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Abstract
Background: Genistein is an isoflavonoid present in soybeans that exhibits anti-carcinogenic
properties. The issue of genistein as a potential anti-cancer drug has been addressed in some
papers, but comprehensive genomic analysis to elucidate the molecular mechanisms underlying the
effect elicited by genistein on cancer cells have not been performed on primary cancer cells, but
rather on transformed cell lines. In the present study, we treated primary glioblastoma,
rhabdomyosarcoma, hepatocellular carcinoma and human embryonic carcinoma cells (NCCIT)
with μ-molar concentrations of genistein and assessed mitotic index, cell morphology, global gene
expression, and specific cell-cycle regulating genes. We compared the expression profiles of
NCCIT cells with that of the cancer cell lines in order to identify common genistein-dependent
transcriptional changes and accompanying signaling cascades.

Methods: We treated primary cancer cells and NCCIT cells with 50 μM genistein for 48 h.
Thereafter, we compared the mitotic index of treated versus untreated cells and investigated the
protein expression of key regulatory self renewal factors as OCT4, SOX2 and NANOG. We then
used gene expression arrays (Illumina) for genome-wide expression analysis and validated the
results for genes of interest by means of Real-Time PCR. Functional annotations were then
performed using the DAVID and KEGG online tools.

Results: We found that cancer cells treated with genistein undergo cell-cycle arrest at different
checkpoints. This arrest was associated with a decrease in the mRNA levels of core regulatory
genes, PBK, BUB1, and CDC20 as determined by microarray-analysis and verified by Real-Time PCR.
In contrast, human NCCIT cells showed over-expression of GADD45 A and G (growth arrest- and
DNA-damage-inducible proteins 45A and G), as well as down-regulation of OCT4, and NANOG
protein. Furthermore, genistein induced the expression of apoptotic and anti-migratory proteins
p53 and p38 in all cell lines. Genistein also up-regulated steady-state levels of both CYCLIN A and B.

Conclusion: The results of the present study, together with the results of earlier studies show
that genistein targets genes involved in the progression of the M-phase of the cell cycle. In this
respect it is of particular interest that this conclusion cannot be drawn from comparison of the
individual genes found differentially regulated in the datasets, but by the rather global view of the
pathways influenced by genistein treatment.
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Background
Phytoestrogens are a group of plant-derived substances
that are structurally and functionally similar to estradiol,
therefore mimicking the effects of estrogen [1]. There are
2 major classes of phytoestrogens: the lignans and isofla-
vones. Isoflavones are the most common form of phytoes-
trogens and are found in a variety of plants, the greatest
dietary source being soy [2-4]. The 2 main isoflavones,
genistein and daidzein, are present in soy primarily as β-
D-glycosides [1]. Glycosidic bonds are hydrolyzed by glu-
cosidases of the intestinal bacteria in the intestinal wall to
produce aglycons [5,6]. The biologically active aglycons
[7] are further metabolized to glucuronide conjugates in
the intestine and liver.

It is difficult to ascertain the estrogenic activity of phytoes-
trogens in vivo because in addition to the marked inter-
individual variability in metabolism and, hence, serum
levels obtained, the hormonal milieu of the individual
consuming the phytoestrogen likely impacts its effects
[8,9]. A systematical review of the literature on the effects
of genistein on breast cancer cell growth was performed
by de Lemos, and concluded that at low (<10 μmol/L)
physiologically relevant levels, genistein stimulates estro-
gen receptor positive (ER+) tumors, while at higher (>10
μmol/L) concentrations, appears to be inhibitory. This
has been attributed to the estrogenic properties of genis-
tein being predominant at low levels, while at higher lev-
els, other anticancer actions of phytoestrogens
predominate [10]. It is important to note, however, that
plasma phytoestrogen levels of over 10 μmol/L are diffi-
cult to achieve with dietary intake [7].

