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Abstract

Background: Variants in numerous genes are thought to affect the success or failure of cancer
chemotherapy. Interindividual variability can result from genes involved in drug metabolism and
transport, drug targets (receptors, enzymes, etc), and proteins relevant to cell survival (e.g., cell
cycle, DNA repair, and apoptosis). The purpose of the current study is to establish a flexible, cost-
effective, high-throughput genotyping platform for candidate genes involved in chemoresistance
and -sensitivity, and treatment outcomes.

Methods: We have adopted SNPlex for genotyping 432 single nucleotide polymorphisms (SNPs)
in 160 candidate genes implicated in response to anticancer chemotherapy.

Results: The genotyping panels were applied to 39 patients with chronic lymphocytic leukemia
undergoing flavopiridol chemotherapy, and 90 patients with colorectal cancer. 408 SNPs (94%)
produced successful genotyping results. Additional genotyping methods were established for
polymorphisms undetectable by SNPlex, including multiplexed SNaPshot for CYP2Dé SNPs, and
PCR amplification with fluorescently labeled primers for the UGTIA| promoter (TA)nTAA repeat
polymorphism.

Conclusion: This genotyping panel is useful for supporting clinical anticancer drug trials to identify
polymorphisms that contribute to interindividual variability in drug response. Availability of
population genetic data across multiple studies has the potential to yield genetic biomarkers for
optimizing anticancer therapy.

Background

Pharmacogenetic studies have shown that polymor-
phisms in genes related to drug metabolism, transport,
and drug targets contribute to interindividual variability
in drug efficacy and adverse effects. Hence, pharmacoge-
netic biomarkers have the potential of optimizing chemo-

therapy for individual patients [1,2]. This is exemplified
with genotyping of thiopurine S-methyltransferase
(TPMT), which inactivates thioguanine, to avoid serious
toxicity in childhood leukemias [1,3]. Homozygous carri-
ers of defective TPMT alleles experience drastically slowed
thioguanine inactivation and are at high risk unless the
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thioguanine dose is reduced more than tenfold. Similarly,
deficiency of dihydropyrimidine dehydrogenase (DPYD)
activity predisposes to 5-fluorouracil toxicity [4]. Many
more examples begin to emerge, with a number of
genomic biomarkers listed on the US FDA website for use
in guiding drug efficacy and/or safety [5]. In addition, the
US FDA has issued "Guidance for Industry Pharmacoge-
nomic Data Submissions" in 2005 for drugs in clinical tri-
als [6]. The purpose is to identify potential biomarkers of
interindividual variability in drug response for personal-
ized drug treatment achieving maximum benefit and min-
imum toxicity. However, the relationship between
genotype and phenotype (drug levels, but more impor-
tantly, therapy outcome) is confounded by numerous fac-
tors, such as age, sex, body weight, nutrition, organ
function and comedications, involvement of multiple
genes, and population admixture [7]. In this study we
have established genotyping panels of relevant candidate
genes that could interfere with response to chemotherapy
and clinical outcomes; the genotyping panels are flexibly
designed so that new candidate genes can be added as
needed.

To exploit genetic information in cancer treatment, we
must adopt a comprehensive approach, assessing which
genes play critical roles in the response to any given drug.
For example, irinotecan has become standard in the treat-
ment of intestinal carcinomas. The following genes/pro-
teins could play a role in the response of individual
patients: carboxyesterases that activate irinotecan to
SN38, CYP3A4 which inactivates irinotecan, UDP-glu-
curonosyltransferase 1A1 (UGT1A1l) which inactivates
SN38, and several transporters involved in shuttling iri-
notecan and SN38 in and out of cells. Among these,
(TA),TAA repeats in the promoter region of UGT1Al
appear to have a significant impact on irinotecan response
and toxicity [8]. This information has been added to the
package insert of irinotecan as a warning, and the US FDA
has approved a prospective genetic biomarker assay to
support individualized dosing [9]. However, given the
complexity of the metabolic pathway, the UGT1A1 poly-
morphisms account for only a portion of observed pheno-
typic variability (e.g., toxicity) [9]. A more comprehensive
view of polymorphisms in multiple genes may improve
the predictive accuracy of genotype information - even a
relatively small increase in predictive power could trans-
late into clinical benefits. In this study we have developed
large-scale genotyping methods to provide information
on genetic variants of candidate genes involved in drug
metabolism and transport.

Drug response is further affected by genes involved in
apoptosis, DNA repair, redox cycling, and cell cycle pro-
gression. These factors appear to function as main deter-
minants of drug resistance, the principal problem for
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successful cancer chemotherapy. For example, the DNA-
repair enzyme O°-methylguanine-DNA methyltransferase
(MGMT) is implicated in resistance to alkylating agents
[10]. We adopt here a candidate gene approach to deter-
mine genetic factors in cancer biology that are likely rele-
vant to an individual's response to chemotherapy. On the
other hand, genome-wide SNP analyses are now available
using very large-scale array genotyping methods, a trend
that might eventually replace candidate gene panels.
However, our knowledge of genetic variants in even the
most intensely studied candidate genes remains fragmen-
tary, and we expect that long-term, genotyping panels
containing only a few strong biomarker genes with com-
plete information on genetic variants will prove valuable
clinically.

A second critical factor is the selection of polymorphisms
for genotyping within the candidate genes. This involves
known functional polymorphisms, polymorphisms of
relative frequencies (> 5%) that are likely to affect func-
tion (gene regulation, mRNA processing and splicing,
translation, and protein functions), and haplotype-tag
SNPs providing maximum information on haplotype
structures. Numerous Web tools are available to optimize
the SNP selection. We summarize here details of the gen-
otyping panels specifically developed for cancer chemo-
therapy. Similar panels have been proposed elsewhere
[11] but the present study extend these panels with further
candidate genes to maximize its utility.

Because the polymorphisms/variants differ at the molecu-
lar level (SNPs, insertions/deletions, repeats, transloca-
tions, LOH, and gene/chromosomal duplications), no
single method can readily detect all genotypes. Rather, we
first select a versatile method capable of covering a major-
ity of polymorphisms at low cost. The remainder must be
completed with a set of varying technologies, at a smaller
scale. The aim of this project is to establish a platform for
genotyping single nucleotide polymorphisms (SNPs, rep-
resenting a majority of genetic variants) of genes involved
in drug metabolism, transport, and targets, and DNA
repair, cell signaling, cell cycle, apoptosis [11-14]. Various
high-throughput genotyping platforms are available, each
with advantages and disadvantages [15-17]. For example,
Affymetrix SNP array is a practical platform for genome-
wide genotyping. However, the SNP set is not readily
adaptable to include a few newly emerging candidate
genes, and the cost for genotyping is relatively high if one
wishes to focus on select candidate genes.

