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Abstract
Background: Angiotensin I-converting enzyme (ACE) plays an important role in cardiovascular
homeostasis. There is evidence from different ethnic groups that circulating ACE levels are influenced by
a quantitative trait locus (QTL) at the ACE gene on chromosome 17. The finding of significant residual
familial correlations in different ethnic groups, after accounting for this QTL, and the finding of support for
linkage to a locus on chromosome 4 in Mexican-American families strongly suggest that there may well be
QTLs for ACE unlinked to the ACE gene.

Methods: A genome-wide panel of microsatellite markers, and a panel of biallelic polymorphisms in the
ACE gene were typed in Nigerian families. Single locus models with fixed parameters were used to test
for linkage to circulating ACE with and without adjustment for the effects of the ACE gene polymorphisms.

Results: Strong evidence was found for D17S2193 (Zmax = 3.5); other nearby markers on chromosome
17 also showed modest support. After adjustment for the effects of the ACE gene locus, evidence of
"suggestive linkage" to circulating ACE was found for D4S1629 (Zmax = 2.2); this marker is very close to a
locus previously shown to be linked to circulating ACE levels in Mexican-American families.

Conclusion: In this report we have provided further support for the notion that there are QTLs for ACE
unlinked to the ACE gene; our findings for chromosome 4, which appear to replicate the findings of a
previous independent study, should be considered strong grounds for a more detailed examination of this
region in the search for genes/variants which influence ACE levels.

The poor yields, thus far, in defining the genetic determinants of hypertension risk suggest a need to look 
beyond simple relationships between genotypes and the ultimate phenotype. In addition to incorporating 
information on important environmental exposures, a better understanding of the factors which influence 
the building blocks of the blood pressure homeostatic network is also required. Detailed studies of the 
genetic determinants of ACE, an important component of the renin-angiotensin system, have the potential 
to contribute to this strategic objective.

Published: 10 June 2008

BMC Medical Genomics 2008, 1:23 doi:10.1186/1755-8794-1-23

Received: 6 October 2007
Accepted: 10 June 2008

This article is available from: http://www.biomedcentral.com/1755-8794/1/23

© 2008 McKenzie et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18544166
http://www.biomedcentral.com/1755-8794/1/23
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Genomics 2008, 1:23 http://www.biomedcentral.com/1755-8794/1/23
Background
Angiotensin I-converting enzyme (ACE) plays an impor-
tant role in the maintenance of cardiovascular homeosta-
sis [1-3]. Complete and tissue-specific ACE knockout
mouse models have demonstrated the important roles of
both circulating and endothelial ACE, and of interactions
between ACE activity and dietary salt intake in the deter-
mination of blood pressure [4,5]. There are also comple-
mentary data which suggest that responses to thiazide
diuretics may be related to genetically-determined varia-
tion in ACE activity [6,7]. Clinical trials have shown that
the use of ACE inhibitor medication in cardiovascular and
renal disease, and among persons at high risk for heart
disease confers benefits that may be independent of blood
pressure lowering [8-14]. More recently, it has been sug-
gested that the use of ACE inhibitor medications is associ-
ated with lowered risk of developing Type 2 diabetes
mellitus [15]. The apparent difficulty that has been expe-
rienced thus far in identifying susceptibility genes for
essential hypertension [16], and the possibility that genet-
ically-determined variation in ACE activity might influ-
ence either risk of disease, or of outcomes among patients
treated with ACE inhibitor or other medications, contin-
ues to fuel interest in defining the mechanisms that influ-
ence ACE activity.

ACE is a membrane-bound Zn2+ metallopeptidase; the cir-
culating form is derived from tissues by cleavage of the C-
terminal transmembrane stalk [17]. ACE levels in plasma
display major gene determination and there is evidence
that there is a quantitative trait locus (QTL) at or near the
ACE gene on chromosome 17 [18-21]. The availability of
extensive data on polymorphic sites within the gene has
facilitated the identification, in Caucasians, of intervals,
defined by recombination breakpoints that are likely to
contain variants which influence circulating ACE levels
[22-24]. Similar analyses of ACE polymorphisms in Nige-
rian families [25] suggest that multiple variants influence
ACE levels; the major effect appears to be contained
within an intragenic region previously identified among
white Europeans, with an additional, minor effect local-
ised to 5' non-coding sequence. The mechanism by which
these variants influence ACE levels remains unknown. For
instance, the variants that have been identified in the crit-
ical regions would not be expected to affect the expression
of the gene or the rate of cleavage of the C-terminal stalk
[24,25]; a possibility is that variants in other genomic
regions might be involved in the determination of ACE
levels.