The estrogenic activity of phytoestrogens may also depend
on their affinity for particular ERs in the body. Phytoestro-
gens appear to preferentially bind to the ER-β and have
sometimes been classified as selective ER modulators
(SERMS) [9,11,12]. ER-β may play a protective role in
breast cancer development by inhibiting mammary cell
growth, as well as inhibiting the stimulatory effects of ER-
α [11,13].

Phytoestrogens also have anti-tumor activities that are
independent of their estrogenic activity [1,14]. Dietary
phytoestrogens have been shown to inhibit proliferation
of hormone-independent cell lines [15-17]. For example,
genistein has been shown to evoke G2-M cell-cycle arrest
in cancer cell lines [18,19] via a multiplicity of interac-
tions, including an inhibition of Cdc2 activity. More
recently, genistein has also been linked with the activation
of p38 and inactivation of ERK1/2 in human mammary
epithelial cells [20,21], indicating that genistein may
induce cellular effects via modulations of the mitogen
activated protein kinase (MAP kinase)1 signaling cascade.

Pharmacological doses of genistein inhibit the PTK-
dependent transcription of c-FOS and subsequent cellular
proliferation in estrogen receptor negative (ER-) human
breast cancer cell lines [22]. Other potential mechanisms
that have been reported include phytoestrogen stimula-
tion of the immune system, antioxidant activity, and
inhibitory effects on angiogenesis [1,4,14,23-25]. These
studies were all carried out in vitro.

In this study, we describe the effect genistein has with
respect to self-renewal and proliferation of primary cancer
cells and embryonal carcinoma cells, which are the stem
cells of teratocarcinomas and the malignant counterparts
of embryonic stem cells [26,27]. In particular, we show
that genistein regulates the expression of a subset of genes
and their associated signaling pathways. These results
might potentially point into the direction for future can-
cer stem cell targeting therapies.

Methods
Cell culture
NCCIT cells (ATCC, Wesel, Germany, CRL-2073) were
cultured in DMEM (GIBCO, Karlsruhe, Germany) with
10% bovine serum (Biochrome, Berlin, Germany), 4 mM
L-Glutamin and 1% penicillin-streptomycin. Primary can-
cer cells (RMS; GBM; HCC-M) were cultured in Quantum
263 Tumor medium (PAA, Pasching, Austria) without
antibiotics. Cells were cultured in 5% CO2, 95% air and
routinely passaged every 3 days (NCCIT) and 1 week
(Cancer cells), respectively.

Genistein treatment
Genistein (Roth, Karlsruhe, Germany) was prepared as a
concentration of 50 mg/ml in DMSO. Cells were counted
using Trypan-blue (Sigma, Munich, Germany) and 3 ×
105 cells were seeded in a 24 well plate and cultured for
24 h enabling attachment to the surface, and then treated
with 50 μM genistein for a further 48 h. Incubation with
corresponding amount DMSO served as control.

Assessment of morphological changes
Cell morphology was investigated using an inverted phase
contrast microscope (Zeiss LSM 510 Meta; Carl Zeiss,
Jena) and a CCD Camera.

Assessment of Mitosis
Immunofluorescence staining with antibody (1:250) to
phosphorylated histone-3 (H3P, Upstate Biotechnology,
NY), a mitosis-specific marker was performed on treated
and untreated cells. Cells were identified with antibody to
alpha-Tubulin (DM1A, ABCAM, Cambridge, UK) as
above. Anti-rabbit rhodamine (Molecular Probes, OR)
was used as the secondary antibody for the H3P antibody,
and anti-mouse IgM FITC (Sigma) was used as the second-
ary against DM1A. Nuclei were stained using DAPI. The
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number of nuclei staining positive for H3P were counted
per field at × 40 magnification under fluorescent field
optics. The total number of nuclei per field was counted,
and a mitotic index was computed as the ratio of H3P-
positive nuclei to total nuclei. The mitotic indices for at
least 2000 cells were averaged.

