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Abstract

Background: Strong epidemiologic evidence correlates tobacco use with a variety of serious
adverse health effects, but the biological mechanisms that produce these effects remain elusive.

Results: We analyzed gene transcription data to identify expression spectra related to tobacco
use in circulating leukocytes of 67 Caucasian male subjects. Levels of cotinine, a nicotine metabolite,
were used as a surrogate marker for tobacco exposure. Significance Analysis of Microarray and
Gene Set Analysis identified 109 genes in 16 gene sets whose transcription levels were differentially
regulated by nicotine exposure. We subsequently analyzed this gene set by hyperclustering, a
technique that allows the data to be clustered by both expression ratio and gene annotation (e.g.
Gene Ontologies).

Conclusion: Our results demonstrate that tobacco use affects transcription of groups of genes
that are involved in proliferation and apoptosis in circulating leukocytes. These transcriptional
effects include a repertoire of transcriptional changes likely to increase the incidence of neoplasia
through an altered expression of genes associated with transcription and signaling, interferon
responses and repression of apoptotic pathways.

Background predict breast cancer aggressiveness [2], and microarray-
Gene expression profiling has become a powerful  driven approaches have been used to analyze cardiovascu-
approach to the study of molecular pathophysiology and  lar diseases such as hypertension, heart failure, cardiac
is a potentially useful diagnostic tool in multiple fields  rejection, and atherosclerosis [3-5]. Ideally, gene expres-
[1]. Oncologists have applied gene expression profilingto  sion profiling is performed on the specific cell type and
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tissue of interest, i.e. the tumor, myocardium, or
atheroma. However, sampling target tissues from humans
is often problematic, and data derived from tissues not
routinely available to clinicians limits the diagnostic util-
ity of this approach.

For the study of biological processes that involve an
inflammatory response, gene expression profiles can be
obtained from circulating leukocytes [6]. Due to the ease
of sampling, gene expression profiling of circulating leu-
kocytes has been applied to the study of cancer [7],
atherosclerosis [8,9], and systemic lupus erythematosus
[10]. These studies demonstrate the utility of transcrip-
tional analysis of peripheral blood in the study of disease
states having a systemic, inflammatory component.

Tobacco use, whether by smoking or chewing, is associ-
ated with the development of many diseases. People who
smoke more than 20 cigarettes per day have a 3-6 fold
increased incidence of myocardial infarction [11] and
increased overall rates of cardiovascular mortality com-
pared to those who have never smoked [12]. The risk of
developing lung cancer is 20-fold increased in cigarette
smokers [8], and smokers are at increased risk of develop-
ing chronic obstructive pulmonary disease, multiple can-
cers (e.g. esophageal, bladder, and leukemia),
pneumonia, osteoporosis, and periodontal disease [13].
Despite these major adverse health effects, more than
20% of American adults identify themselves as active
smokers [14].

The mechanistic link between tobacco smoking and
related diseases remain incompletely understood. To date,
there have been numerous reports analyzing the effect
that exposure to cigarette smoke has on the gene expres-
sion profiles of various cell types [15-22]. However,
despite this detailed analysis, very little consensus
amongst findings has been reported, even when the same
cell type has been studied [16]. This lack of significant
overlap in conclusions may be the result of the considera-
ble heterogeneity in methodology as well as the relatively
small (on average 5-10 test subjects) sample populations
in each study. Furthermore, many of these reports rely on
the in vitro exposure of cells to cigarette smoke conden-
sate, raising the obvious issue of physiological relevance
amongst these various studies.

Here we report a novel method for analyzing the in vivo
effects of tobacco use on gene expression in circulating
leukocytes. The purpose of this study is not to identify
biomarkers associated with tobacco use; rather, our
approach is aimed at identifying changes in genes and
gene sets that result from tobacco use and applying this
information to identify potential cellular pathways associ-
ated with tobacco-dependent pathology. Our results indi-
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cate that tobacco use affects pathways that control cell
death, response to stress, macromolecular metabolism
and the inflammatory cascade, providing new insights
into the systemic effects of smoking that may underlie
tobacco-related diseases.

Methods

Subject Population

Subjects between the ages of 18 and 50 years (inclusive)
referred to UNC Hospitals were considered for enrollment
in this University of North Carolina Institutional Review
Board-approved study (IRB 04-MED-471). Exclusion cri-
teria included current cancer treatment, pregnancy, lym-
phoma, leukemia, chronic immunosuppressive therapy,
infection with HIV or HCV, history of solid organ trans-
plant, and anemia (i.e. conditions which might alter
peripheral blood counts or patterns of gene expression).
After obtaining informed consent for a one-time blood
donation, subjects were interviewed for pertinent medical
information, including a detailed history of tobacco use,
family history of heart disease and diabetes. Blood cell
counts including a white blood cell differential analysis
was performed to ensure consistency in cell subtype
number between study populations.