In addition to effects localised to the ACE gene locus,
there is evidence which suggests that there are other loci,
unlinked to the ACE gene, which influence circulating
ACE levels. In analyses of black Jamaican families [18], it
was estimated that the ACE gene-linked QTL accounted

for 27% of the total variability while an unlinked QTL
accounted for 52% of the variability. In British Caucasian
families [22] it was estimated that the ACE gene-linked
QTL accounted for 36% of the total phenotypic variance
while residual familial correlations accounted for 10% of
the variance. In analyses of both French Caucasian [24]
and Nigerian families [25] significant residual familial
correlations have also been found (representing 10.5%
and 19% of the phenotypic variance respectively) after
accounting for the ACE-linked QTL. More recently, in
studies of Mexican-American families [26], a putative QTL
for ACE on chromosome 4 has been identified. These
results from several different ethnic groups provide sup-
port for the notion that loci unlinked to the ACE gene may
influence circulating ACE.

Given that there is strong evidence of genetic determina-
tion of circulating ACE levels we were interested in using
model-based analysis to explore whether we could iden-
tify a QTL for ACE levels on chromosome 17 and, if that
were possible, to use the same approach to explore
whether we could identify additional QTLs for ACE levels
unlinked to chromosome 17. In an effort to do this we
have conducted an autosomal genome-wide search for
loci linked to plasma ACE levels in a dataset comprising
2,079 members of 289 Nigerian families. Two-point link-
age analysis under a model with fixed parameters was
used to evaluate support for linkage to plasma ACE levels
with and without adjustment for the effects of the ACE-
linked QTL.

Methods
Participant Recruitment, Survey Methods, and ACE 
measurements
The recruitment, phenotyping, and measurement of ACE
levels in these families have been described in detail pre-
viously. Briefly, the sampling frame for this study was pro-
vided by the International Collaborative Study on
Hypertension in Blacks (ICSHIB) [27,28]. Nuclear fami-
lies were identified through a middle-aged proband and
his/her spouse; all available first-degree relatives were
enrolled as were available half-sibs in both the proband
and offspring generations [29]. The medical history and
family pedigree were obtained and heights, weights, and
blood pressures were measured according to a standard-
ized protocol [27,28]. Participants with hypertension
were offered treatment after detection at the screening
exam. ACE concentration was determined using a previ-
ously published sandwich ELISA [30] with minor modifi-
cations.

The protocol was approved by the IRB at Loyola Univer-
sity and the Ethics Committee, University College Hospi-
tal, Ibadan. Informed consent was presented in Yoruba or
English and was obtained from participants by local staff.
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Genotyping
DNA was extracted from buffy coats and submitted to the
NHLBI Mammalian Genotyping Service, Marshfield, WI.
Tandem repeat markers from Marshfield "Set 10" [31],
with an average map distance of 10 cM, were typed. There
were 378 autosomal markers available for the analyses
reported here; some of these data have been used previ-
ously in a linkage analysis of blood pressure [32]. Allele
frequencies were estimated from the data using a counting
algorithm implemented in recode [33].

High-resolution mapping of a putative ACE QTL linked to
the ACE gene has been carried out in a subset of families
recruited as part of the ICSHIB project. Briefly, genotypes
were determined for 35 biallelic markers in or near to the
ACE gene. Twenty-two markers were typed by DNA re-
sequencing [25]; the remainder were typed by PCR/RFLP
analysis [22,34].

Statistical Analysis
Serum ACE level was treated as a continuous trait since
none of the participants were receiving consistent antihy-
pertensive treatment at the baseline exam. Linear regres-
sion was used to adjust ACE level for age and sex
(Quantitative Trait 1, QT1). In the subset of families who
had genotype data for the ACE gene markers described
above, linear regression was used to adjust ACE level for
age, sex, and for the effects of the ACE gene-linked QTL
(Quantitative Trait 2, QT2); biallelic ACE gene mark-
ers[25] were selected for inclusion in the linear regression
model, without explicit specification of linkage disequi-
librium, using a manual backward stepwise procedure.
Four markers (C7715T, A23495G, 29349delT, A31958G)
were included in the final model. QT1 and QT2 were sep-
arately standardised to have a mean of zero and a variance
of one prior to linkage analysis.

