker levels, effec-
tively reflecting the pharmacological perturbation of the 
target by actual pQTL effects or eQTL effects upstream 
of proteins or similar biological markers. This strategy 
helps in controlling confounding factors to delve into 
the significance of drugs for outcomes [16–18]. Genetic 
evidence can effectively elucidate the pharmacological 
effects of drug target effects [16, 19].

One method is Summarized Data-based Mendelian 
Randomization (SMR), which employs GWAS data and 
summary data from eQTL studies to investigate poly-
genic associations between gene expression levels and 
complex outcomes [20]. Another method, termed cis 

Mendelian Randomization (cis MR), selects g gene vari-
ables to be located near the protein-encoding genes, 
explaining whether the modification of specific drug 
targets, as inferred by biological marker proxies at the 
protein level or protein activity, can influence outcomes 
[21, 22]. In this study, we employed the SMR method and 
the cis-MR method to investigate the potential impact of 
commonly used lipid-lowering drugs in clinical practice 
on preventing the rapid decline of kidney function.

Methods
Experimental design
We utilized two instrumental variables: expression quan-
titative trait loci (eQTL) and genetic variants associated 
with low-density lipoprotein cholesterol (LDL-C) levels, 
selected from publicly available Genome-Wide Asso-
ciation Study (GWAS) databases. These variables were 
employed to proxy exposure to three lipid-lowering 
drugs: HMGCR inhibitors (statins), PCSK9 inhibitors 
(alirocumab, evolocumab), and NPC1L1 inhibitors (ezet-
imibe). Two distinct outcome variables related to rapid 
kidney function decline were defined, and the SMR and 
IVW-MR statistical methods were applied to conduct 
casual effect.

Instrumental variables and outcome data selection
The genetic instrumental variables (IVs) used in the SMR 
analysis were Single Nucleotide Polymorphisms (SNPs) 
located within ± 100 kb of the drug-target gene regions. 
The eQTL data were obtained from the eQTLGen and 
V8 release of the GTEx eQTL summary data [23](eQTL-
Gen: https://www.eqtlgen.org/cis-eqtls.html), and signifi-
cant SNPs (P < 5 × 10e-8) were selected as instrumental 
variables. To ensure the robustness of IVs, we selected 
SNPs with an r2 value < 0.3 within this 100 kb range and 
a minor allele frequency (MAF) > 0.01 for the effect allele 
and < 0.1 for the minor allele frequency. For the cis Men-
delian randomization studies, these IVs were chosen 
based on the GWAS summary data of LDL cholesterol 
(LDL-C) proxy drug gene effects. The GWAS data for 
LDL cholesterol (LDL-C) were sourced from the Global 
Lipid Genetics Consortium 2021 GWAS database (http://
csg.sph.umich.edu/willer/public/glgc-lipids2021/), 
focusing on the European population. The selection of 
instrumental variables (IVs) followed specific criteria, 
picking SNPs significantly associated with lipid traits at 
the genome-wide level (P < 0.05) and linked to distinct 
lipid characteristics. To avoid bias from weak instrumen-
tal variables, all IVs underwent screening based on the 
calculation of the F-statistic (F > 10).

The outcome Kidney function decline data was s 
extracted from a GWAS meta-analysis published by Gor-
ski et al. in 2021 [24]. Two definitions were used to mea-
sure eGFRcrea decline: a decline of 3 mL/min/1.73  m² 

https://www.eqtlgen.org/cis-eqtls.html
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
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or more per year (“Rapid3,” encompassing 34,874 cases 
and 107,090 controls) and a decline of 25% or more in 
eGFRcrea, followed by eGFRcrea falling below 60 mL/
min/1.73 m² at baseline for patients with an initial eGFR-
crea of 60 mL/min/1.73 m² or higher (“CKDi25,” includ-
ing 19,901 cases and 175,244 controls). The study design 
is illustrated in Fig. 1.

