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Abstract
Background: Genomic sequencing of SNPs is increasingly prevalent, though the amount of familial
information these data contain has not been quantified.

Methods: We provide a framework for measuring the risk to siblings of a patient's SNP genotype
disclosure, and demonstrate that sibling SNP genotypes can be inferred with substantial accuracy.

Results: Extending this inference technique, we determine that a very low number of matches at
commonly varying SNPs is sufficient to confirm sib-ship, demonstrating that published sequence
data can reliably be used to derive sibling identities. Using HapMap trio data, at SNPs where one
child is homozygotic major, with a minor allele frequency ≤ 0.20, (N = 452684, 65.1%) we achieve
91.9% inference accuracy for sibling genotypes.

Conclusion: These findings demonstrate that substantial discrimination and privacy risks arise
from use of inferred familial genomic data.

Background
Genomic data are increasingly integrated into clinical
environments, stored in genealogical and medical
records[1,2] and shared with the broader research com-
munity[3,4] without full appreciation of the extent to
which these commodity level measurements may disclose
the health risks or even identity of family members. While
siblings, on average, share half of their contiguous chro-
mosomal segments, well over half of a sibling's allelic val-
ues can be inferred using only population-specific allele
frequency data and the genotypes of another sib. The
informed consent process for research and clinical
genomic data transmission must therefore include rigor-

ous treatment of accurately quantified disclosure risks for
all who will be impacted by such activity.

It is remarkably easy to positively identify a person with
fewer than 40 independent, commonly varying SNPs,
using a physical sample or a copy of those values[5]. As
DNA sequences cannot be revoked or changed once they
are released, any disclosure of such data poses a life-long
privacy risk. Unlike conventional fingerprints, which pro-
vide little direct information about patients or relatives,
SNP genotypes may encode phenotypic characteristics,
which can link sequences to people[6]. Despite these pri-
vacy issues[7,8], use of genetic sequencing is increasing in
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both forensics[9] and clinical medicine. The recent genetic
fingerprinting provision in the renewal of the federal Vio-
lence Against Women Act[10], alone, may result in one
million new sequenced individuals each year, markedly
increasing the number of available links between identi-
ties and genotypes. This genetic fingerprinting has an
impact on people beyond those directly sequenced–
genetic testing partially reveals genotypes of siblings and
other family members.

At each locus in a child's genome, each parent transmits
only one of his or her two chromosomes. If we have the
genotype of one child, and would like to use that informa-
tion to help infer the genotype of a sibling, we consider
both the known parental genotypes (for the alleles they
have transmitted to their first sibling,) and also consider
those chromosomes they have but have not transmitted.
We assume that the unknown parental alleles are drawn
from a reference population, such as one of the HapMap
populations. Now, considering the genotype of the
inferred sibling (2nd child), with probability 0.25, the sib-
ling will receive the same 2 chromosomes transmitted to
the first child, in which case they will have the same gen-
otype. With probability 0.25, the inferred sibling will
receive both previously untransmitted chromosomes, in
which case the sibling will have the same genotype distri-
bution as the reference population. If only one of the
same chromosomes is transmitted, then one chromosome
will be the same and the other will be drawn from the
population.

Methods
To quantify the risk of SNP disclosure to relatives, we
demonstrate a model for inferring sibling genotypes using
proband SNP data and population-specific allele fre-
quency databases, such as the HapMap[10,11]. We also
evaluate the probability that two people, in a selected
pool of individuals, are siblings given a match at an inde-
pendent subset of SNPs, and show that this number can
be made remarkably low with appropriate SNP selection.

Enhanced ability to infer sibling genotypes
First, consider the case where one sibling's genotype is
known to be 'AA', and the goal is to determine the proba-
bility that a second sibling's genotype will also be 'AA' at
that locus. Because there is additional knowledge–the
familial relationship between the two sibs–the prior prob-
ability of the second sib carrying a specific genotype at a
selected SNP will be altered under the new constraint. A
conditional probability expression that sums over the
nine possible parental genotypic combinations (for exam-
ple, maternal genotype 'Aa' with paternal genotype 'AA')
at a single SNP, each denoted as i can be used:

where Sib1AA and Sib2AA refer to Sib1 and Sib2 genotypes
'AA' at a selected SNP, respectively.