Blood Withdrawal and Processing

Blood (30 ml) was drawn early in the day from subjects
fasted for at least 8 hours to minimize the signals associ-
ated with nutritional and diurnal cycles from the microar-
ray data. Processing was begun within 15 minutes of the
time of blood draw. Eight ml were collected into a tube
containing EDTA and proteinase inhibitors (Becton, Dick-
inson and Co., Cockeysville, MD) to provide a sample of
plasma for cotinine assays. The balance of blood was col-
lected into Na-EDTA Vacutainer tubes (Becton, Dickinson
and Co., Cockeysville, MD). Whole blood was treated
with 10 volumes of carbonate-buffered 150 mM NH,Cl to
lyse red blood cells. The remaining leukocytes were
washed and concentrated by centrifugation [23,24]. RNA
and DNA were recovered from leukocytes using a modi-
fied one-step acid guanidinium isothiocyanate-phenol-
chloroform extraction (RNA-STATGO0, Tel-Test, TX). RNA
was subsequently post-purified using the RNeasy Mini-kit
(Qiagen, Valencia, CA). RNA quantity, purity, and integ-
rity were assessed by spectrophotometry and microcapil-
lary electrophoresis on an Agilent BioAnalyzer 2100.
Complete processing of samples occurred within 2 hours,
exceeding the standards set by the Consortium for Expres-
sion Profiles in Sepsis [25]. Plasma cotinine levels were
determined by competitive ELISA using the Serum Coti-
nine Assay Kit (BioQuant; San Diego, CA) essentially as
described by the manufacturer.
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Gene Expression Profiling

We utilized a "sample x reference" experimental design
strategy in which RNA from each subject was hybridized
to the microarray slide in the presence of labeled human
reference RNA (UHRR, Stratagene, La Jolla, CA) [26,27].
Briefly, total RNA (500 ng) was used for gene expression
profiling following reverse transcription and T-7 polymer-
ase-mediated amplification/labeling with Cyanine-5 CTP.
Labeled subject cRNA was co-hybridized to Agilent
G4112A Whole Human Genome 44 K oligonucleotide
arrays with equimolar amounts of Cyanine-3 labeled
UHRR. Slides were hybridized and washed, then scanned
on an Axon 4000b microarray scanner. The data were
processed using GenePix Pro 6 software and entered into
the UNC Microarray Database [28].

Quantitative Real Time Polymerase Chain Reaction (qRT-
PCR) analysis

Three hundred nanograms of total RNA were reverse tran-
scribed using the iScript Synthesis cDNA Kit (Biorad, Her-
cules, CA). Real-time PCR reactions were performed using
either the Roche Universal Probe Library (Roche Diagnos-
tics, Mannheim, Germany) or pre-validated Tagman®
assays (Applied Biosystems, Framingham, MA). Primers
and probes for the indicated human transcripts were
designed using Probe Finder (version 2.41, Roche Diag-
nostics, Mannheim, Germany): CDKNI1C (left primer
GAGCGAGCTAGCCAGCAG, right primer GCGACAA-
GACGCTCCATC, probe #77); CX3CR1 (left primer CTCT-
GGCTITCTGGGTGGAG, right primer
AGACCACGATGTCCCCAATA, probe #30); SASH1 (left
primer CAGATCCGGGTGAAGCAG, right primer GAGTC-
CACCACTTGGAATCG, probe #38); RPS29 (left primer
CCAAGAACTGCAAAGCCATC, right primer GGCATT-
GGTGACTCTGATGA, probe #26); and 18S (left primer
GGAGAGGGAGCCTGAGAAAC, right primer TCG-
GGAGTGGGTAATITGC, probe #40). PITGDR and
HRASLS3 were measured using Tagman® assays
Hs00235003_m1 and Hs00272992_m1l, respectively.
Real-time PCR reactions were performed using the ABI
PRISM® 7900 sequence detection system, software, and
reagents. Relative changes in gene expression were calcu-
lated using the delta Ct method using ribosomal 18S to
normalize RNA input. Statistical significance was deter-
mined using the Student's t test. P values less than 0.05
were considered significant.

Statistical Methods

Microarray data were normalized via the loess local inten-
sity normalization [7,29], and probes were filtered for fea-
tures having a normalized intensity of < 30 aFU in either
channel. Probes were removed if < 70% of the data were
present across all samples. Missing data points were
imputed using the k nearest-neighbors algorithm (k = 10).
18,375 probes passed these filters, and were subsequently
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used for analysis. Scripts written in the R Statistical Lan-
guage and Environment ("R"; Version 2.2.1, build
136812, release date 2005-12-20.) and Perl (ActiveState
Perl 5.8.1, build 807, release date 2003-11-6) were used to
standardize (u = 0, o = 1) each sample in the data set.