Statistical methods
The primary Mendelian Randomization (MR) analysis 
employed the Summary data-based Mendelian Random-
ization (SMR) method, utilizing eQTL as instrumental 
variables. This technique utilizes summary-level data 
from Genome-Wide Association Studies (GWAS) and 
eQTL studies to explore the association between gene 
expression levels and the outcomes of interest with SMR 
software [20]. Conversely, when employing genetic vari-
ants linked to LDL cholesterol levels as instruments, 
the Inverse Variance Weighted Mendelian Randomiza-
tion (IVW-MR) method was applied to aggregate effect 
estimates. The IVW-MR analysis were conducted using 
TwoSampleMR and the MRPROCESS package in R soft-
ware version 4.3.1. A Bonferroni correction was imple-
mented to adjust the significance threshold, suggesting 
p < 0.008 (accounting for three exposures and two out-
comes) as strong evidence, and 0.008 ≤ p < 0.05 as sugges-
tive evidence [25]. Table 1 offers a concise comparison of 
the advantages, limitations, and statistical power of the 
two methodologies.

Sensitivity analysis
In SMR analysis, the Heterogeneity in Dependent Instru-
ments (HEIDI) test was conducted in SMR, utilizing a 
threshold of HEIDI P < 0.01 to evaluate heterogeneity 
[26]. The Sensitivity analysis of cis-MR was conducted by 
MR-Egger and MR-PRESSO methods. The MR-PRESSO 
outlier test calculates the p-value for the heterogeneity 
significance of each SNP, while the MR-PRESSO global 
test computes the p-value for overall heterogeneity. In 
the presence of heterogeneity, SNPs are sorted in ascend-
ing order based on their MR-PRESSO outlier test p-val-
ues. Then, one by one, SNPs are removed from the list. 
Each time a SNP is removed, a MR-PRESSO global test 
is conducted on the remaining SNPs. This recursive pro-
cess is repeated until the p-value from the global test is 
not significant (p > 0.05). The resulting list of SNPs, post 
removal of pleiotropic SNPs, was utilized for subsequent 
MR analysis [27]. Considering the weak linkage disequi-
librium (LD) between instruments in the drug target MR 
analysis (r2 ≤ 0.3). Multicollinearity tests were used to 
assess overall-level pleiotropy. F-tests were used to assess 
the strength of the instrumental variable.

Results
Instrumental variable selection and Outcome Data
A combined count of 921, 24, and 11 cis-expression 
quantitative trait loci (cis-eQTLs) were pinpointed for 
the drug-target genes HMGCR, PCSK9, and NPC1L1 
sourced from eQTLGen or GTEx Consortium. The most 
significant cis-eQTL single nucleotide polymorphisms 
(SNPs) for each target gene were chosen as the genetic 
instruments. Furthermore, a total of 32, 60, and 18 SNPs 
located near or within the genes HMGCR, PCSK9, and 
NPC1L1, respectively, were selected from the 2021 
GWAS summary data for LDL cholesterol levels in the 
European population, acquired from the Global Lipid 
Genetics Consortium.

Results analysis
As depicted in Fig.  2 and detailed in Supplementary 
Material 1 Table  1, the outcomes of the SMR analysis 
demonstrated suggestive evidence regarding the asso-
ciation between elevated PCSK9 gene expression in the 
blood and the rapid decline in kidney function, assessed 
in absolute values. An augmentation in PCSK9 gene 
expression in the blood (equivalent to an increase of one 
standard deviation) displayed a suggestive association 
with Rapid3 and risk (OR = 1.001, 95% CI=[1.11–1.23]; 
p = 0.044). However, no significant association was 
observed with CKDi25 (OR = 1.07, 95% CI [0.93–1.22], 
p = 0.370), implying that inhibiting PCSK9 might mitigate 
the risk of rapid kidney function decline when assessed 
in absolute values. On the contrary, no substantial evi-
dence of an association was detected between HMGCR 
and NPC1L1 gene expression and the outcome of rapid 
kidney function decline.