With unknown parental genotypes, we would calculate
p(Sib2AA) considering all nine possible parental genotype
combinations, but knowledge that Sib1 has genotype 'AA'
allows exclusion of any parental combinations where
either parent has genotype 'aa', as that would require the
transmission of at least one copy of the 'a' allele to Sib1, if
non-paternity and new mutations are excluded. HapMap
SNP population frequencies, p and q, for each selected
SNP, can be used to calculate the probabilities of each
parental combination, i. Once these values have been cal-
culated, the genotype of the first sibling eliminates possi-
ble parental genotypic candidates (Figs. 1A–C), and the
remaining probabilities are normalized.

Measuring the information content of Sibling genotype 
data
When calculating the probability of a specific Sib2 geno-
type given a known Sib1 genotype, it is possible to directly
measure the benefit of the proband genotype information
in improving Sib2 inferences. This involves measuring the
difference between the prior Hardy-Weinberg probability
for the genotype, given only population frequencies, and
the posterior probability, as calculated by the conditional
expression above. To measure the information content
provided by the first sibling's genotype, we propose the
use of a likelihood ratio test statistic, comparing models
where two individuals are known to be siblings versus two
individuals that are known to be unrelated. There are a
total of nine possible likelihood ratios, ΛInd1, Ind2 genotypes,
for each of the possible individual genotypic combina-
tions, such as Ind1 AA:
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(a-c) Refining mechanism for homozygous major SNPs: when the first sibling is homozygous major (a), homozygous minor (b), or heterozygous (c) at a given SNP, this constrains the possible parental genotypes; in the first case, five of nine parental geno-typic combinations can be eliminated (crossed boxes)Figure 1
(a-c) Refining mechanism for homozygous major SNPs: when the first sibling is homozygous major (a), homozygous minor (b), 
or heterozygous (c) at a given SNP, this constrains the possible parental genotypes; in the first case, five of nine parental geno-
typic combinations can be eliminated (crossed boxes). Using HapMap CEPH SNP population frequencies, p and q, the probabil-
ity frequencies are populated for the remaining squares, and normalized. The probability that subsequent sibs will be 
homozygous major, heterzygous, or homozygous minor can then be calculated using the probabilities that parents would con-
tribute specific allelic values. (d) For each of 30 HapMap CEPH trios, the Sib1 genotype and the SNP population frequencies are 
used (without the parent genotypes) to infer p('AA'), p('Aa'), and p('aa') for subsequent siblings. Those probabilities are then val-
idated against those that would be expected given only the parental genotypes at each SNP.
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The denominator becomes p(Ind2 genotype), which is
either p2, 2pq, or q2. This is intuitive; when considering
two unrelated individuals, the probability that the 2nd has
a specific genotype can only be identified using the popu-
lation frequencies for that genotype. The numerator is the
posterior probability expression derived in Table 1, also in
terms of p and q. The log of this odds ratio can then be
used as a statistic for measuring relatedness, depending
only on the SNP allele frequency and the Sib1 genotype
(Fig. 2).

The allele frequency, p, that maximizes this statistic can
then be found numerically for each ΛInd1, Ind2 genotypes
expression, to identify which allele frequencies and condi-
tions are most informative for genotypic inferences. These
results are below in Table 2.

Confirming sib-ship with two non-matching sets of SNP 
genotypes
The above inference technique can be extended to con-
firm sib-ship in two non-matching samples of SNP

sequence data. Given a set of matches at M independent
loci from a pool of N individuals, an expanded form of
Bayes Theorem can be used to calculate p(sibs|match at M
loci) directly:

p(match|!sibs) can be calculated for each SNP using the
population frequency; it is the probability that two unre-
lated individuals in the population would share the same
genotype, 'AA', 'Aa', or 'aa'. The expression p(match|!sibs)
is effectively the same as p(match) as long as the sample
pool, N, is large enough, as the probability of sib-ship is
very low in a large pool. For three different pool sizes, (N
= 100,000;10,000,000;6,000,000,000), we have created a
sib-ship probability surface that varies with the number of
matched SNPs and MAF of those SNPs (Fig. 3) and pub-
lished supporting values for these probabilities in Table 3.
For SNPs that commonly vary in the population, a small
number of genotypic matches are required to confirm sib-
ship.