Statistical Analysis of Microarrays (SAM)

Lists of differentially expressed genes were identified using
the statistical analysis of microarray algorithm [30-32]
(SAM, Version 2.21, release date 2005-8-24; typical false
discovery rate of approximately 10%). Unsupervised,
semi-supervised, and supervised clustering analysis was
performed on gene lists essentially as described [33] using
Cluster, version 2.11[34]. Heat maps of cluster analyses
were visualized with JavaTreeView, version 1.0.12 [35,36].

Gene Set Analysis (GSA)

GSA [37,38] was performed using the Molecular Signa-
tures Database (MSigDB) [39] to identify gene set activity
associated with cotinine levels. Mapping to gene ontology
categories (GO) [40] and identification of putative tran-
scription factor binding sites was performed on gene lists
using the GATHER web-based analysis environment [41-
43] using the TRANSFAC V7.0 (public) database [44-47].

Hyperclustering

A median-centered gene list was used for cluster analysis
to identify relationships between subject samples (arrays).
The clustering file was then used as the basis for a new pre-
clustering file to incorporate gene annotation data. Genes
were assigned to GO and TRANSFAC categories using the
GATHER web interface [42]. Categories showing statisti-
cal enrichment (p value < 0.01) were identified, and each
gene in the pre-clustering file was annotated as to its
membership in the appropriate category. The TRANSFAC
predictions of transcription factor binding sites were des-
ignated in the pre-clustering file by the value representing
the median-centered mean fold change expressed as the
Log, of the ratio of each sample to the reference for each
gene. This method of indicating membership was chosen
to reflect a relationship between expression level (as
measured by microarray) and presence or absence of tran-
scription factor binding sites. Gene membership in GO
categories was indicated by a binary value of either 1.00 or
0.00 as a placeholder for the expression ratio. Blue color
was added after the fact to heat maps indicating Gene
Ontology membership to avoid confusion with expres-
sion values. The annotated pre-clustering file was then
clustered on only the Y axis (genes) to preserve relation-
ships among arrays. This technique, which we have desig-
nated "Hyperclustering," allows both the gene expression
data and various other forms of annotation to be repre-
sented as a single heat map, effectively illustrating func-
tional relationships among genes.

Page 3 of 13

(page number not for citation purposes)



BMC Medical Genomics 2008, 1:38

Results and discussion

Subject Selection for Gene Expression Analysis

Initial analysis of the gene transcription data from a
cohort of 171 individuals revealed strong signals related
to the race and gender of the subject (unpublished obser-
vations). Similar signals have been described in other
microarray experiments. These signals can hinder
attempts to identify signals related to the biological effect
being studied [48]. For this reason, we selected the largest
cohort in our dataset (Caucasian males) to maximize the
statistical power of our analysis. We adopted a case-con-
trol approach to our study design and data analysis.
Selected subject demographics are presented in Table 1.

Tobacco Use Determination

Self-reported tobacco use history is notoriously inaccurate
[49-51]. For purposes of this study, we defined tobacco
use status by the subject's plasma cotinine concentration.
Cotinine, the principle metabolite of nicotine, is a reliable
surrogate marker of tobacco use [52,53]. It has a plasma
half-life of approximately 24 hours (as opposed to nico-
tine's in vivo half-life of 30 minutes) and tends to reach
steady state levels that vary by only 15%-20% in people
with regular smoking habits [52]. As seen in Figure 1, the
distribution of plasma cotinine is similar in both the Cau-
casian male subpopulation under study and a larger
cohort of 171 subjects, with strong bimodal peaks near 0
ng/mL and 150 ng/mL. Cutoffs of plasma cotinine for the
definition of active tobacco users and non-users were set
at > 100 ng/mL and < 50 ng/mL, respectively, based on
previously reported values [52,53].

Table I: Selected demographics of study subjects.
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Using these criteria, 24 subjects were classified as tobacco
users and 38 as non-tobacco users, with 5 subjects having
cotinine levels that fell between 50 and 100 ng/mL. These
5 intermediate subjects were removed from further con-
sideration. Comparing each subject's plasma cotinine val-
ues with their self-reported tobacco use status revealed
overall consistent results (i.e. a high cotinine value for
subjects who self-reported that they were active tobacco
users). Nevertheless, there were notable exceptions. Seven
subjects reported that they were non-tobacco users, yet
had plasma cotinine levels > 100 ng/mL. Errors in this
dimension could be explained by subject misrepresenta-
tion or failure of the subjects to disclose nicotine replace-
ment therapy as part of a smoking cessation plan (use of
nicotine patches or gum). Interestingly, 3 subjects identi-
fied themselves as active smokers, yet had very low plasma
cotinine levels. Rapid metabolism of nicotine, smoking of
a small number of cigarettes daily, or the use of extremely
low-nicotine smoking products could all account for this
discrepancy. This discrepancy in self-reported tobacco use
and plasma cotinine levels did not appreciably alter the
results of our studies (data not shown). All subjects were
categorized based only on plasma cotinine levels only.
The 2 subject groups will henceforth be referred to as
"high cotinine" (i.e. tobacco users) and "low cotinine"
(i.e. non-tobacco users). Using this criterion, those sub-
jects reporting to be "smokers" but who had low plasma
cotinine levels were included in the low cotinine group
while subjects with high cotinine levels who denied
smoking were included in the high cotinine group. To
ensure that patient co-morbidities did not influence the
gene expression profile, we performed principal compo-
nents analysis (PCA) on the expression values of genes