Two-point linkage analyses for QTLs influencing either
QT1 or QT2 were conducted under a fixed major gene
model which assumed a two-allele QTL (alleles A and a),
genotype-specific means, μAA = – 1.9, μAa = 0.5, and μaa =
2.5, frequency of allele A (associated with lower trait val-
ues) = 0.75, and a common within-genotype variance, σ2

= 0.5. A model with widely spaced genotype means, and a
relatively low allele frequency corresponds to a high pen-
etrance ratio between genetic and non-genetic cases for
discrete traits [35]. The model parameters were selected
based on trials conducted on a previously-reported set of
Jamaican families [18]. Likelihood computations were
performed using the mlink routine of the programme
fastlink [36-40].

We used merlin [41] to simulate 20 replicates of each
autosome under the null hypothesis of no linkage using
the actual pedigree structures and marker data from the
Nigerian family dataset. The replicate datasets were then
analysed using mlink. This procedure allows us to develop
a very preliminary, indicative estimate of genome-wide
false positive rates at different maximum lod score thresh-
olds given the pedigree structures, patterns of missing
information, allele frequencies, and marker locations
actually present in our dataset. File formatting for this
exercise was carried out using mega2 [42].

Results
Characteristics of the study sample
The dataset available for this analysis included 2,079 per-
sons in 289 pedigrees. The median pedigree size was six
(interquartile range, IQR 5 – 8), the median number of
sibships of at least size two per pedigree was one (IQR 1 –
2), and the median number of siblings per sibship was
four (IQR 2 – 6). The analysis of QT1 was conducted on
families with ACE levels that were also typed for the
Marshfield markers. The analysis of QT2 was conducted
on a subset of these families that were also typed for ACE
gene markers. The characteristics of the QT1 sample and
of the QT2 subset are shown in Table 1. A full listing of the
numbers and types of relative-pairs is available [see Addi-
tional file 1]. The subgroup with ACE markers typed has a
greater proportion of men (P < 0.05), is older (P <
0.0001), slightly heavier (P < 0.01), and has higher blood
pressures (P < 0.0001 for both systolic and diastolic blood
pressure) when compared to the overall study sample.
There was, however, no significant difference in ACE con-
centration between the subgroup and the overall family
sample.

Table 1: Mean ± SD values for age, blood pressure, anthropometric measures, and ACE levels

All family members ACE markers typed

N (% male) 2063 (48.7) 544 (54.4)
Age (years) 36.8 ± 19.4 (n = 2060) 44.1 ± 18.7 (n = 544)
BMI (kg/m2) 21.0 ± 4.6 (n = 1712) 21.7 ± 4.5 (n = 529)
WHRa 0.85 ± 0.057 (n = 552) 0.88 ± 0.067 (n = 118)
Systolic Blood Pressure (mm Hg) 120.9 ± 26.8 (n = 1700) 131.2 ± 27.6 (n = 543)
Diastolic Blood Pressure (mm Hg) 74.0 ± 16.9 (n = 1700) 79.0 ± 17.8 (n = 543)
ACE (ng/ml) 604.7 ± 213.2 (n = 1169) 612.7 ± 213.0(n = 544)

a WHR – waist circumference:hip circumference ratio
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Linkage evidence
Figure 1 shows the maximum lod score (Zmax) by chromo-
some for each of the autosomal markers tested for linkage
to QT1. The strongest evidence for linkage was found on
chromosome 17 where one marker (D17S2193) achieved
a Zmax value of 3.51 and three other markers had Zmax val-
ues greater than one including one marker (D17S2195)
with a Zmax value greater than 1.5 (Table 2). These markers
lie approximately 4.1 and 13.5 Mb away from the ACE
gene locus which we have previously shown to be linked
to circulating ACE levels in different ethnic groups
[18,43]. Only one other marker (D6S1277) attained a
Zmax value greater than 1.5. No other markers on chromo-
some 6 had Zmax values greater than one.