In our study, several hundred SNPs need to be genotyped
in various numbers of samples. In addition, the SNP set
needs to be flexible for different research designs. To
establish a flexible, cost-effective, high-throughput geno-
typing method, we adapted SNPlex genotyping estab-
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lished and systemically validated by Applied Biosystems
to have high precision [18,19]. The method can detect 48
SNPs in one single well for each patient sample, adapted
here to a 96-well plate format covering more than 400
SNPs for cancer chemotherapy. SNPlex is designed to
detect single nucleotide polymorphisms, but not other
genetic changes including insertions/deletions and varia-
ble number tandem repeat (VNTR) polymorphisms.
Additional genotyping strategies, such as multiplexed
SNaPshot for CYP2D6 and PCR using fluorescently
labeled primers to detect the UGT1A1 promoter dinucle-
otide repeat polymorphism, serve as examples of comple-
mentary methods. The goal is to generate a common set of
genotyping data for cancer treatment trials, thereby, grow-
ing the patient and control cohorts for retrospective and
prospective analyses. The panel described here can be
expanded while new functional polymorphisms are being
discovered, and it is suitable for relatively small trials to
large cohorts, economically covering up to 1,000 SNPs.

To illustrate potential applications, we show here geno-
typing results obtained with our SNP panels related to
genes involved in cancer biology. For this, we have geno-
typed a cohort of colorectal cancer patients. In addition,
we have applied the drug metabolism and transport gene
panels to a Phase I leukemia trial, of which detailed results
will be reported elsewhere.

Methods

Selection of genes and polymorphisms

The objective was to include genes likely to be involved in
therapy outcome. For many of these main candidate
genes, genetic studies have already suggested or confirmed
functional polymorphisms, but we also include other
potential candidate genes/polymorphisms. The main
focus of the current study was to include known func-
tional polymorphisms candidate genes based on available
literature. The genotyping panels have not been geared
primarily to cover all main haplotypes for each gene, but
rather to focus on functional SNPs as much as they are
known. The purpose therefore is not primarily the discov-
ery of new functional polymorphisms, but rather the
assessment of the clinical impact of known ones. We
anticipate that in the future we will be able to focus the
genotyping panels even more on known functional SNPs,
in an effort to develop clinically relevant biomarker pan-
els. The approach takes into consideration that new candi-
date genes and polymorphisms continue to emerge [20]
that need to be flexibly included in the genotyping panels.

We chose candidate SNPs that for the most part have been
implicated in cancer biology and chemotherapy in more
than one study. For the selected genes, we first surveyed
recent reviews for known polymorphisms reported to be
related to cancer risk or drug metabolism [12-14], and a
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lung cancer risk study targeting 250 SNPs in 101 genes
[11]. We further searched PubMed for additional poly-
morphisms associated with cancer risk, revealing genes
that are also likely to affect treatment outcome [21].
Lastly, we searched the NCBI dbSNP database for SNPs in
the transcribed regions with > 5% minor allele frequency
to capture the main haplotypes in genes where only 1-2
SNPs had been selected by the other methods. SNPs from
dbSNP were frequent and fully validated by different
research projects, such as HapMap project [22] and the
NCI SNP500 Cancer project [23]. SNPs in high LD
(D'>0.7) with another SNP already in the panel were gen-
erally excluded, although in some case we added such
SNPs for the assays design, to assure that either one was
represented in the panel design. For cytochrome P450
genes, we included the known functional polymorphisms
from human allele nomenclature database for cyto-
chrome P450 enzymes [24]. We also searched the UDP-
glucuronosyltransferase (UGT) alleles nomenclature data-
base [25] and NAT nomenclature database [26]. We also
consulted various drug transporter databases, including
the human membrane transporter database [27] and
PharmGKB [28].

SNPIlex probe pools and reagents

For the selected SNPs [see Additional file 1], either NCBI
SNP reference cluster IDs (rs numbers) or SNP sequences
were submitted to Applied Biosystems for the design of
SNPlex panels following their proprietary selection algo-
rithms. We separated the genes into different groups: drug
metabolism and transport, DNA repair/apoptosis and cell
cycle/cell growth/drug targets. DNA sequence surround-
ing a specific polymorphism must meet specific require-
ments for probe design, including but not limited to: A.
genomic screening; the DNA sequence flanking the target
SNP must be unique and not have more than 1 genomic
alignment hit with 21 or more contiguous bases to ensure
annealing specificity, and there is no second SNP nearby.
B. The target sequences should have appropriate features
for annealing efficiency. C. Pooling rules: stringent pool-
ing rules are used to determine optimal multiplex compo-
sition. SNPlex panels and reagents were synthesized by
Applied Biosystems.

DNA samples

Thirty nine blood DNA samples from chronic lym-
phocytic leukemia patients were collected by Dr. John
Byrd following the institutional review board (IRB) proto-
col at the Ohio State University for a flavopiridol phase I
clinical trials at The Ohio State University Comprehensive
Cancer Center. In addition, 90 colorectal cancer samples
were chosen from a series of 1262 consecutively accrued
patients with colorectal carcinoma diagnosed in the main
hospitals of Metropolitan Columbus, whose tumors did
not show microsatellite instability, as described previ-
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ously [29]. Control groups were obtained from previously
genotyped cohorts where the same SNPs are accessible
(HapMap and other datasets as indicated). The research
protocol and consent form were approved by the institu-
tional review board at each participating hospital, and all
patients provided written informed consent.