Low Cotinine High Cotinine
Number of subjects 38 24
Mean Age + SD 47 £ 9 46 £ 5
COPD 2 (5.3%) 4 (16.7%)
Diagnosis of Diabetes (Number (% of total)) *Any 13 (34%) 2 (8.3%)
Type | 2 (5%) | (4%)
Type 2 Il (29%) | (4%)
CAD Family History 20 (53%) 15 (63%)
Hyperlipidemia 24 (63%) 16 (67%)
Automated Differential Blood Count White Blood Cells (x 10%/L + SD) 842 £ 2.67 9.00 + 2.41
Neutrophils (x 10%/L + SD) 5.67 £2.18 5.76 + 1.94
Lymphocytes (x 10°/L + SD) 1.90 + 0.68 231 +0.74
Monocytes (% 10%/L + SD) 042 +0.18 0.46 £ 0.21
Basophils (x 10°/L + SD) 0.06 + 0.04 0.06 + 0.04
Eosinophils (x 10°/L + SD) 022 +£0.18 0.26 £ 0.14

Platelets (x 10%/L + SD)

252.42 + 73.97 250.67 + 56.06

CAD = Coronary Artery Disease, SD = Standard Deviation, L = liter, fL = femtoliter, dL = deciliter, G = gram, pG = picogram, COPD = Chronic
Obstructive Pulmonary Disease. For Student's T-test, automated cell counting values were recalculated as values per gram or liter, and log2

normalized prior to determination of p-Value.

* Fisher's Exact Test shows significant differences between low and high cotinine at p = 0.0315 (2-tail)
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Histogram of plasma cotinine concentration. Distribu-
tion of plasma cotinine levels in the total population as well
as in the Caucasian male sub-population are demonstrated.
Vertical lines represent selected cut-offs for definitions of
tobacco users and non-users.

identified in this paper using the combined significant
gene list and visualized in the context of COPD, diabetes,
CAD class, and smoking status (Additional File 1). As
expected, the top component of variation appears to be
associated only with smoking status.

Transcriptional Signals of Tobacco Use

The subjects were stratified based upon the results of the
cotinine assay, and differential gene expression was deter-
mined by SAM. We identified 38 genes as being differen-
tially expressed (8 genes up-regulated, 30 genes down-
regulated in the high-cotinine group) at an 11.7% FDR
(Table 2). Notable among this list were genes involved in
apoptosis, cell cycle regulation, and oncogenesis.

Visual inspection of the SAM-identified genes revealed
that a number of differentially expressed genes are
involved in the cell cycle control Gene Ontologies. CTCF
was down regulated in the high cotinine group. Mutations
in this gene have been associated with a variety of cancers
[54]. Furthermore, CTCF plays an important role in the
regulation and differentiation of human myeloid leuke-
mia cells, adding another possible underlying mechanism

http://www.biomedcentral.com/1755-8794/1/38

of leukemiagenesis in tobacco users [55]. Conversely, we
found that SASH1 (which is implicated in tumorogenesis
of colorectal and breast cancer) was up regulated [56].
Interestingly, CX3CR1 was significantly down regulated in
the high cotinine group. As CX3CR1 is up-regulated in
atherosclerotic lesions [57], we expected it to be up-regu-
lated in circulating leukocytes of tobacco users due to the
increased incidence and severity of CAD in this popula-
tion (reviewed by Njolstad [11]). However, Barlic, et al.,
showed that macrophage up-regulation of CX3CR1 leads
to retention of those cells in vessel walls [57]. As the kinet-
ics of the up-regulation of this gene are ill-defined, and it
is not yet clear whether circulating monocytes differen-
tially express CX3CR1 prior to tissue macrophage transfor-
mation, considerably more study will be necessary to
elucidate what role it may play in the pathogenesis of
smoking-related atherosclerotic disease.