The Zmax values by chromosome for the 2-point linkage
analyses of QT2 are shown in Figure 2. For this trait, seven
markers on five chromosomes achieved Zmax values
greater than one. The strongest evidence for linkage to
QT2 is found on chromosome 4 where D4S1629 had a
Zmax value of 2.18 (Table 3). Chromosome 11 and chro-
mosome 21 each had one marker (of two markers with
Zmax values greater than one) with Zmax values greater than
1.5 (Table 3). Chromosome 4 is the only chromosome on
which there is a Zmax value > 1.0 for both QT1 (D4S2431,
Zmax = 1.16) and QT2 (D4S1629, Zmax = 2.18).

Preliminary simulation-based estimates of false positive 
rates
We conducted a limited simulation exercise in order to
make a preliminary, indicative estimate of the genome-
wide false positive rates associated with various Zmax
thresholds observed in our study. For the QT2 dataset (i.e.
the subgroup typed for both genome-wide microsatellite

markers as well as ACE gene SNPs) we found that Zmax val-
ues of 1.0, 1.5, and 2.0 would be expected to be associated
with 5.8, 1.5, and 0.2 false positives per genome screen. A
Zmax threshold of 1.6, for this dataset, represents 'sugges-
tive linkage' [44]. That is, this threshold is associated with
1 false positive or less per genome screen (95% confi-
dence interval, CI 0.56 – 1.43). A more conservative
threshold would be a Zmax of 1.75 (0.6 false positives per
genome screen, 95% CI = 0.26 – 0.94). Using this empir-
ically-derived set of thresholds for QT2, we then have at
least 2 markers (D4S1629 and D21S1411) which show
'suggestive linkage', and one marker (D11S1392) which
just fails to meet that standard. Furthermore, it should be
noted that the Zmax value of 2.18 for D4S1629 is associ-
ated with a false positive rate of 0.1 (95% CI 0.00 – 0.24)
per genome screen which is an order of magnitude
beyond the threshold for suggestive linkage and even
begins to approach the false positive rate for 'significant
linkage' (i.e. 0.05 false positives per genome screen).

Maximum lod score (Zmax) values by chromosome for QT2 (plasma ACE levels adjusted for age, sex, and ACE gene markers)Figure 2
Maximum lod score (Zmax) values by chromosome 
for QT2 (plasma ACE levels adjusted for age, sex, 
and ACE gene markers).
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Table 2: Loci with Zmax values > 1.0 for QT1 (plasma ACE 
adjusted for age and sex)

Chr. Marker Zmax Theta

2 D2S1353 1.09 0.2
4 D4S2431 1.16 0.2
5 D5S820 1.44 0.2
6 GATA184A08 1.11 0.2

D6S1277 1.55 0.2
14 D14S599 1.02 0.2
16 GATA138C05 1.04 0.2
17 D17S2193 3.51 0.1

D17S1301 1.15 0.2
D17S2195 1.69 0.2
D17S784 1.04 0.2

Maximum lod score (Zmax) values by chromosome for QT1 (ACE levels adjusted for age and sex)Figure 1
Maximum lod score (Zmax) values by chromosome 
for QT1 (ACE levels adjusted for age and sex).
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Discussion
There is strong evidence of genetic determination of circu-
lating ACE and there is also evidence that this genetic
determination may include loci unlinked to the ACE gene
on chromosome 17. After adjustment for the effect of the
ACE gene locus we found that there was modest support
for linkage between circulating ACE levels and microsatel-
lite markers on chromosomes 4, 11, and 21. D4S1629
had a Zmax value of 2.18 at which we estimated the
genome-wide false positive rate to be consistent with
"suggestive linkage"; as previously proposed [44]. The
markers on chromosomes 11 and 21 had somewhat lower
Zmax values but in each case there was another marker
nearby with Zmax > 1.0.

In our analysis we adjusted circulating ACE levels for SNPs
in the ACE gene (which accounted for approximately 26%
of the total variation in ACE levels) and then performed
linkage analysis using fixed effects maximum likelihood
(FEML); adjustment for known sources of familial corre-
lations is known to improve power for detection of QTLs
[45-49]. We did not, however, observe any marker with
Zmax > 3.0 for the adjusted trait (i.e. QT2); this is unsur-
prising and is likely to be due to the relatively small
number of families typed for both microsatellite markers
and ACE gene SNPs. In order to examine the power of the
QT2 dataset, we have performed simulations using slink
[50,51]; for a moderately informative marker (heterozy-
gosity 0.76, 1.7% missing data) tightly linked (θ = 0.001)
to QT2, our pedigrees would generate Zmax ≥ 2.0 and ≥ 2.5
in only 46% and 29% of 1000 replicates respectively. It is
also possible that the use of a single, possibly mis-speci-
fied, model may have had an impact on the evidence for
linkage; the use of model-free or non-parametric methods
is motivated primarily by this concern [52,53]. Neverthe-
less, parametric or model-based methods can be powerful
for detection of linkage even though estimates of the
recombination fraction may be biased upwards [35,54-
58]. In this analysis we had the benefit of a "positive con-
trol" in the form of the previously-described QTL for cir-
culating ACE within or near to the ACE gene. Our finding
of significant linkage (Zmax ~ 3.5) between microsatellite
markers near the ACE gene and circulating ACE levels, the
first such report using FEML with microsatellites from a