SNPlex genotyping

SNPlex genotyping was carried out according to the man-
ufacturer's suggested protocol with slight modifications to
accommodate a manual procedure using 96-well plate
(90 testing DNAs plus positive and no DNA template con-
trols, and 4 wells for allelic ladders). The multi-step pro-
cedure has been previously described (Figure 1) [18,19].
Step 1, for DNA fragmentation, 40 nanogram genomic
DNA (2 pl) was fragmented at 99°C for 10 min. Step 2
involved phosphorylation and ligation of allele-specific
oligonucleotide (ASO, 2 for each SNP) ligation probes,
locus-specific oligonucleotide (LSO, one for each SNP)
ligation probes and linkers. SNPlex ASO and LSO ligation
probes, universal linkers, dATP and oligonucleotide liga-
tion assay (OLA) master mix containing DNA kinase and
ligase were mixed and 3 pul were added to the fragmented
DNA. The ligation probes and universal linkers were
phosphorylated and then ligated based on the sequence
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specificity complementary to the genomic DNA template.
Step 3, exonuclease digestion served to purify the ligation
product. Lambda Exonuclease and Exonuclease I were
used to remove unligated probes, universal linkers and
genomic DNA. In Step 4, the purified ligation product was
PCR amplified using one pair of universal primers, with
one primer labeled by biotin. Step 5, the biotinylated PCR
products are bound to 96-well streptavidin-coated plate
(Sigma). The PCR products were then denatured and the
unbounded strands were washed off. Step 6 consisted of
hybridization with fluorescence labeled universal Zip-
Chute probe. For 48 SNPs, 96 unique ZipChute probes
were hybridized to the complimentary sequence within
each allele-specific oligonucleotide (ASO) probes. Each
ZipChute probe migrates differently due to a mobility
modifier. Step 7, the bound ZipChute probes were eluted
and analyzed on Applied Biosystems 3730 DNA Analyzer.
Step 8, the elution profiles were analyzed by GeneMapper
software (Applied Biosystems) to determine genotypes.
With 48 SNPs per run, 48 capillaries in the Applied Bio-
systems 3730 DNA Analyzer, and up to three injections
per hour, the throughput is 5-10,000 SNPs per hour.

ASO-Linker1 ) GER GER

ASO-Linker2

J' Step 1: Activation & Ligation

’ Step 2: Purification

= ! "

; Step 3: Amplification

‘ Step 4: Capture

Streplavidin

‘ Step 5: Hybridization

‘ Step 6: Elution

l{ Step 7: Capillary Electrophoresis

ZipChute™
Probe

Mobility
Moditie:

Day 1

Figure |

Day 2

SNPlex genotyping system assay protocol. On the first day, the OLA reaction, exonuclease purification, and PCR ampli-
fication are performed. On the second day, the amplicons are immobilized on streptavidin-coated microtiter plates. ZipChute
probes are hybridized to complementary ZipCode sequences, and non-hybridized ZipChute probes are washed away. The
bound ZipChute probes are eluted and analyzed by capillary electrophoresis using Applied Biosystems 3730. Reproduced from
Journal of Biomolecular Techniques (Reference [18]) with permission from Andreas R Tobler at Applied Biosystems.
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Multiplex SNaPshot genotyping

SNaPshot was performed following a previously pub-
lished procedure based on single nucleotide primer exten-
sion that has been successfully adapted to the Applied
Biosystems 3730 DNA Analyzer [30]. A stretch of genomic
DNA (50 to 150 base pairs) was amplified by PCR, and
the genotype was measured by primer extension using flu-
orescently labeled terminator nucleotides. Three single
nucleotide polymorphisms, rs42427 in the APC gene,
rs1800392 in WRN, and rs2228000 in XPC, were multi-
plexed for the study. Three pairs of PCR primers were
amplified simultaneously in 15 pl reactions using 2x
ReadyMix™ Taq PCR Reaction Mix with MgCl, (Sigma, St.
Louis, MO). For each SNP, 0.15 pl PCR forward and
reverse primers (10 uM) were added to the PCR reactions.
The amplification was carried out for 30 cycles starting
with denaturation at 95°C for 30 s, and then primer
annealing at 60°C for 1 min, followed by extension at
72°C for 1 min. The forward and reverse primers were as
follows: for rs42427 in APC, 5'-CCCTCCAAATGAGT-
TAGCTGCT-3' and 5'-GCCITCTGTAGGAATGGTATCTCG
-3"; for 15222800 in XPC, 5'-GGAGCCATCGTAAGGAC-
CCA-3' and 5-TGCCTCTTTTACTGCTTGAAGAGC-3'; for
SNP 151800392 in WRN, 5'-GGTCCAACAATCATCTACT-
GTCCIT and 5'-TGATGAATGTCTTTCCTTGTGCTAAA-3".
After PCR amplification, the reactions were treated with
Exonuclease I and Bacterial Antarctic Alkaline Phos-
phatase (New England Biolabs, Beverly, MA). For the
primer extension, a gene-specific primer was designed
with its 3'-end one base from the SNP position. The for-
ward extension primers were as follows: for 1s42427 in
APC, 5-TTTTTTTITITITITTITCTGGAGAAGGAGTTAGA
GGAGG (40 mer); for rs222800 in XPC, 5'-TAAGGAC-
CCAAGCTTGCCAG-3' (20 mer), for SNP rs1800392 in
WRN, 5'-TTTTTTTTCAAGTTACAGGTGAACTTAGGAAAC
T-3' (34 mer). SNaPshot reagent from Applied Biosystems
was used to incorporate a single fluorescently labeled
dideoxynucleotide into the 3' end of the primer directed
by the DNA template. The primer extension reactions
were analyzed using an Applied Biosystems 3730 capillary
electrophoresis DNA instrument, and analyzed with Gen-
eMapper 3.0 software (Applied Biosystems), with a
throughput of 150 to 750 per hour (if multiplexed to 5
reactions). For CYP2D6, the multiplexed SNaPshot was
carried out following a previously published protocol
with slight modifications [31]. The forward PCR primer
(5'-ATGGCAGCTGCCATACAATCCACCTG-3") was rede-
signed to analyze the promoter SNP rs1080985. The
SNaPshot extension primer for rs1080985 was 5'-
(T)5s CCTGGACAACTTGGAAGAACC-3'. A total of 12 pol-
ymorphims were analyzed in parallel, by designing exten-
sion primers that are separable by capillary
electrophoresis.

http://www.biomedcentral.com/1755-8794/1/24

Genotyping of UGTIAI promoter (TA),TAA dinucleotide
repeat polymorphism

The UGT1A1 dinucleotide repeat was genotyped accord-
ing to previously designed PCR sequences and PCR condi-
tions [32]. The forward primer sequence was 5'-
GTCACGTGACACAGTCAAAC-3'. The reverse primer
sequence was 5'-TTTGCTCCTGCCAGAGGTT-3' and FAM-
labeled. The PCR products were analyzed using an
Applied Biosystems 3730 DNA Analyzer.

Data analysis

Hardy-Weinberg equilibrium for each SNP was analyzed
using HelixTree according to the manufacture's manual
(Golden Helix, Inc. Bozeman, MT, USA).