Further analysis identified genes involved in apoptotic
pathways. The pro-apoptotic genes C1D, MTCBP-1, CTCF,
IKIP, MAF, and YWHAQ were all significantly down regu-
lated in the high cotinine group. C1D (also known as
SUNCOR) is representative of this group. C1D is a multi-
functional nuclear protein with DNA-binding properties.
When CI1D is experimentally over-expressed it activates
DNA-PK, inducing apoptosis [58]. On the other hand, the
c-terminal modulator protein (CTMP, also known as
THEM4) was significantly over-expressed in the high coti-
nine population. CTMP protein stimulates the phosphor-
ylation of AKT/PKB, increasing glucose uptake and
blocking apoptosis [22]. The relative mean fold change
was modest for most of these genes (Table 2); neverthe-
less, in subjects with high plasma cotinine the overall
expression pattern of these genes is anti-apoptotic com-
pared to low cotinine subjects. The combination of
increased cell cycle activity, resistance to apoptotic trig-
gers, increased expression of oncogenes, and decreased
expression of tumor suppressor genes in circulating leuko-
cytes suggests a mechanism responsible for the low-level,
systemic, increased risk of oncogenesis in patients who
use tobacco products.

Testing for differential expression of individual genes does
not take advantage of our knowledge of the underlying
relationships. Therefore, additional power can be gained
by testing for differential expression of gene sets that
underlie a common biological process [37,38,59]. This
idea motivated the development of techniques that pair
local statistics of individual gene expression with global
statistics based on membership in defined pathways and
functional groups. One such algorithm, Gene Set Analysis
(GSA), was implemented using the Molecular Signatures
database (MSigDB). The GSA algorithm identified 16
gene sets at a p-value < 0.0001 and FDR of 0%. The top
three MSigDB pathways were "Death Pathway,"
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Table 2: Differentially expressed genes identified by SAM analysis.
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Down-regulated in High Cotinine Subjects

Gene Symbol Gene Name Accession Number Agilent Probe ID Mean FC
HRASLS3 HRAS-like suppressor 3 NM 007069 A _23 Pll6414 1.5
CX3CRI Chemokine (C-X3-C motif) receptor | NM_001337 A_23_P407565 1.3
GPR56 G protein-coupled receptor 56 NM_005682 A_23_P206280 1.3
PTGDS Prostaglandin D2 synthase 21kDa (brain) NM_000954 A_23_P146554 1.3
FLJ23262 BC043173 A_24_P20996 1.2
BRDI Bromodomain containing | NM 014577 A_23_Pl66536 1.2
BZRAPI Benzodiazapine receptor (peripheral) associated protein | NM_004758 A_23_P152559 1.2
CID Nuclear DNA-binding protein NM 173177 A_23_P67992 1.2
FLJ23262 BC043173 A_24_P20996 1.2
CTCF CCCTC-binding factor (zinc finger protein) NM_006565 A_24_P347704 1.2
DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 NM_058246 A_24 P63827 1.2
ENST00000320343 ENSG00000177197  A_24_P75688 1.2
FLJ35696 NM_207387 A_23_P368484 1.2
GNG2 Guanine nucleotide binding protein (G protein), gamma NM 053064 A_32_P208403 1.2
HS6STI Heparan sulfate 6-O-sulfotransferase | AL831893 A_24 P8220 1.2
IKIP IKK interacting protein NM 201613 A_23_P53467 1.2
KLRK Killer cell lectin-like receptor subfamily K, member | NM_ 007360 A_23_P218058 1.2
MAF V-maf musculoaponeurotic fibrosarcoma oncogene homolog AF055376 A_24 P256219 1.2
(avian)
MGCé61571 NM_ 182523 A_24_P408740 1.2
MTCBP-1 Membrane-type | matrix metalloproteinase cytoplasmic tail NM 018269 A_23_P148194 1.2
binding protein-|
AL137798 NM_032723 A_23_P126486 1.2
OSBPL5 Oxysterol binding protein-like 5 NM_ 145638 A_23_P5308lI 1.2
PPPICB Protein phosphatase |, catalytic subunit, beta isoform NM_206877 A_23_P83414 1.2
PPPIRI2B Protein phosphatase I, regulatory (inhibitor) subunit 12B NM_00248] A_23_P201790 1.2
PPP2R2B Protein phosphatase 2 (formerly 2A), regulatory subunit B (PR NM 181678 A_23_P213620 1.2
52), beta isoform
SLC25A20 Solute carrier family 25 (carnitine/acylcarnitine translocase), NM_000387 A_23_P72025 1.2
member 20
SLC9A3RI Solute carrier family 9 (sodium/hydrogen exchanger), isoform 3 NM_004252 A_23_P308519 1.2
regulator |
SULF2 Sulfatase 2 NM_198596 A_23_P154605 1.2
YWHAQ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase NM_006826 A_24_P199905 1.2
activation protein, theta polypeptide
PTGDR Prostaglandin D2 receptor (DP) NM_000953 A_23_P393777 1.1