sparse map, suggests that models with widely-spaced gen-
otype means, and a relatively low allele frequency (corre-
sponding to high penetrance ratios between genetic and
non-genetic cases for discrete traits) should not lead to
incorrect inferences regarding detection of linkage signals
for circulating ACE. With all of these considerations in
mind, it seems a reasonable proposition that our finding
of "suggestive linkage" to D4S1629 represents a replica-
tion of the identification of a putative QTL for ACE on
chromosome 4 in Mexican-American families [26]. By
itself the lod score of 2.18 for D4S1629 in our study rep-
resents considerable prima facie evidence of linkage even
under the conservative proposals, for multifactorial dis-
ease, that have previously been made [44]; when one con-
siders that D4S1629 is only 6.2 Mb away from D4S1548
which was the marker found to be significantly linked to
ACE levels among Mexican-American families the evi-
dence appears to be compelling. Nevertheless, further
analyses of other datasets, including meta-analyses, will
be required in order to demonstrate the existence of an
ACE QTL in this region beyond all reasonable doubt; it
remains unclear what thresholds ought to be used in
declaring "suggestive" or "significant" linkage for traits
where the model is not well known. ACE QTLs unlinked
to the ACE gene might influence ACE levels by affecting
any one (or more) of a number of different processes (e.g.
transcription, translation, post-translational modifica-
tion); investigation of these mechanisms must, however,
await fine mapping and identification of variants.

Although there is a considerable amount of information
available about the physiology of blood pressure regula-
tion, the search for genetic variants which influence risk of
high blood pressure in the general population has, on the
whole, been disappointing. This has been true even where
investigators have moved away from classical family-
based designs; in a recent large-scale genome-wide associ-
ation study [59], not only were there no SNPs which
showed strong association with hypertension, there were
no replications of putative associations identified in pre-
vious studies. Doubtless, the nature of the blood pressure
control network, with its many components, regulated
feedback loops, and interactions with numerous environ-
mental factors, contributes to this difficulty. It is possible
that the variants being sought might be relatively com-
mon but associated with only small-to-moderate
increases in risk. Such variants, while difficult to identify,
may have large associated population attributable risks
and thus remain important targets in efforts to define risk
factors for common disease; studies may need to be of
even larger size if greater within-sample homogeneity can-
not be achieved. The importance of ACE and the renin-
angiotensin system in long-term blood pressure regula-
tion suggests that a better definition of the genetic deter-
minants of activity in these systems may be helpful in
improving our understanding of the processes which ulti-

Table 3: Loci with Zmax values > 1.0 for QT2 (plasma ACE levels 
adjusted for age, sex, and the effects of the ACE gene locus)

Chr. Marker Zmax Theta

1 D1S1589 1.40 0.01
4 D4S1629 2.18 0.0
7 D7S1818 1.21 0.01
11 D11S1392 1.56 0.0

D11S4459 1.08 0.05
21 D21S1411 1.93 0.0

D21S1446 1.16 0.01
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mately lead to high blood pressure. This is especially so
since our ability to investigate and quantify the effects of
well-known lifetime risk factor exposures (eg salt intake)
is, by the nature of the exposure, severely limited.

Conclusion
In this report we have shown that there is strong evidence
that there may be loci, unlinked to the ACE gene, which
influence circulating ACE levels. One of the QTLs identi-
fied in this analysis of Nigerian families appears to be the
same as a QTL identified previously in Mexican-American
families. Given the importance of the renin-angiotensin
system in long-term blood pressure regulation, further
characterisation of the genetic determinants of circulating
ACE has the potential to improve our understanding of
the mechanisms underlying the development of high
blood pressure.
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