In Fig.  3 and Supplementary Material 1 Table  2, the 
Inverse Variance Weighted Mendelian Randomization 
(IVW-MR) analysis illustrated a connection between 
LDL cholesterol influenced by HMGCR and the rapid 
decline in kidney function, defined by ratios, present-
ing clear evidence for rapid kidney function decline 
defined in absolute values (OR = 0.74, 95% CI = 0.60–0.90; 
p = 0.003). Furthermore, the IVW-MR analysis indicated 
noteworthy evidence regarding the potential association 
between LDL cholesterol modulated by HMGCR and the 
risk of rapid kidney function decline defined by absolute 
values (OR = 0.85, 95% CI = 0.74–0.98; p = 0.026), thereby 
lending additional support to the likelihood of an adverse 
impact of HMGCR inhibitors on rapid kidney function 
decline. However, the IVW-MR analysis failed to present 
any substantial evidence of an association between LDL 
cholesterol influenced by PCSK9 and NPC1L1 and the 
outcomes related to kidney function decline. The specific 
results can be seen in Table 2.
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Fig. 1  Overview of the study design. Abbreviation: SMR: summary-data-Mendelian randomization; cis-MR: cis Mendelian Randomization GLGC: global 
lipid; LDL-C: low density lipoprotein cholesterol; SNP: single-nucleotide polymorphism;
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Table 1  Comparing the difference of SMR and cis-MR in drug target mendelian randomization
Summary Data-based MR Drug target cis-MR

Advantages Specificity: provide a tissue-specific measure of genetic expres-
sion and enable a deeper understanding of the influence of 
transcription levels alongside genetic variation.

1. Specificity: Direct measure of the drug target (protein level).
2. Reduced Pleiotropy: Using cis-acting variants limits con-
founding due to pleiotropy.

Limitations 1. Pleiotropy: SMR cannot distinguish between vertical pleiot-
ropy and horizontal pleiotropy due to assumption [25].
2. Interpretability: Gene-level data may not capture post-trans-
lational modifications or other functional aspects of proteins.

1. Data Availability: Requires specialized datasets with both 
genetic and proteomic information.
2. Scope: More restricted in the range of targets that can be 
studied.
3. Sample Size: Often smaller datasets, which could limit 
statistical power.

Statistical Power Generally higher due to the use of large-scale GWAS summary 
statistics. More samples usually lead to more precise estimates.

Could be limited due to the smaller datasets or restricted range 
of genetic variation studied (i.e., only cis-acting variants). How-
ever, the direct measure of protein could increase the specific-
ity of the results, partially compensating for reduced power

Fig. 3  Inverse-variance weighted method cis-MR analysis of lipid-lowing drug gene and outcome

 

Fig. 2  SMR analysis of lipid-lowing drug gene and outcome
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Sensitivity analysis
In the SMR analysis, the instrumental variables exhib-
ited the following F-statistics: rs6453133 with an F-value 
of 223.999, rs472495 with an F-value of 55.620, and 
rs41279633 with an F-value of 77.023. These values indi-
cate a relatively low probability of weak instrument bias. 
Additionally, the HEIDI test results indicated that all 
observed associations were unlikely to be attributed to 
linkage effects (p > 0.01).

During the IVW-MR analysis, heterogeneity was 
observed in the case of PCSK9 and Rapid3 (p = 0.007), 
while Cochran’s Q test did not provide evidence of het-
erogeneity in other instances (p > 0.05). As previously 
mentioned, MR-PRESSO was utilized to iteratively 
eliminate outliers and evaluate overall-level pleiotropy. 
After excluding rs12739979 based on p-value sorting, 
the Cochran’s Q p-value for PCSK9 and Rapid3 became 
0.0625, signifying the elimination of heterogeneity. Sub-
sequent MR-Egger regression and MR-PRESSO analysis 
showed no significant heterogeneity, except for PCSK9 
and Rapid3. All the result could see in Supplementary 
Material 1 Table 3.

Discussion
This MR study provides suggestive evidence regard-
ing the relationship between HMGCR expression, 
HMGCR-mediated LDL cholesterol levels, and the risk 
of rapid kidney function decline outcomes. Firstly, in the 
IVW-MR analysis, a negative correlation was observed 
between LDL-C levels mediated by HMGCR and the 
risk of both CKDi25 (OR1 = 0.74, 95% CI1=[0.60–0.90]) 
and Rapid3 (OR2 = 0.85, 95% CI2=[0.74–0.98]) outcomes, 
suggesting that HMGCR inhibitors might increase the 
risk of rapid kidney function decline. Secondly, in the 
SMR analysis, an increase in PCSK9 gene expression in 
the blood was positively associated with the risk of the 
Rapid3 outcome (OR = 1.11, 95% CI= [1.001–1.23]), but 
no significant association was found with the CKDi25 
outcome (p > 0.05). This indicates that PCSK9 inhibitors 
might reduce the risk of rapid kidney function decline 
defined in absolute values but not in ratio-defined terms. 
However, in the cis MR, heterogeneity was observed 
between PCSK9 and the Rapid3 outcome when using 
LDL cholesterol GWAS as an instrument, but this corre-
lation was nullified after MR-PRESSO correction. Lastly, 
no association was found between NPC1L1 gene expres-
sion and the outcome of rapid kidney function decline. 