Results

Genes and polymorphisms selected for genotyping by
SNPIlex

We have designed cancer genotyping SNPlex panels,
selecting genes involved in drug metabolism and trans-
port, DNA repair and apoptosis, cell cycle/cell growth/
drug targets. We have selected polymorphisms for geno-
typing along the following criteria: polymorphisms
known to affect enzyme/transporter functions, and SNPs
in transcribed genic regions and htSNPs with high abun-
dance obtained from HapMap and other databases. We
have selected 560 SNPs for 160 genes, ordered into differ-
ent categories:

Transporters: ABCA1, ABCA2, ABCA3, ABCA9, ABCA10,
MDR1/ABCB1, ABCB4, ABCB11, ABCC1l, ABCC2,
ABCC3, ABCC4, ABCC5, ABCC6, ABCG2/BCRP, ABCGS5,
ABCGS, SLC19A1 (RFC) and SLC21A6.

Phase I metabolism enzymes: CYP1A1, 1A2, 1B1, 2A6,
2B6, 2C8, 2C9, 2C18, 2C19, 2D6, CYP2E1, 3A4, 3A5,
17A1, DIA4/NQO1, EPHX1/EH, MPO and SOD2.

Phase II metabolism enzymes: GSTA1 GSTA2, GSTA4,
GSTM1, GSTM3, GSTP1, GSTT1, GSTT2, NAT1, NAT2,
SULT1A1, SULT1A2, TPMT, COMT, UGT1A1, UGT1AG,
UGT1A7, UGT1A9 and UGT2B7.

DNA repair genes: ADPRT/PARP, ADPRTL1, APEX1/
APE1, ATM, ATR, BARD1, BLM, BRCA1, BRCA2, CHEK?2,
ERCC2/XPD, ERCC4/XPF, ERCC5/XPG, FANCD?2, LIG1,
LIG3, LIG4, MGMT/AGT, MLH1, MPG, MSH2, MSH3,
MSH6, MYH/MUTYH, NBS1, NT5E, OGGIl, PCNA,
PMS2, POLB, RAD23A, RAD51, RAD52, RAD54B,
RADY9A, RECQL, WRN, XPA, XPC, XRCC1, XRCC2,
XRCC3, XRCC4, XRCC5 and XRCCY/FANCG.

Drug targets, cell signaling, cell cycle and apoptosis
related genes: DHFR, DPYD, TYMS, VKORCI1, EGFR,
ERBB2, FLT1 (VEGFR1), KDR (VEGFR2), FLT4 (VEGFR3),
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PDGFRA, PDGFRB, KIT, RET, CDA, BAX, CASP3, CASPS,
CASP9, CASP10, CCND1, CCNH, CDK7, CDKN1A/p21,
CDKN1B/p27, CDKN2A/p16, CDKN2B/p15, GADDA45A,
IRS2, MDM2, RB1, TERC/hTR, TERT, TP53, TP53BP1,
TP53BP2, TP73, APC, NF1, NF2, HPC1, VHL, ECRGI,
WT1, MEN1, SMAD2, SMAD4, TNFRSF10A, PTCH and
CDHI1.

Among the 560 SNPs, 432 SNPs (77%) were successfully
designed to be included in the SNPlex panels [see Addi-
tional file 1]. The SNPs were divided into several groups
so that a subset of the SNPlex panels might be sufficient
for a specific research project.

¢ Drug metabolism and transports: 4 panels, 189 SNPs.
e DNA repair: 3 panels, 148 SNPs.
o Cell cycle/growth/apoptosis: 2 panels, 95 SNPs.

The selection of polymorphisms for this study included
some redundancy to account for limitation of the SNPlex
approach. Any polymorphisms that could not be included
with the SNPlex panels were omitted, or if thought to be
critical, targeted by alternative methods. For example, a
majority of the SNPs that are not suitable for SNPlex gen-
otyping can be genotyped by multiplexed SNaPshot assay
(see multiplexed SNaPshot for CYP2DG6 in this manuscript
as an example). Similarly, small insertions/deletions and
repeats can be amplified by PCR and the variants deter-
mined by PCR product size difference based on gel elec-
trophoresis or capillary electrophoresis using fluorescent-
labeled primers (see UGT1A1 promoter dinucleotide
repeat polymorphism in this manuscript). Based on the
sequence information and literature search, possible alter-
native methods for detection of these genetic variants are
listed in Additional file 1.

Validation of SNPlex results using SNaPshot

We selected SNaPshot (Applied Biosystems), based on
single base-pair extension, as a reliable reference genotyp-
ing method [33,34]. Three SNPs, 151800392 in WRN
gene, 152228000 in XPC, and rs42427 in APC, were geno-
typed using multiplexed SNaPshot. For 74 colorectal can-
cer samples, the two methods produced identical results
for all three SNPs. We monitored the quality of SNPlex
genotyping for the three SNPs (Figure 2) to identify the
output features indicative of obtaining robust results. The
homozygous and heterozygous alleles were clearly sepa-
rated into different clusters on the Cartesian plots (Figure
2). Similar precision of genotype calls was observed in
other projects performed in our laboratory comparing the
genotyping results generated from SNPlex, SNaPshot, or
TagMan real-time PCR genotyping (unpublished data).

http://www.biomedcentral.com/1755-8794/1/24

This is consistent with the precision rate that was reported
by Applied Biosystems [18].

Examples of single nucleotide polymorphisms known to be
associated with cancer risk or drug treatment response
Examples of the most extensively studied polymorphisms
with clinical relevance, such as cancer risk and cancer ther-
apeutic response are summarized in Table 1, which
includes 66 SNPs for 24 genes that can be genotyped by
our SNPlex panels. We selected 15 SNPs based on their
potential significance to cancer treatment response and
cancer risk, to illustrate the SNPlex genotyping results
(Figure 3). In each case, homozygous and heterozygous
genotypes were clearly separated, and therefore, readily
assigned.

Additional methods to accommodate polymorphisms not
suitable for SNPlex

SNPs excluded from SNPlex panels for genomic sequence
and other types of polymorphisms, such as insertions/
deletions and variable number tandem repeat (VNTR),
can be genotyped by different approaches, including mul-
tiplexed SNaPshot, TagMan PCR, sequencing and SYBR
Green melting curve assays [35], to detect all genetic vari-
ants of interest for a specific project. Mutiplexed SNaPshot
is a primer extension assay with fluorescent terminator
dyes, followed by capillary electrophoresis (Applied Bio-
systems 3730 DNA Aanalyzer). For faster throughput, we
multiplex SNaPshot (up to 12 SNPs per reaction) for
CYP2D6, by using extension primers of varying length
(Fig. 4), yielding a throughput of between 150 (single
SNP) to 1,800 (multiplex) per hour. Moreover, base pair
deletions or insertions can be detected (Fig 4, 1707 del T,
2549 del A, 2615 del AGA).