Modeling a series of SNP inferences using a binomial 
distribution
A binomial distribution can be used to represent a series
of sibling genotypic inferences, such as the probability of
correct inferences at 50 SNP loci, if each inference meets
specific criteria. Independent inferences can be treated as
a random variable with probability p of success, as long as
independent SNPs are selected, with the same MAF and
Sib1 genotype.

where p(k, n, p) refers to the probability that k correct
inferences were made out of n attempted inferences when
the probability of success for each inference attempt is p.
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Table 1: Sib2 inference error reduction when Sib1 genotype is known. 

Sib2 Sib1 Prior Prob. Posterior Prob. Error Reduction

AA AA p2 p2 + pq + 1/4q2 |p2 - [p2 + pq + 1/4q2]|
Aa AA 2pq pq + 1/2q2 |2pq - [pq + 1/2q2]|
aa AA q2 1/4q2 |q2 - [1/4q2]|
AA Aa p2 1/2p2 + 1/4pq |p2 - [1/2p2 + 1/4pq]|
Aa Aa 2pq 1/2p2 + (2/3)-1pq + 1/2q2 |2pq - [1/2p2 + (2/3)-1pq + 1/2q2]|
aa Aa q2 1/4pq + 1/2q2 |q2 - [1/4pq + 1/2q2]|
AA Aa p2 1/4p2 |p2 - [1/4p2]|
Aa Aa 2pq 1/2p2+pq |2pq - [1/2p2+pq]|
aa Aa q2 1/4p2 + pq + q2 |q2 - [1/4p2 + pq + q2]|

The error reduction depends only on the allele frequencies, and at all frequencies, the error is reduced, improving the quality of genotypic 
inference.
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This measure will enable those who attempt to infer SNP
genotypes to calculate the probability of matching at a
subset of independent SNPs.

The cumulative binomial measures the probability of
reaching up to k successes in n trials with probability p of
success at each attempt:

If n guesses are considered (i.e. n SNPs are genotyped and
used for sib inference), F(k, n, p) is the probability that at
least k of those will be correct.

Results
Validation of SNP genotype inference using HapMap trio 
data
We then empirically infer sibling genotypic sequences
from HapMap trio child genotypes using the above tech-
nique. At 700,000 SNP loci on chromosomes 2, 4, and 7,
in each of 30 HapMap CEPH trios, the trio sibling, Sib1,

known genotypes are combined with the CEPH and glo-
bal HapMap SNP allele frequencies to produce genotypic
inferences of a hypothetical sib, Sib2, at these loci. The
inference method produces three genotypic probabilities
for Sib2 (or subsequent siblings): p(Sib2AA|Sib1genotype),
p(Sib2Aa|Sib1genotype), and p(Sib2aa|Sib1genotype) for each
SNP, which we call the SNP probability vector.

The ability to correctly infer a sibling genotype from a trio
child genotype can be validated by comparing whether
the best estimated genotype, using only the sibling geno-
type and population frequencies, matches the best esti-
mated genotype using the parental genotypic data (Fig.
1D). We do this by comparing the plural, largest, value in
the SNP probability vector, with the plural value in the
SNP probability vector that would be expected given the
parental genotypes and Mendelian Inheritance. The frac-
tion of correct inferences for SNPs where the Sib1 is
homozygous major or heterozygous versus MAF are
graphed in Figs. 4A–B, respectively. There were insuffi-
cient SNPs where the trio child was homozygous minor,
so they have been excluded from this analysis. The appen-
dix contains details about the HapMap population used
as well as the distance and scoring metric used.