Up-regulated in High Cotinine Subjects

Gene Symbol Gene Name Accesion Number Agilent Probe ID Mean FC
SASHI SAM and SH3 domain containing | NM_015278 A_23_P93442 1.4
BC107798 NM 003283 A_23_P56050 1.4
AL442066 AL442066 A_23_PI123645 1.3
DNAPTP6 DNA polymerase-transactivated protein 6 NM_015535 A_23_PI131255 1.3
CIGALTI Core | UDP-galactose:N-acetylgalactosamine-alpha-R beta I,3- NM_020156 A_23_P252145 1.2
galactosyltransferase

RGLI Ral guanine nucleotide dissociation stimulator-like | NM 015149 A_23 PI15417 1.2
CTMP C-terminal modulator protein NM 176853 A_23_PI149375 1.2
LOC283174 Hypothetical protein LOC283174 NM 001001873 A_24 P904484 1.2
"Dac_IFN_Bladder_Up," and totic genes) were up regulated while CASP9, FADD, and

"Metastasis_Adenocarcinoma" (Table 3). Although many
of the genes comprising these sets did not reach statistical
significance individually, taken as a group they were
highly significant. Genes related to apoptosis and type I
interferon response were common elements in all of these
pathways. Among genes involved in the MSigDB "Death
Pathway," expression of BIRC3 and TRAF2 (anti-apop-

STK17A (pro-apoptotic genes) were down regulated in the
high cotinine group. This overall expression pattern is
indicative of an anti-apoptotic phenotype, which charac-
terizes virtually all cancers. These observations suggest
that transcriptional profiles associated with tobacco use
may indicate pre-cancerous tendencies. The 71 genes
present in the top 3 pathways (Table 3) were added to the
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Table 3: Summary of GSA.
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Gene Set Pathway Description P-value FDR
DEATHPATHWAY (c2:161)[71] Genes involved in signaling via Fas and DR3, 4, and 5. <0.0001 0
METASTASIS_ADENOCARC_DN (c2:1553)[72] Genes involved in metastasis of solid tumors. < 0.0001 0
DAC_IFN_BLADDER_UP (c2:1304)[73] Interferon responsive genes upregulated by DAC treatment. < 0.0001 0

Top 3 gene sets (71 total genes) identified by GSA comparing gene expression profiles of subjects with high plasma cotinine versus low plasma
cotinine, showing the names of differentially expressed gene sets as defined by Gene Set Enrichment Analysis [70] with accompanying p-value and

FDR.

list of 38 SAM-identified genes to enrich the gene list that
was used for further analysis. This list of 109-pooled genes
is available as Additional file 2.

Pattern Identification via the Hyperclustering Technique
Differentially expressed genes were hyperclustered (see
Materials and Methods) and visualized (Figure 2) using
the pooled gene list. The subjects with the highest mean
levels of cotinine were clearly separated from the subjects
with the lowest mean cotinine levels using this technique.
Moreover, genes were clustered into functional groups
based on their expression patterns, membership in Gene
Ontologies (Table 4, labeled A-G), and presence of pre-
dicted transcription factor binding sites. This produced 5
physiologically relevant clusters. The 'Stress' cluster is
comprised of stress-responsive genes involved in signal
transduction (CX3CR1 and ITGB1). The 'Macromolecular
Metabolism' cluster is made up of metabolic genes (HIPK1,
SUMO2, SULF2, and FKBP3). The third cluster, 'Transcrip-
tion and Signaling', contains genes associated primarily
with G protein signaling and transcriptional regulation
(RASGEF1A, RAB2, ARHGAP1, PPP1R12B, CREBBP, and
GNG2). 'Cell Death and Apoptosis' is a cluster of genes asso-
ciated with apoptosis and its regulation. The fifth cluster,
'Interferon' is defined by genes that potentially contain an
interferon-stimulated response element-binding site or
are responsive to type-1 interferons.

The utility of the hyperclustering technique is readily
apparent: a single image indicates the relationships
among the genes, lending physiological relevance to a
data set. A case in point is the 'Interferon' cluster, com-
prised of genes that are strongly up regulated in approxi-
mately half of the subjects with the highest cotinine levels.
The genes in this cluster (IFI44, IFIT1, USP18, and HERCS.
Figure 2) are interferon responsive genes, and are mem-
bers of the gene class forming the early response to type-1
interferons, indicative of a cellular response to viral agents
or very specific forms of genotoxicity. Our findings are
consistent with those of Grumelli, et al. who demon-
strated that lymphocytes isolated from lung samples of
patients with smoking-related lung damage showed an
increase in expression of multiple interferon-inducible
proteins [60]. These results indicate that induction of
interferon-dependent transcription pathways appear sys-

temically in some tobacco users. Only half of the tobacco
users have this expression pattern; the mechanisms of
which are unknown, but worthy of future investigation. It
is tempting to speculate that these patterns of systemic
interferon-responsive induction identify a group of
tobacco users who may develop early and severe disease.
Longitudinal studies designed to track the patterns of gene
expression over time in cohorts of tobacco users and non-
users will be necessary to unambiguously determine the
meaning of these observations.