The UGT1A1 promoter dinucleotide repeat polymor-
phism, (TA)nTAA, was analyzed by capillary electrophore-
sis following PCR amplification. The repeats were
amplified with unique flanking sequences on each side.
The variation of dinucleotide repeat number leads to PCR
products of different sizes that can be distinguished by
capillary electrophoresis (Applied Biosystems 3730 DNA
Analyzer, Figure 5).

Pilot genotyping study for peripheral blood DNA from
leukemia and colorectal cancer patients to evaluate the
SNPIlex panels

A. Genes for drug metabolism and transport in chronic lymphocytic
leukemia patients

Flavopiridol, a broad inhibitor of cyclin-dependent
kinases, is metabolized by UGT1A9 and UGT1A1, and
interacts with a number of transporters, including MRP2,
and BCRP (but apparently not with MDR1) [36-40]. Pol-
ymorphisms in each of these genes could affect the phar-
macokinetic profile, and hence, treatment outcome. Our
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Figure 2

SNPlex genotyping results of three SNPs in colorectal cancer patients were identical to those measured by

multiplexed SNaPshot.

goals are to genotype and integrate the data with pharma-
coanalytical and clinical results. In a pilot project, the 4
drug metabolism and transporter panels (189 SNPs) were
applied to 39 DNA samples obtained from peripheral
blood of chronic lymphocytic leukemia patients enrolled
in flavopiridol clinical trials ongoing at The Ohio State
University. To ensure the genotyping quality, the samples
with signal intensity for the majority of SNP peaks below
1000 RFU (relative fluorescent units) were eliminated. For
the 189 SNPs related to drug metabolizing and transport,
177 (94%) produced successful genotyping information.
SNPs with low genotyping quality or that failed entirely in
the SNPlex assays are listed in Table 2. The criteria for suc-
cessful genotyping were based on the information from
the manufacture's manual and our validation process (see
below). Over 95% (136 out of 146) of the SNPs follow
Hardy-Weinberg equilibrium (Chi-squared test, P> 0.01).

B. Cancer-related genes in colorectal cancer patients

We genotyped 90 blood samples from Caucasian colorec-
tal cancer patients using the 5 SNPlex panels for polymor-
phisms in DNA repair and cell cycle/growth/apoptosis.
This is a pilot study to identify polymorphisms that con-
tribute to colorectal cancer risk, and possibly treatment
outcomes. For the 2 SNPlex panels related to cell cycle/
drug target/apoptosis, 91 out of 95 (96%) SNPs were suc-
cessful. For the three DNA repair panels, 140 out of 144
(97%) were successful (See Table 2 for SNPs showing low
genotyping quality or that failed in the SNPlex analyses).
Chi-squared test indicates all SNPs follow Hardy-Wein-
berg equilibrium (P > 0.01).

Discussion

We have adapted SNPlex as a platform for genotyping 432
SNPs in 160 genes related to the efficacy and toxicity of
anticancer chemotherapy, and cancer risk. Stringent qual-
ity control criteria were used to attain optimal results. For
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SNPlex genotyping plots for selected functional SNPs. Known functional consequences are listed in Table | for each
SNP.
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Table I: Select examples of SNPs with clinical significance.

Phase | metabolism enzymes,
Allele nomenclature for Cytochrome P450 enzymes [24]:

Gene rs#t location Function SNPIlex

CYP2C9 rs1799853 *2, R144C PM 0.25% in Caucasians, life-threatening bleeding No
after given warfarin

rs1057910 *3, 1359L Yes

CYP2CI9 rs4244285 *2, 681 G>A, exon 5, splicing defect PM phenotype 2-5% in Caucasians, 18-23% in No
Asians, > 87% PM in Caucasians is *2 and *3; >
99% PM in Asians has *2 and *3. CYP2C19*2
homozygotes did not respond to antiangiogenic
drug thalidomide treatment

rs4986893 *3, 17948G>A, exon 4 premature Yes
stop
rs28399504 *4, transcription ablation Failed
90033C>T, R433WV, *5A, *5B No enzymatic activity Yes
*7, 19294T>A Splicing defect, no enzymatic activity Yes
CYP2D6 rs16947 *2,2851C>T, R296C Normal, nucleotide position corrected Yes

according to [47]

rs3892097 or rs1800716 *4, 1847G>A, splicing defect The CYP2D6 PM is about 5—10% of Caucasians. Yes
99% PM has *3, *4, *5, %6, ¥7, *8 and *| |. *3, *5
and *6 are deletions

rs28371704 983A>G, H94R In *4A, *4B, *4F, *4G, *4H and *4) Failed
rs5030867 *7,2936A>C, H324P No enzymatic activity Yes
rs5030865 *8, 1759G>T Stop codon, no enzymatic activity Yes
rs1065852 *10, 100C>T, P34S Decrease enzymatic activity Yes
rs5030863 *11, 882G>C Splicing defect, no enzymatic activity Yes
rs28371706 *17, 1022C>T, T1071 Decrease enzymatic activity Yes
rs28371717 *33, 2484G>T, A237S Normal Yes
*44,2951G>C Splicing defect, no enzymatic activity Yes
CYP3A4 rs| 1773597 *IF, m747C>G Trans-regulation of gene expression is Yes

important. Overall, no major pharmacokinetic
consequences for the identified CYP3A4 SNPs
have been observed for the metabolism of anti-
cancer drugs [12]

rs2740574 *|B, m392A>G Yes
Yes
*4, 13989A>G, In AF209389 Yes
*8, 14026G>A In AF209389, R130Q Yes
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Table I: Select examples of SNPs with clinical significance. (Continued)