For inferences at SNPs where the trio child, Sib1, was
homozygous major, with MAF < 0.05 (N =
300512,43.2%), we are able to correctly infer the geno-
type of other siblings, e.g. Sib2, with 98.5% accuracy when
using population-specific allele frequency data. At SNPs
with MAF < 0.20 (N = 452684,65.1%) we achieve 91.9%
average accuracy. For SNPs where the first sibling is heter-
ozygous, with MAF > 0.20 (N = 125796,18.1%), it is pos-
sible to infer the correct genotype of the second sibling
with 57.7% average accuracy. Without Sib1 genotypes, all
inferences for homozygous major SNPs with MAF ≥ 0.33
and heterozygous SNPs with MAF ≤ 0.33 would be incor-
rect when validated against plural parental values. At these
allele frequencies, as well as others, use of Sib1 genotypes
markedly improves Sib2 inferences.
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Log likelihood ratio test statistic for sibling inferences: for each Sib1 genotype, the log likelihood ratio for each possible Sib2 inference is shown versus MAFFigure 2
Log likelihood ratio test statistic for sibling inferences: for each Sib1 genotype, the log likelihood ratio for each possible Sib2 
inference is shown versus MAF. These charts describe how informative the Sib1 genotype is when inferring each Sib2 genotype.

Table 2: Finding the MAF that maximizes the log likelihood ratio 
test statistic for each Sib2 genotypic inference type. 

Sib2 Sib1 Maximizing MAF Log(ΛInd1, Ind2 genotypes)

AA AA 0.01 3.407
Aa AA 0.01 3.699
aa AA 0.01 3.389
AA Aa 0.99 1.396
Aa Aa 0.01, 0.99 1.407
aa Aa 0.01 1.396
AA aa 0.99 3.389
Aa aa 0.99 3.699
aa aa 0.99 3.407

The maximizing MAF is the allele population frequency at which the 
most information will be derived about the Sib2 genotype from Sib1 
under that Sib genotypic combination. Note: There are two equally 
maximizing MAF values for Log(ΛSib1Aa, Sib2Aa), 0.01 and 0.99, both 
resulting in a value of 1.407.
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Deriving propensity to disease from sibling SNP data
Additionally, sibling SNP data can be used to quantify an
individual's disease propensity through genotypic infer-
ence, without that individual's actual sequence data. For
example, the likelihood ratio test statistic above may also
be used to describe relative risk, using a multiplicative
model.

For example, the relative risk of Sib2Aa, carrying one copy
of the disease allele 'a', is provided by information from
the Sib1aa genotype:

In this example, at MAF = 0.01, the relative risk of geno-
type 'Aa' is 25.25, given information that Sib1 carries gen-
otype 'aa' at that locus. However, at MAF = 0.5, the relative

risk of genotype 'Aa' is 0.75, given information that Sib1
carries genotype 'aa', explaining that the risk of having the
genotype 'Aa' is reduced at this MAF. This may seem coun-
terintuitive, as the risk of carrying a disease allele is actu-
ally higher at this MAF, but Sib2 carrying genotype 'Aa' is
lower than in the control population, while the relative
risk of carrying the disease allele with genotype 'aa' is
higher.

At MAF 0.5, Γaa|Sib1aa is 2.25, demonstrating that it is more
likely that a disease allele will be carried by Sib2 in geno-
type 'aa' than in the control population given the Sib1 gen-
otype.

The explicit probability of developing a disease is also
altered. If an individual with genotype 'Aa' at a specific
locus has a probability pd of developing a disease by age a,
and that individual has a probability ps of having that gen-
otype given his sibling's genotype at that locus, his proba-
bility of developing that disease by age a is ps· pd. This can
easily be extended to multiple independent loci, impor-
tant for diseases in which a set of common or rare variants
dictates disease likelihood[12,13]. As SNPs are both clini-
cally informative and there is a wealth of supporting allele
frequency data, they have been the focus of our analysis,
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Sib-ship identifiability surfaces: these surfaces describe the probability of sib-ship as a function of M, the number of partially 
matched independent SNPs (between two individuals) and MAF. We show this across three sample size pools–N = (a)100,000; 
(b)10,000,000; (c)6,000,000,000 people. At high MAFs even very large increases in the potential sample pool size will not pre-
vent sib-ship confirmation with relatively few matched SNPs. For example, if loci with MAF = 0.25 are selected, the number of 
matched SNPs to confirm sib-ship with p = 0.999 is 50 with a candidate pool of 100,000 and increases to only 80, in a group of 
6 billion.
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however there are other genomic data types which should
be considered in a rigorous privacy and propensity analy-
sis, including copy number variant and mutation data.