These study results suggest that different lipid-lowering 
drugs may have varying effects on rapid kidney function 
decline. Further validation of this phenomenon is war-
ranted to determine its clinical significance.

As the relationship between blood lipid levels and the 
pathophysiology of various diseases becomes further elu-
cidated, the management of blood lipid levels has gained 
increasing attention. Since the discovery of statins in the 
last century, more lipid-lowering drugs have been devel-
oped. Even today, in diseases such as cardiovascular and 
cerebrovascular conditions, statins remain the corner-
stone of treatment, and patients often require long-term, 
lifelong medication. It is well known that statins are 
commonly associated with acute adverse reactions such 
as rhabdomyolysis and liver function impairment. Sev-
eral meta-analyses have shown that using statins for one 
year can slow the decline in kidney function and the pro-
gression of proteinuria during a one-year follow-up. In 
most studies, CKD patients who use statins benefit from 
renal protection. However, these findings mostly reflect 
results from hospitalized patients. Some studies based on 
larger populations or longer follow-up periods suggest 
that long-term statin use may have potential effects on 
kidney function. For example, an 8.4-year retrospective 
cohort study found that statin users had a higher likeli-
hood of developing acute kidney injury (OR 1.30, 95% 
CI 1.14–1.48), chronic kidney disease (OR 1.36, 95% CI 
1.22–1.52), and nephritis/kidney disease/nephrosclerosis 
(OR 1.35, 95% CI 1.05–1.73) 28. Additionally, in a study 
of 128,140 elderly new statin users, there was a graded, 
independent association between the intensity of statin 
use and the risk of hospitalization for AKI over a median 
follow-up period of 4.6 years, although the absolute mag-
nitude of the excess risk was small29. These findings 
suggest that long-term follow-up may be necessary to 
evaluate the effects of the drug.

Compared to conventional observational studies, 
Mendelian randomization offers a method to evalu-
ate the causal relationship between exposure and out-
comes. There is genetic evidence from studies indicating 
a potential adverse correlation between HMGCR inhi-
bition and kidney function [28]. The decline in kidney 
function among patients with chronic kidney disease 
is often non-linear. Retrospective analyses of end-stage 
renal disease patients demonstrate that the decline in 
estimated glomerular filtration rate (eGFR) is typically 
more pronounced in the year leading up to end-stage 
disease [7]. Therefore, studying rapid kidney function 
decline holds significance for preventing patients from 
progressing to end-stage disease, reducing the need for 
hemodialysis or peritoneal dialysis, and lowering mor-
tality rates. In the KDIGO 2013 Lipid Management 
Guidelines for Adults with CKD, it is recommended that 
adults over 50 years of age with CKD (excluding chronic 

Table 2  Main finding of mendelian randomization
Method Different 

CKD define
Drug target 
gene

OR P

SMR Rapid3 PCSK9 1.11(1.001–1.23) 0.044
IVW-MR Rapid3 HMGCR 0.85(0.74–0.98) 0.026
IVW-MR CKDi25 HMGCR 0.74(0.60–0.90) 0.003
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dialysis patients) receive statin therapy [29]. Moreover, 
in the later stages of CKD (stages 3–5, eGFR < 60 mL/
min/1.73 m²), a combination of statins and ezetimibe is 
recommended. The overall benefit of statin therapy in 
CKD patients likely stems from a reduction in coronary 
heart disease risk [30]. According to a statement by the 
American Heart Association, maximum doses of statins 
might lead to transient microscopic hematuria and pro-
teinuria, with uncertain significance for kidney func-
tion [31]. An SHARP trial also indicated that the effect 
of LDL reduction on kidney function remains unclear 
[32]. A recent Mendelian randomization study utilizing 
genetic variants in the HMGCR gene reported an asso-
ciation between genetically predicted HMGCR inhibi-
tion and lower eGFR, while genetically predicted PCSK9 
inhibition was associated with higher eGFR. However, 
this study does not rule out the use of HMGCR inhibi-
tors for cardiac protection, even for those at risk of renal 
impairment or diagnosed with CKD. Additionally, cli-
nicians should carefully tailor statin drug regimens for 
such individuals and consider potential side effects that 
might affect kidney function [31]. Regarding the impact 
of PCSK9 inhibition on the kidneys, there have been case 
reports suggesting a potential therapeutic role of PCSK9 
inhibitors in acute kidney injury [33]. However, the FOU-
RIER trial showed no significant difference in eGFR 
decline between the PCSK9 inhibitor group and the pla-
cebo group, and the alirocumab trial also indicated no 
significant effect on kidney function [32, 34, 35]. A meta-
analysis suggested that PCSK9 inhibitors significantly 
reduce cardiovascular event risk in CKD patients, but the 
effect on kidney function decline remains unclear [36].