http://www.biomedcentral.com/1755-8794/1/24

CYP3A5 rs28365083 *2, 27289C>A, T398N Failed
rs776746 *3, 6986A>G, splicing inclusion *3 is the most frequent polymorphism (about Yes
90% in Caucasians). Splicing defect, severely
decrease of enzymatic activity [12]
rs28365085 *3d, 31551T>C, 1488T Yes
*5, 12952T>C Splicing defect Yes
*8, 3699C>T, R28C Decreased enzymatic activity Yes
rs28383479 *9, 19386G>A, A337T Decreased enzymatic activity Failed
rs15524 *10, 3161 1C>T Decreasde enzymatic activity Yes
DPYD rs3918290 splice variant [VS14+1G>A *2A, Skipping exon 14, T 5FU neurotoxicity [12] Yes
NQOI rs1800566 *2, C609T, R187S *2 and *3 have reduced protein level and Yes
enzymatic activity. NQOI is needed for the
activation of mitomycin C, 17AAG (HSP90
inhibitor) and inactivation of benzene-like
leukemogenic agents [13]
rs4986998 *3, C465T, RI139W Yes
Phase Il metabolism enzymes
NAT allele nomenclature [26]:
UGT allele nomenclature [25]:
Gene rsit location Function SNPlex
NAT2 rs1801280 341T>C, |1 14T, *5A to*5), *I4C  Alleles with decreased activity include NAT2*5B, Yes
and *14F NAT2*6A, NAT*7A or B, NAT2*10,
NAT2*14A or B, NAT2*|7, NAT2*|8 and
NAT2*19 [12, 14]
Low NAT2 activity is related to the increased
risk of isoniazid hepatotoxicity
rs1799929 481C>T, LI6IL, *5A, *5B, *5F, Yes
*5G, *5H, *51, *6E, *1 |1A, *11B,
*12C and *14C
rs1208 803A>G, K268R,*5B, *5C, *5F, Yes
*5G, *5H, *51, *6C, *12A, *12B,
*12C, *12D, *14E and *|4F
rs1041983 282C>T, Y94Y, *13, *5G, *5], *6A, Yes
*6C, *6D, *7B, *12B, *14B, *14D,
*14G
rs1799930 590G>A, R197Q *5E, *5J, *6A, *6B Yes
to *6E, *14D
rs1799931 , 857G>A, G286E *7A, *7B Yes
499G>A in sequence X14672, Yes
El67K, *10
rs1801279 191G>A, R64Q *14A to *14G, Yes
434A>C A in sequence X14672, Yes

QI145P, *17
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Table I: Select examples of SNPs with clinical significance. (Continued)

845A>C A in sequence X 14672, Yes
K282T, *18

rs1805158 190C>T, R64W, *19 Yes
TPMT rs 1800462 *2,238G>C Null genotype associated with hematopoietic No

thiopurine toxicity, homozygous frequency |/

300 [4]

rs 1800460 *3A, 460G>A No
rs|142345 *3C, 719A>G No
UGTIAI TA (5-8) TAA UGTIAI *28 (7 TAs) associated with increased No

irinotecan toxicity. Caucasians ~32%

rs4148323 21 1G>A, G71R, *6 Reduced enzymatic activity Yes

rs34993780 1456 T>G, Y486D, *7 Yes

rs35350960 686C>A, P229Q, *27 Yes

247T>C, F83L, *62 Causing Gilbert's syndrome Yes

GSTTI Deletion causing null genotype Null allele has been associated with better or No

poorer survival in leukemia patients following
chemotherapy [12]

GSTPI rs947894 313A>G 1105V Val associated with decreased enzyme activity Yes
and increased survival after 5FU/oxaliplatin
treatment of colorectal cancer patients [54]

GSTMI Deletion causing null genotype Null allele is associated with increased survival No
after chemotherapy for multiple cancers [13, 14]

SULTIAI rs9282861 *2, R213H, Haell His/His has lower enzymatic activity and is No
associated with poor survival following
tamoxifen therapy [55]

Transporter Genes

Gene rs# location Function SNPlex
ABCBI rs1045642 3435C>T C3435 associated with higher drug transport Yes
activity
rs1128503 1236T>C Yes
rs2229109 1199G>A Yes
ABCC2 rs2273697 1249G>A, Val417lle 1249AA associated with decreased mRNA [56] Yes
ABCG2 rs2231 142 421C>A, Q141K Minor alleles with lower BRCP expression, Yes

enhanced drug sensitivity [12]

rs2231137 G34 G>AVI2M No

944-949 deletion No
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Table I: Select examples of SNPs with clinical significance. (Continued)

SLCI9AI rs1051266 80G>A Arg27His Patients with the 80AA genotype had higher Yes
plasma MTX levels, suggesting decreased cellular
uptake of MTX

SLCOIBI/SCL21A6 rs4149056 T521C, Vall74Ala, *5 *5 and *15 are associated with decreased Yes
transport activity [57]

rs2306283 Asp|30Asn, *15 Yes
DNA repair genes
Gene rsi location Function SNPlex
BRCA2 rs144848 N372H Cancer risk [51] Yes
OGGI rs1052133 S326C Cancer risk [51] Yes
XRCCI rs1799782 R194W Cancer risk [51] Yes
rs25487 R399Q GIn399 associated with oxaliplatin/5-FU Yes
resistance
rs25489 R280H Yes
ERCC2/XPD rs|3181 K751Q Lys751 associated with improved oxaliplatin/5- Yes

FU treatment outcome [52]

TP53 rs1042522 R72P Cancer risk Failed
MGMT rs12917 262C>T, L84F Decreased repair of DNA damage [58] Yes
CHEK2 1100delC Protein truncation, cancer risk [59] No

Drug target, pathway genes

Gene rs# location Function SNPlex

DHFR rs5030762 829T>C SNP 829T>C located in the untranslated region No
of the DHFR, associated with T of DHFR
mRNA, { responsiveness to methotrexate

MTHFR rs1801133 677C>T, A222V minor allele frequency 24—46%% in Caucasians, Yes
T allele is associated with reduced enzyme
activity, increased toxicity to methotrexate [I3,

53]
rs|801131 1298A>C, E429A Reduced MTHFR enzyme activity [13, 53] Yes
TYMS 2-9 28 bp repeats in the 5' 3 repeats T RNA, TSER*3 associated with drug No
promoter enhancer resistance of 5FU and methotrexate
CDA rs2072671 79A>C, K27Q Minor allele has lower activity to inactivate Yes

gemcitabine than the wild-type [60]

208G>A, A70T 70TT has lower activity to inactive cytidine and Yes
ara-C than the wild-type [61]

Cell cycle genes

CCNDI rs603965 870A>G Alternative transcript encodes a protein with Yes
enhanced cell transformation activity, and
modifies caner risk [62]
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Figure 4
Multiplex SNaPshot genotyping assay for CYP2Dé.

example, DNA samples with the majority of signal peaks
lower than 1000 RFU (relative fluorescence units) were
discarded. In addition, DNA quality is a key factor for suc-
cessful genotyping. Genomic DNA from blood samples
and cell lines yielded high success rates. Our pilot studies
indicate that 408 SNPs (94%) produced successful geno-
typing results. This is consistent with a previous study,
where 19,779 nonsynonymous SNPs were genotyped by
SNPIex in more than 1000 samples for a genome-wide
association study [41]. The system allows 48 SNPs/panel
to be genotyped simultaneously in each well for one DNA
sample in 96-well or 384-well plate format, with a
throughput of 5-10,000 SNPs per hour.