Discussion
These findings demonstrate that substantial discrimina-
tion and privacy concerns arise from use of inferred famil-
ial genomic data. While the Genetic Information

Nondiscrimination Act of 2008 (GINA, H.R. 493),
recently passed into law, would mitigate the threat of
direct discriminatory action by employers or insurers[14],
there will continue to be other uses of genomic data that
pose privacy risks, including the use of genetic testing in
setting life, disability, and long-term care insurance pre-
miums[15]. Familial genotypic sequences can be used to
assist in forensic or criminal investigations for indirect

Table 3: Probability of sib-ship for three pool sizes.

N = 100,000

q M = 1 M = 10 M = 20 M = 30 M = 40 M = 50 M = 60 M = 70 M = 80 M = 90

0 0.00001 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
0.05 1.10E-05 2.67E-05 7.11E-05 0.000189 0.000505 0.001345 0.003578 0.009482 0.024886 0.063706
0.1 1.21E-05 6.64E-05 0.000441 0.002923 0.019099 0.114527 0.462126 0.850907 0.974301 0.996045

0.15 1.31E-05 0.000148 0.002194 0.031572 0.325877 0.87757 0.990679 0.999366 0.999957 0.999997
0.2 1.40E-05 0.000287 0.008152 0.190701 0.871059 0.994863 0.99982 0.999994 1 1

0.25 1.47E-05 0.000472 0.021816 0.512966 0.980292 0.999574 0.999991 1 1 1
0.3 1.52E-05 0.000666 0.042483 0.747176 0.994946 0.999924 0.999999 1 1 1

0.35 1.55E-05 0.000823 0.063574 0.848341 0.997835 0.999974 1 1 1 1
0.4 1.57E-05 0.000924 0.078846 0.88788 0.998637 0.999985 1 1 1 1

0.45 1.58E-05 0.000975 0.086919 0.902796 0.998898 0.999989 1 1 1 1
0.5 1.58E-05 0.000989 0.089295 0.906621 0.998961 0.999989 1 1 1 1

N = 10,000,000

q M = 1 M = 10 M = 20 M = 30 M = 40 M = 50 M = 60 M = 70 M = 80 M = 90

0 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07
0.05 1.10E-07 2.67E-07 7.11E-07 1.89E-06 5.05E-06 1.35E-05 3.59E-05 9.57E-05 0.000255 0.00068
0.1 1.21E-07 6.64E-07 4.41E-06 2.93E-05 0.000195 0.001292 0.008518 0.053991 0.274896 0.715775

0.15 1.31E-07 1.48E-06 2.20E-05 0.000326 0.004811 0.066884 0.515231 0.940333 0.995739 0.999711
0.2 1.40E-07 2.87E-06 8.22E-05 0.002351 0.063279 0.659483 0.982308 0.999372 0.999978 0.999999

0.25 1.47E-07 4.72E-06 0.000223 0.010423 0.332172 0.959166 0.999099 0.999981 1 1
0.3 1.52E-07 6.66E-06 0.000443 0.028705 0.663129 0.992431 0.999886 0.999998 1 1

0.35 1.55E-07 8.24E-06 0.000678 0.052974 0.821712 0.997374 0.999968 1 1 1
0.4 1.57E-07 9.25E-06 0.000855 0.073378 0.879899 0.998527 0.999984 1 1 1

0.45 1.58E-07 9.76E-06 0.000951 0.084983 0.900612 0.99887 0.999988 1 1 1
0.5 1.58E-07 9.90E-06 0.00098 0.088497 0.905783 0.998951 0.999989 1 1 1