Real time PCR verification of differentially expressed
genes

Quantitative real time PCR was used for both technical
(microarray) and biological verification. Four genes
selected from SAM and one gene from GSA: CX3CRI1,
SASH1, HRASLS3, PTGDR, and CDKNI1C, respectively,
were used for technical verification (Figure 3, left panel)
on samples randomly selected from the low and high coti-
nine subject population (Caucasian males). The up or
down regulation of these genes, irrespective of their
method of identification (SAM or GSA) was consistent
with the microarray analysis. Furthermore, the relative
fold changes determined via quantitative real time PCR
were either equal to or greater than the fold change meas-
ured by the microarray analysis, and significantly different
between the low and high cotinine subjects (P < 0.05).
Analysis using subjects excluded from the microarray
analysis (Caucasian females) biologically validated the
cotinine-dependent change in expression of two genes,
CDKNI1C and SASH1 (Figure 3, right panel). RPS29 was
used as a negative control gene and was not found to be
differentially expressed either by microarray or real time
PCR analysis.

Conclusion

In this study we demonstrated that groups of genes in cir-
culating human leukocytes are affected by tobacco use in
vivo. We identified genes and their relationships using a
combination of testing individual genes (SAM), testing
gene sets (GSA), and high throughput annotation
(GATHER). Hyperclustering using Gene Ontologies and
transcription factor binding sites associated with these
genes illuminated the functional significance of the differ-
entially regulated genes. The resulting gene expression
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Figure 2

Hyperclustering of cotinine responsive genes. A. The 109 genes identified by SAM and GSA analysis in subjects with high
versus low plasma cotinine levels were analyzed by hyperclustering. Clusters (top) were created by incorporating gene expres-
sion data with their corresponding TRANSFAC and Gene Ontology (GO) categories. Genes are represented in columns. Indi-
vidual subject expression profiles (which clustered into 2 groups, high and low cotinine) and TRANSFAC categories are
represented in rows and the relative expression of the genes is reflected as indicated in the color scale (upper right). Gene
membership in GO categories (also represented in rows) is indicated by Carolina blue. B. Enlargement of the five functional
groups identified by hyperclustering (bottom). The corresponding TRANSFAC and GO categories are indicated by groups A
and B-H, respectively (see Table 4 for detailed category information).
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Table 4: Hyperclustered TRANSFAC and GO Category Annotations
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Cluster TRANSFAC Annotations

A V$POU3F2_02
VS$ISRE_OI: interferon-stimulated response element
V$DEAFI_O0l
V$E2FI_Q3_0lI
V$MAZR_0I: MAZ related factor
V$KROX_Q6
V$E2FIDPI_OI: E2F-1:DP-1 heterodimer
V$HNFI_Qé
V$E2F_Q3_0lI
VS$E2FI_Q6: E2F-1

Cluster Common GO Parent Node Gene Ontology GO Level GO Name

B signal transduction [4] GO:0007 165 GO:0007264 6 small GTPase mediated signal transduction
GO:0007165 4 signal transduction
GO:0007242 5 intracellular signaling cascade

C programmed cell death [5] GO:0012501 GO:0006917 8 induction of apoptosis
GO:0012502 7 induction of programmed cell death
GO:0043068 6 positive regulation of programmed cell death
GO:0043065 7 positive regulation of apoptosis
GO:0050794 3* regulation of cellular process
GO:0016265 3* death
GO:0008219 4% cell death
GO:0012501 5 programmed cell death
GO:0006915 6 apoptosis
GO:0043067 5 regulation of programmed cell death
GO:0042981 6 regulation of apoptosis

D response to stress [4] GO:0006950 GO:0006950 4 response to stress

E macromolecule metabolic process [4] GO:0043170 GO:0006493 9 O-linked glycosylation
GO:0043170 4 macromolecule metabolism
GO:0044260 5 cellular macromolecule metabolism
GO:0019222 4* regulation of metabolism

F transcription [6] GO:0006350 GO:0006350 6 transcription
GO:0045449 6 regulation of transcription
GO:0019219 5k regulation of nucleo-base, -side, -tide and nucleic

acid metabolism

GO:0006355 7 regulation of transcription, DNA-dependent
GO:0006351 7 transcription, DNA-dependent

G cell cycle process [6] GO:0022402 G0:0000082 7 GI1/S transition of mitotic cell cycle
GO:0000132 I mitotic spindle orientation

H mevalonate transport [8] GO:0015728 GO:0015728 8 mevalonate transport

* Node is not a child of the parent node for this group

spectra revealed novel and under-recognized molecular
pathways in the pathophysiology of diseases commonly
associated with tobacco use. Genomic signals in circulat-
ing leukocytes characteristic of cellular metabolism, tran-
scription and signaling, apoptosis, response to stress, and
the interferon response were all correlated with nicotine
exposure. These results strongly suggest that tobacco use
promotes a pro-carcinogenic environment, predisposing
individuals to develop cancers in a variety of organ sys-
tems.