The goal is to develop genotyping panels containing pol-
ymorphisms shown to be relevant to disease and drug
therapy. Therefore, the genotyping platform needs to be
flexible to accommodate new findings, while the number
of pertinent SNPs remains rather modest at present. In
contrast, for discovery of new candidate genes and poly-
morphisms, very large SNP panels are beginning to be the
norm. The SNPlex platform is designed for genotyping
assays involving an intermediate number of SNPs (30-
500). As each panel is multiplexed to maximally 48 SNPs,
multiple panels need to run for larger SNP panel genotyp-
ing. As reagent cost is ~$5.00 per run ($0.10/SNP), the
method is cost-effective for targeted genotyping of up to
500 to maximally 1000 candidate SNPs. Use of multiple
panels permits flexibility in genotyping for specific appli-
cations, involving just a few samples or large cohorts.
From our experience, for genotyping more than 500-
1000 SNPs in any given project, alternative methods such
as bead arrays may be more practical because of the
increasing number of SNPlex panels needed. However,
the optimal method will change rapidly on a yearly basis.

SNPlex is based on DNA ligation; therefore, its specificity
is based on the characteristics of DNA sequence. The
method can only be used to detect single nucleotide pol-
ymorphisms but commonly fails for genotyping repetitive
sequences, insertion or deletions, and duplications. In
addition, DNA sequence surrounding a specific polymor-
phism must meet specific criteria for probe design. As a
result, the design process will disqualify a number of SNPs
for SNPlex genotyping. Approximately 77% of selected
SNPs were admissible for SNPlex analysis. Different geno-
typing strategies, such as multiplexed SNaPshot, TagMan
real-time PCR or sequencing, are complementary for gen-
otyping all types of genetics variants.

An important aspect of this study is the careful selection
of candidate genes and SNPs for genotyping. One limita-
tion of the targeted SNP approach is that the panels fall
short of covering all functional SNPs. Novel genetic poly-
morphisms associated with complex diseases, such as can-
cer, are identified in an increasing pace. For example,
results from genome-wide association studies (GWAS)
continue to reveal new polymorphisms that suggest the
presence of functional variants in candidate genes [42,43].
However, the odds ratios of implicated polymorphisms in
these case control studies usually range at or below 1.5,
insufficient for inclusion with the intended genotyping
panels that are eventually geared towards establishing
clinical biomarkers for therapy. Yet, we expect that func-
tional polymorphisms with high odds ratios with respect
to specific phenotypes (e.g., treatment outcomes) will
emerge from GWAS and its follow-up studies, then to be
incorporated into the SNPlex panels. Since the SNPlex
platform is flexible and expandable, a small subset of
genetic polymorphisms, especially SNPs, could be easily
added to the panel established in the current study. In
addition, the selection of SNPs was not designed to opti-
mize haplotype tagging - commonly used to survey varia-
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Figure 5

Genotyping for UGTIAI promoter (TA)nTAA dinucleotide repeat polymorphism. The three samples are (TA),
7TAA heterozygous, and (TA);;TAA and (TA),,,TAA homozygous.

tion in a gene, and this may represent a limitation of the
present panels. Rather, the intent was to genotype a max-
imum number of SNPs either known or suspected of
being functionally relevant — with newly discovered func-
tional variants to be added in additional panels in the

future. Moreover, most of the SNPs are in the transcribed
regions. We can use these SNPs as markers for analysis of
allelic mRNA expression imbalance, a powerful means for
discovering regulatory SNPs that alter gene expression and
RNA stability. It is estimated that regulatory SNPs are
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Table 2: SNPs showing low genotyping quality or failing in the SNPlex analysis.

Panels DME

Cell cycle DNA repair

SNPs*  rs6413432 (CYP2EI) rs28371704
(CYP2D6) rs7439366 (UGT2B7)
CYPIA2_m730C_T NATIGID97

CYP2CI9GIDI CYP2CI9GID80161

rs4987138 (CYP2D7PI) rs28383479
(CYP3A5) CYP3A5GID27289
CYPIA2GID3534 NATIGID560

rs2066827 (CDKN | B/p27)
rs1799939 (RET)
rs1042522 (TP53)
rs17882155 (TP53)

rs1801321 (RADSI)
rs3219489 (MUTYH)
rs4986940 (XRCCY)
rs3218384 (XRCC2)

*For sequence information, refer to the column in Additional file | titled "Unique name in the panel".

more abundant than nonsynonymous polymorphisms
that alter the amino acids [33,34,44,45].

The selected functional SNPs in genes related to drug
response and cancer risk are readily detectable using the
methods established in the current study (Table 1 and Fig-
ure 3). Below, we briefly discuss polymorphisms of clini-
cal significance (see reviews for detailed information
[12,13]), to illustrate potential clinical applications of the
genotyping panels we have established.

Phase | metabolizing enzymes

Cytochrome P450's are Phase I drug metabolizing
enzymes harboring numerous mutations. For example,
the two most important allele variants of CYP2C9,
CYP2C9*2 and CYP2C9*3, cause a poor metabolizer phe-
notype associated with adverse warfarin effects [12]. Fig-
ure 3A shows the genotyping results with rs1057910 (Fig.
3A) in CYP2C9*3.

CYP2D6 metabolizes many commonly used drugs and is
one of the best studied cytochrome P450 enzymes, with
numerous variant alleles designated *1 to *61. The inci-
dence of CYP2D6 poor metabolizers, carrying two null
alleles, is 5-10% of Caucasians, imparting increased risk
of adverse reactions from drugs requiring 2D6 metabo-
lism for elimination. Nearly 99% of poor metabolizers
have any two of the following alleles: *3, *4, *5, *6, *7 *8
or *11 [12,46]. Our SNPlex panels include key polymor-
phisms for alleles *4, *7, *8 and *11. For example, SNP
1s3892097 (1847G>A, Fig. 3B), a common SNP in
CYP2D6*4A to *4N, causes splicing defect [47], and it
accounts for more than 75% of poor metabolizers in Cau-
casian [46]. CYP2D6*5 is a deletion of the entire func-
tional CYP2DG6 gene. In alleles *3 and *6, single
nucleotide deletions causing CYP2DG6 protein reading
frame shift are undetectable by SNPlex genotyping. Multi-
plexed SNaPshot is complementary to SNPlex and can
detect alleles *3 and *6 [31]. In addition, 4 SNPs,
11065852, 128371706, 153892097 and 1516947, overlap
in SNPlex panels and multiplexed SNaPshot, serving as a
quality control. CYP2D6 catalyzes the conversion of
tamoxifen to more potent metabolites, and poor CYP2D6
enzymatic activity has been associated with tamoxifen
treatment outcome [12].