N = 6,000,000,000

q M = 1 M = 10 M = 20 M = 30 M = 40 M = 50 M = 60 M = 70 M = 80 M = 90

0 1.60E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10
0.05 1.80E-10 4.44E-10 1.18E-09 3.16E-09 8.42E-09 2.24E-08 5.98E-08 1.60E-07 4.25E-07 1.13E-06
0.1 2.00E-10 1.11E-09 7.35E-09 4.89E-08 3.25E-07 2.16E-06 1.43E-05 9.51E-05 0.000631 0.00418

0.15 2.10E-10 2.47E-09 3.66E-08 5.43E-07 8.06E-06 0.000119 0.001768 0.025594 0.280299 0.852397
0.2 2.30E-10 4.78E-09 1.37E-07 3.93E-06 0.000113 0.003217 0.084701 0.726254 0.987023 0.999542

0.25 2.40E-10 7.87E-09 3.72E-07 1.76E-05 0.000828 0.037674 0.648979 0.988676 0.999758 0.999995
0.3 2.50E-10 1.11E-08 7.39E-07 4.93E-05 0.00327 0.179341 0.935717 0.99897 0.999985 1

0.35 2.50E-10 1.37E-08 1.13E-06 9.32E-05 0.007623 0.387598 0.981185 0.999767 0.999997 1
0.4 2.60E-10 1.54E-08 1.43E-06 0.000132 0.012063 0.530447 0.990523 0.999897 0.999999 1

0.45 2.60E-10 1.63E-08 1.59E-06 0.000155 0.014878 0.595717 0.993092 0.999929 0.999999 1
0.5 2.60E-10 1.65E-08 1.63E-06 0.000162 0.01577 0.613392 0.993675 0.999936 0.999999 1

In a sample pool of size N, provided below, the probability that two individuals are siblings given a match at a subset of SNPs is charted as a function 
of M, the number of independent SNPs that they match at, and the minor allele frequency, q.
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identification of genotype, increasing the number of peo-
ple who may be identified[16,17]. Similarly, Freedom of
Information Act (FOIA)[18] requests related to federally-
funded genome wide association studies could potentially
be used to identify research participants and their family
members. Clinically, choosing the detail and type of dis-
ease propensity information that must be disclosed to
patients and their potentially affected family members is
also under debate[19,20].

Quantifying the information content of disclosed
genomic data will add clarity to the informed consent
process when a patient shares genotypic data for research
use. For research investigations, it is conceivable that a
subject would want to limit the impact of her genomic
disclosure on her family members, or be asked to have a
discussion with specific family members before proceed-
ing. Providing subjects with different levels of genomic
anonymity based on their sequence data, along with an
estimate of the probability of re-identification and famil-
ial impact for each of those anonymity levels, will allow
patients to trade off altruistically motivated sharing[21]
with privacy consideration, especially when they volun-
teer to share all the variants in their genome[22].

While the inference accuracy rates are very high, particu-
larly for inferences where Sib1 has a homozygous major
genotype, we would like to caution that some of these
findings are not always highly informative. For example,
if the MAF is 0.01, where 99% of the alleles in the popu-
lation are the major allele, the prior probability for a

homozygous major allele is 0.99*0.99 ≅ 0.98. If Sib1 has
a homozygous major allele, the posterior probability of
observing a homozygous major allele in another sibling is
(1/4 + 1/4*0.99*0.99 + 1/2*0.99) ≅ 0.99. In this case, the
difference between prior and posterior probabilities is
only 0.01, and knowledge of the Sib1 genotype provides
very little information, as most accuracy comes from the
allele frequency in the population.

However, homozygous minor alleles are much more
informative. With a MAF of 0.2, if Sib1 has a homozygous
minor genotype, the probability of Sib2 having the same
genotype, given only the reference population is 0.04.
Given that Sib1 has a homozygous minor genotype, Sib2
will have a homozygous minor allele with probability of
(1/4 + 1/4*0.2*0.2 + 1/2*0.2) = 0.36, which is quite dif-
ferent from the prior probability of 0.04.