The design of MR is based on three assumptions: the 
relevance assumption, the independence assumption, 
and the exclusion restriction assumption. In practical 
data analysis, one may encounter pleiotropy, where the 
same genetic variant may influence multiple traits, vio-
lating the second or third assumption, leading to biased 
causal estimates. Common methods for testing MR hori-
zontal pleiotropy include MR-IVW, MR-Egger, weighted 
median, MR-PRESSO, CAUSE, and MRMix. MR-
PRESSO (Mendelian Randomization Pleiotropy RESid-
ual Sum and Outlier) is a causal inference method that 
identifies and removes outliers from the IVW framework 
[37]. The MR-PRESSO method addresses outlier issues 
in such cases. The MR-PRESSO global test compares the 
observed distance of all variants from the regression line 
(sum of squared residuals) with the expected distance 
under the null hypothesis of no horizontal pleiotropy, 
evaluating the overall level of pleiotropy among all IVs in 
MR. When the percentage of horizontal pleiotropy vari-
ants is low, the causal estimates adjusted by MR-PRESSO 
outliers are less biased and more accurate than those of 
IVW, MR-Egger, and MMR.

Limitations of study
This study has several limitations. First, it utilized aggre-
gated data instead of individual-level data, precluding 
subgroup analyses. Second, Bonferroni correction for 
multiple tests indicates that we cannot rule out the possi-
bility of false positives in finding the potentially negative 
effect of statins on kidney function decline and the pro-
tective effect of PCSK9 on kidney function decline. Third, 
with the emergence of a range of new lipid targets and 
novel lipid-lowering drugs, further validation is needed 
to establish the impact of lipids on rapid kidney function 
decline. Fourth, the eQTL and GWAS data used in this 
study primarily originated from European populations, 
so caution should be exercised in generalizing these find-
ings to other populations. Fifth, The cis-MR method uses 
correlated SNPs within the same cis-region as instru-
mental variables (IVs). As a result, SNP selection in cis-
MR analysis remains an ongoing area of research [38]. 
Some methods include Top-SNP analysis, LD-pruning, 
PCA, and JAM. A potential criticism of the LD-pruning 
approach is the lack of consensus in the literature on 
selecting the correlation threshold [39]. This threshold 
must balance maintaining adequate epistasis screening 
power while minimizing redundant epistasis. The genetic 
data used in this study primarily comes from European 
populations. While this provides important insights into 
human genetic diversity and disease risk, it may overlook 
the genetic characteristics and phenotypic differences 
of other populations, thus limiting the generalizability 
of the findings and a comprehensive understanding of 
human genetics and evolution. When subtle differences 
in ancestry are related to downstream phenotypes, Men-
delian randomization results may become biased [40]. 
Therefore, future research should place greater empha-
sis on collecting and analyzing genetic data from diverse 
global populations to improve the generalizability and 
accuracy of findings. For instance, the Global Biobank 
Meta-analysis Initiative (GBMI) offers ancestry-specific 
and sex-specific GWAS data and clearly defines disease 
cases and controls [41]. Where possible, future find-
ings could be compared with GBMI data to enhance the 
breadth and comparability of the research [42].

Conclusion
In conclusion, the genetic prediction of HMGCR inhi-
bition is linked to the progression of declining kidney 
function, whereas genetically predicted PCSK9 inhibi-
tion is correlated with a favorable impact on kidney func-
tion decline. Further research, including clinical trials, 
is needed to establish the role of PCSK9 in mitigating 
declines in kidney function.
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