SNP rs776746 in CYP3A5 (6986A>G, CYP3A5*3, Fig. 3D)
causes aberrantly spliced mRNA that is unstable, resulting
in severely decreases protein level in the liver. The
CYP3A5*3 allele frequency is approximately 90% in Cau-
casians [12].

Dihydropyrimidine dehydrogenase (DPYD) is a rate-lim-
iting phase I metabolizing enzyme for 5-FU inactivation
in the liver. SNP rs3918290 (Fig. 3E) is located at an RNA
splicing donor site, causing DPYD exon 14 skipping (dele-
tion) and leading to inactive enzyme. DPYD deficiency
conveys risk for severe, life-threatening 5-FU toxicity [13].

Phase Il metabolizing enzymes

For GSTP1 1105V (15947894, Fig. 3F), Val/Val homozy-
gotes express lower enzyme activity and decreased clear-
ance rate of chemotherapeutic compounds, which leads
to an increased survival following 5FU/oxaliplatin treat-
ment of colorectal cancer patients. A better survival was
also observed for breast cancer patients following treat-
ment [12].

Polymorphisms affecting acetylator phenotype are com-
mon genetic variants for the biotransformation of drugs
and carcinogens. N-acetyltransferase 2 (NAT2) polymor-
phisms are among the best studied examples in pharma-
cogenetics (Table 1 and Fig. 3G, rs1801280). These
polymorphisms affect enzyme activity and are associated
with drug toxicity and increased risk to develop certain
cancers [48].

Uridine diphosphate  glucuronosyltransferase 1Al
(UGT1A1) mediates glucocuronidation of bilirubin and
anticancer drugs, such as SN38 (active irinotecan metabo-
lite with antitumor activity). The UGT1A1*28 (promoter
(TA),TAA to (TA),TAA) is a common genetic variant
reducing UGT1A1 activity associated with irinotecan tox-
icity and hyperbilirubinaemia. Since this is a dinucleotide
repeat variation, it is not suitable for detection with
SNPlex. Fluorescently labeled PCR was designed to
amplify the repeat and flanking DNA region. The repeat
number was determined by the PCR product length (Fig-
ure 5). The SNPs in UGT1A1*6, *7, *27 and *62 are in the
SNPlex panels (Table 1 and Fig. 3H).
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Transporters

ABCB1/Multidrug resistance (MDR1) transporter is an
efflux pump. High expression of MDR1 conveys resistance
to a number of chemotherapeutic agents, including pacli-
taxel, doxorubicin and irinotecan [49]. C3435T
(rs1045642, Fig. 31) is a synonymous SNP without amino
acid change. However, the T allele has been reported to
affect RNA stability [33] and possibly translation [50] and
lead to decreased protein expression. Nevertheless, vary-
ing results have been reported about the effects of MDR1
polymorphisms on pharmacokinetics and pharmacody-
namics [12,13]; possibly, the functional polymor-
phism(s) behave differently in different tissues.

ABCG2 is another extrusion transporter that renders
chemoresistance to a variety of anticancer drugs, such as
mitoxantrone, methotrexate, doxorubicin and camp-
tothecin-based anticancer drugs [49]. The minor allele of
1s2231142 (Q141K, Fig. 3]) is associated with decreased
protein expression and results in hypersensitivity to anti-
cancer drugs in caner cell lines [12].

DNA repair genes

BRCA2 N372H (rs144848, Fig. 3K), XRCCI R399Q
(125487, Fig. 3L), and OGG1 S326C (rs1052133, Fig.
3M) are three SNPs in DNA repair genes consistently asso-
ciated with cancer risk, supported by thirty studies [51]. In
addition, the ERCC2/XPD variant Lys751Gln (rs13181,
Fig. 3N) was associated with the response to treatment
with 5-fluorouracil and oxaliplatin in colorectal cancer
patients. Lys/Lys homozygotes responded better and had
longer survival time [52]. However, contradictory results
were observed for cisplatin treatment of non-small cell
lung cancer patients [13].

Drug target/pathway genes
5,10-methylenetrtrahydrofolate reductase (MTHFR), a
key enzyme in folate metabolism, catalyzes the conver-
sion of 5,10-methylenetetrahydrofolate to 5-methyltet-
rahydrofolate, which is involved in DNA and protein
synthesis as a methyl donor [1]. SNP 151801133 (C677T,
A222V, Fig. 30) in MTHEFR is a functional variant associ-
ated with reduced MTHEFR enzyme activity in TT homozy-
gotes compared with heterozygots. As a result, the
polymorphism increases toxicity to methotrexate [53].

In summary, the selected SNPs have broad applications
for cancer research. Furthermore, the SNP panels are not
limited to genes involved in cancer treatment outcomes
with current drugs in clinical use. Hence, the developed
SNPlex panels are not only applicable to studying phar-
macogenomics/genetics of novel anticancer compounds
under development, but also any drugs for the treatment
of other diseases that are metabolized and/or transported
by these gene products.

http://www.biomedcentral.com/1755-8794/1/24

SNPlex has the advantage of being flexible and expanda-
ble for different studies, critical for translational research
applications, including clinical drug trials. With the
implementation of this platform, we have established a
pharmacogenomics core with specific application to can-
cer chemotherapy. We hypothesize that genotyping on a
large scale, both with respect to number of polymor-
phisms and subject populations, will yield valuable infor-
mation on treatment outcomes. This concept will be
applied to Phase I and II clinical trials with novel drugs or
drug combinations, in comparison to pharmacokinetic
analyses. Availability of population data across all sub-
jects, collected over several years, will support multiple
studies and has the potential to reveal novel mechanisms
affecting drug response.

Conclusion

We have established SNPlex as a platform for genotyping
more than 400 SNPs in 160 genes related to the efficacy
and toxicity of anticancer chemotherapy, and cancer risk.
The selected SNPs have broad applications for cancer
research to study pharmacogenomics/genetics of current
drugs in clinical use and novel anticancer compounds
under development. In addition, since the phase I and
phase II metabolizing enzymes and transporters are com-
mon genes in the absorption and elimination of therapeu-
tic agents for diseases other than cancer, the platform has
broad applications for pharmacogenomics studies at
large.
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