One limitation of this study is that the population-based
estimates for MAF rely on the HapMap study population
sizes, which, at present, are small, though these types of
sources will continue to expand. For example, the CEPH
population contains 90 participants, so each trio child
contributes 1/90th of the allele frequency data used in the
study. This approach also depends on the independence
of the loci considered, and would need to be adapted for
SNPs that are in linkage disequilibrium. Extending this
study to include linked SNP loci is possible, using the hap-
lotype block information for HapMap populations that is
available. To ensure that SNPs are independent, linkage
data from the HapMap population can be used to confirm

Fraction of correct Sib2 inferences: the fraction of Sib2 SNPs that can be correctly identified when Sib1 is (a)homozygous major or (b)heterozygousFigure 4
Fraction of correct Sib2 inferences: the fraction of Sib2 SNPs that can be correctly identified when Sib1 is (a)homozygous 
major or (b)heterozygous. Each line represents use of distinct data–inclusion or exclusion of Sib1 genotypes, and use of popu-
lation-specific or global allele frequency data. Without Sib1 genotypes, homozygous major inferences would always be incor-
rect at MAF ≥ 0.33 and heterozygous inferences would always incorrect at MAF ≤ 0.33. At many allele frequencies, use of Sib1 
genotypes dramatically improves Sib2 inferences.
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independence, and SNPs that are far from one another
may be selected. Additionally, this approach does not
consider the possibility of genotypic errors, which may be
common on some platforms. An adjustment using a bino-
mial probability distribution could be used to account for
possible errors.

Conclusion
Technologies for sequencing large numbers of SNPs are
rapidly dropping in cost, which will help realize the
promise of personalized medicine, but pose substantial
personal and familial privacy risks. While electronic stor-
age and transmission of genetic tests is not yet a common
component of medical record data, these tests will soon
be stored in electronic medical records and personally
controlled health records[23]. This mandates the need for
improved informed consent models and access control
mechanisms for genomic data. The increasingly common
practice of electronically publishing research-related SNP
data requires a delicate balance between the enormous
potential benefits of shared genomic data through NCBI
and other resources, and the privacy rights of both
sequenced individuals and their family members.
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Appendix
HapMap CEPH and global population SNP genotypes and 
allele frequency data
The demographic data used in this project are population-
specific SNP allele frequencies from the CEPH HapMap
population, Utah residents with ancestry from northern
and western Europe, and the global SNP allele frequencies
(from all populations that participated in the Hap-
Map)[10] The HapMap project has compiled allele fre-
quency values for a large selection of SNPs – loci in the
genome that account for a great deal of genetic variability
in populations. Within the CEPH population, there are 30
familial trios, each containing one mother, father, and
child. Additionally, the individual genotypes of the 90
CEPH trio participants are directly used in this study. One
limitation of this population specific allele frequency
database is the small size of each HapMap population –
the CEPH population contains 90 participants, and as

such, each trio child contributes 1/90th of the allele fre-
quency data that are used in the study.

Inferring sibling genotypic sequences from HapMap trio 
children
Here, we explore a specific example of sibling genotypic
inference in greater depth, considering the case where one
sibling's genotype is known to be 'AA', and the goal is to
determine the probability that the second sibling's geno-
type will also be 'AA' at that locus. The conditional prob-
ability expression that sums over the nine possible
parental genotypic combinations (for example, maternal
genotype 'Aa' with paternal genotype 'AA') at a single
SNP, with each specific parental genotypic combination
denoted as i can be used:

where Sib1AA and Sib2AA refer to Sib1 and Sib2 genotypes
'AA' at a selected SNP, respectively.

With unknown parental genotypes, we would calculate
p(Sib2AA) considering all nine possible parental genotype
combinations, but knowledge that Sib1 has genotype 'AA'
allows exclusion of any parental combinations where
either parent has genotype 'aa', as that would require the
transmission of at least one copy of the 'a' allele to Sib1, if
non-paternity and new mutations are excluded.