Interestingly, some genes that have previously been linked
to smoking were not differentially expressed in our 2 sub-
ject groups [61-63]. For example, neither CYP1B1 (a cyto-

chrome P450 enzyme playing an important role in
chemical carcinogenesis) nor SOD2 (which destroys toxic
radicals normally produced within cells) had an expres-
sion profile that differed significantly between high and
low cotinine groups. Although several previous reports
identified these genes as being affected by smoking,
design and subject pool differences used in the present
study could explain the absence of these genes from our
profile. CYP1B1 is expressed to a greater degree in the
females than in males and our data set is all male [64].
SOD?2 gene expression declines with age [65]. The mean
age of one of the studies reporting differential regulation
of SOD2 was 27 years while the mean age of our study
subjects is 46.5 years, which may explain why the SOD2
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Figure 3

Histogram of relative expression of selected genes
using real time PCR. Technical verification (left) of differ-
entially expressed genes identified in the subject population
(Caucasian males) by SAM/GSA (n = 20): CDKNIC, HRASLS3,
PTGDR, CX3CRI, and SASH . Biological verification (right) of
two selected genes using independent samples not included
in our subject population (Caucasian females, n = 10):
CDKNIC and SASH|. Data is represented as the log base 2
relative change in gene expression (* standard error) and all
expression normalized to low cotinine from the subject pop-
ulation samples (Caucasian males). The data labels represent
the fold change in high versus low cotinine samples, all of
which were statistically significant (P < 0.05). The fold change
in the gene RPS29 was used as a negative control and was not
significant (n.s.) between the high and low cotinine groups.

gene expression ratios between the groups in our study
did not vary significantly.

A significant link has been established between smoking
and the development of blood-borne cancers such as
acute myelogenous leukemia (AML) and acute lym-
phocytic leukemia (ALL) [66,67]. Exposure to com-
pounds derived from tobacco use is typically highest in
the oral and nasal cavities, the laryngotracheobronchial
tree, and the urinary system, putting these tissues at the
greatest risk of developing tumors [68]. Nevertheless,
given chronic exposure to carcinogens, blood tissues are
likewise at an increased risk of carcinogenesis [69]. San-
dler, et al., observed a clear dose response to smoking,
with heavy smokers at the highest risk of developing

http://www.biomedcentral.com/1755-8794/1/38

leukemia [66]. The causative mechanism for this observed
increase in leukemia among smokers is unknown. Our
results identify highly relevant, differentially expressed
genes that may serve as the basis for future experiments
aimed at addressing the molecular etiology of AML and
ALL in smokers. Moreover, these gene signals were
detected in an easily obtainable sample of peripheral
blood.

We found a correlation between tobacco use and
increased expression of interferon-inducible genes in cir-
culating leukocyte populations. Strong induction of inter-
feron-responsive gene expression was seen in only a
subset of tobacco-using subjects, arguing that interferon
induction is not a direct effect of tobacco use. The mecha-
nism of induction of these genes is not clear from our
data. Previous studies have found a strong correlation
between the parenchymal destruction associated with
end-stage emphysema and the presence of interferon and
interferon-inducible genes in the lung [60]. Intriguingly, 5
of the 6 subjects (83%) with a diagnosis of COPD in this
study demonstrated the high-interferon response pheno-
type. Our observation of elevated peripheral interferon
response gene expression may reflect a systemic manifes-
tation of a destructive pulmonary inflammatory response.
These observations may provide evidence of a systemic
immune basis for smoking-related lung parenchymal
destruction. Alternatively, the expression of interferon-
responsive genes in the periphery may be secondary to the
upper and lower respiratory tract infections to which
smokers are prone.

Hyperclustering revealed 5 distinct, physiologically rele-
vant gene groups in peripheral leukocytes affected by
tobacco use in wvivo. Furthermore, these gene groups
belong to pathways and regulatory systems important to
the etiology of smoking-related diseases. These novel
results enhance our understanding of how tobacco use
affects patterns of gene expression in leukocytes, and pro-
vide a starting point for elucidating the molecular mecha-
nisms of tobacco-related neoplasia, atherosclerosis, and
immune dysfunction. The hyperclustering visualization
facilitated interpretation of microarray data by fusing the
expression data with functional annotation derived
through robust statistical methodology (GSA and
GATHER) prior to cluster analysis. This technique is a vis-
ual representation that combines gene expression data
and any form of additional annotation. Gene expression
profiling of readily obtainable peripheral blood samples
identified genes that regulate response to stress, macro-
molecular metabolism, transcription and signaling, inter-
feron response, and cell death and resistance to apoptosis.
This profile may identify some novel targets for therapeu-
tic intervention for both smoking-related diseases and,
potentially, for smoking cessation.
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