For example, when the child is homozygous major, all
possible parental genotypic candidates that involve one or
both parent genotypes of 'aa' are excluded, as it is not pos-
sible to have a child with genotype 'AA' if either parent
does not have at least one copy of the 'A' allele. In this
case, there are four possible parental genotypic combina-
tions:

which allows calculation directly from the SNP popula-
tion frequencies. Before knowledge of the Sib1 genotype
was used, p(Sib2AA) would have been the Hardy-Wein-
berg frequency for major homozygotes, p2. However, with
the Sib1 genotype, p(Sib2AA|Sib1AA), the additional con-
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straint increases the probability to p2+pq+(q2/4), increas-
ing inference accuracy by pq+(q2/4).

The remaining entries in the probability vector,
p(Sib2Aa|Sib1AA), and p(Sib2aa|Sib1AA), can then be cal-
culated just as we have done for p(Sib2AA|Sib1AA) above.
Again, these probabilities have been generated without
any actual knowledge of the parent genotypes. If the Sib1
genotype were instead 'Aa' or 'aa', the above technique
can similarly be used (with a different combination of
possible parental genotypes) to calculate the two other
probability vectors, [p(Sib2AA|Sib1Aa), p(Sib2Aa|Sib1Aa),
p(Sib2aa|Sib1Aa)] and [p(Sib2AA|Sib1aa), p(Sib2Aa|Sib1aa),
p(Sib2aa|Sib1aa)].

Validating the sibling genotype probability vector using 
parental genotypic data
To validate the results of the refining strategy on inferring
the second sibling genotype, the authentic parental geno-
types are used to create the probability vector p('AA'),
p('Aa'), p('aa') at the SNP being evaluated, for the children
the pair would be expected to have. For each of the trio
pairs at each of the SNPs being tested, the probability vec-
tor was calculated.

Error reduction calculation
The error reduction measurement identifies the extent to
which inference error is reduced. For example, where we
are trying to infer the probability that Sib2 has genotype
'AA' at a specific SNP, we calculate the absolute value of
the difference between our best inference and the Hardy
Weinberg probability for Sib2 to have genotype 'AA', using
population-specific allele frequency data and the Sib1 gen-
otype, |p(Sib2AA|Sib1genotype)-p(Sib2AA)|. This value is
specifically the improvement to the probability value
from the new data, when inferring the specific event that
Sib2 will have genotype 'AA' and Sib1 will have the specific
genotype in question.

Any change to p(Sib2AA) must also correspond with the
opposite change in the sum of p(Sib2Aa) and p(Sib2aa). To
accurately represent the overall error reduction by Sib1
genotype, with any of three possible Sib2 genotypes, the
average of the three values is measured. For example,
where the Sib1 genotype is 'AA', the overall average
improvement (and error reduction) is the average of
|p(Sib2AA) - p(Sib2AA|Sib1AA)|, |p(Sib2Aa) -
p(Sib2Aa|Sib1AA)|, and |p(Sib2aa) - p(Sib2aa|Sib1AA)|.

Scoring metric for calculating correct fraction of 
inferences
To ascertain whether the inferences are helpful for produc-
ing correct answers, a scoring metric was used to calculate
the fraction of correct SNP inferences, in our empirical
inference validation study. For each SNP inference, the

scoring metric provides a full point when the plural entry
in the inference vector, (the maximum of p('AA'), p('Aa'),
and p('aa'), and thus the predicted sib genotype), matches
the plural entry in the parental validation vector (the
empirical most likely genotype). Given the parental geno-
type values, it is possible, and not infrequent, that a vali-
dation probability vector has two matching plural values,
for example, if p('AA') = p('Aa') = 0.5. When this is the
case, one half point was awarded if the plural value in the
inference vector matched one of the two validation
choices, to signify that one of the two equally likely candi-
dates was chosen.

There are some conditions that arise from use of a simple
scoring metric, where it becomes difficult to score well.
For example, a heterozygous Sib1 will likely result in a 0.5
score for inferences. A score of 1 point would be possible
if one parent had a genotype of 'AA' and the other had
genotype 'aa', making the probability that the parents
would have a child with genotype 'Aa' equal 1. Most
remaining parental combinations would not result in the
probability of child genotype 'Aa' equal to 1, and would
likely result in only a half point. These values can be
adjusted using machine learning techniques or more
robust decision making algorithms, but those are out of
the scope of this work.
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