Real-time PCR
RNA was reverse transcribed using MMLV (USB, OH) and
oligo-dT priming. Real-time RT-PCR was carried out on an
Applied Biosystems 7900 PCR machine in 20 μl reactions
consisting of 10 μl of SYBR Green PCR mix (ABI, CA),
0.375 μM of each primer, and diluted cDNA. All primer
pairs used were confirmed to approximately double the
amount of product within one cycle and to yield a single
product of the predicted size. For primer sequences see
Additional file 1. Relative mRNA levels were calculated
using the comparative Ct method (ABI instruction man-
ual) and presented as a % of biological controls. ACTB
and GAPDH transcript levels were confirmed to correlate
well with total RNA amounts and therefore used for nor-
malisation.

Western-blot analysis
Western-blotting was performed according to standard
procedures and using chemiluminescence detection (ECL
– Amersham, Buckinghamshire, UK). Antibodies used
were Santa Cruz (Heidelberg, Germany) sc-8629 (OCT4),
R&D AF1997 (NANOG), Santa Cruz sc-17320 X (SOX2),
Ambion (Darmstadt, Germany) #4300 (GAPDH), Calbi-
ochem (Darmstadt, Germany) #401504 (HRP-linked), as
well as Amersham NA9340 and NA9310 (HRP-linked).

Chip hybridisations and analysis of whole-genome 
expression data
Biotin-labelled cRNA was generated employing a linear
amplification kit (Ambion #IL1791) using 300 ng of
DNA-free, quality-checked total RNA as template. Chip
hybridisations, washing, Cy3-streptavidin (Amersham
Biosciences) staining, and scanning was performed on the
Illumina (CA, USA) BeadStation 500 platform employing
reagents and following protocols supplied by the manu-
facturer. cRNA samples were hybridised as biological
duplicates on Illumina human-8 BeadChips. Samples to
be hybridised were harvested 2 days after induction with
50 μM genistein. All basic expression data analyses were
carried out using the manufacturer's BeadStudio 3.0 soft-
ware. Raw data were background-subtracted and normal-
ised using the "rank invariant" algorithm. Values below
the detection limit were arbitrarily set to the level of
threshold detection in order to avoid nonsense values for
expression ratios. Significantly differentially expressed
genes had to have a fold change of at least 50% with a p-
value < 0.01. Pathway and Gene Ontology analyses were
carried out using DAVID 2006 [28]. In both cases, we used

GenBank accession numbers represented by the corre-
sponding chip oligonucleotides as input.

Comparison with datasets from selected publications
To compare our data with that of previous studies, we
extracted all genes detected as differentially expressed in
the respective studies and deleted duplicate genes names
from the lists. Pathway and Gene Ontology analyses were
carried out as described above.

Results
Sensitivity of cell lines to μM concentrations of genistein
Human embryonic carcinoma (NCCIT) cells were treated
with 50 μM, 100 μM genistein and DMSO as control. Fur-
ther growth was carried out for 48 h, RNA isolated and the
expression of GADD45A and GADD45G analysed by Real-
Time PCR (Figure 1). As shown in Figure 1A, genistein
induces transcription of these genes as well as down regu-
lation of NANOG. To test, if genistein treatment also alters
the protein-levels of known markers of pluripotency, we
performed Western-blot analysis of OCT4, SOX2 and
NANOG in treated and untreated NCCIT cells. As shown
in Figure 1B, decreased protein levels of OCT4 and
NANOG correlate with the results from RT-PCR analysis
(Figure 1A).

Expression of key pluripotency associated genes after induc-tion with genisteinFigure 1
Expression of key pluripotency associated genes after 
induction with genistein. (A) Real-Time PCR showing 
upregulated expression of GADD45A and G, and a drastic 
down-regulation of NANOG. (B) Western-blot showing 
down regulation of NANOG. (-) non-treated DMSO control, 
(+) genistein treated NCCIT cells.
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Genistein treatment induces mitotic arrest in NCCIT and 
cancer cells
To investigate the effect of genistein treatment on signal-
ing pathways operative in different solid human tumors,
we used the following human cell lines: HS68 (fibrob-
lasts), NCCIT (embryonal cancer cell line), U373 (glioma
cell line), MCF7 (breast cancer cell line), HCC (hepatocel-
lular carcinoma), HCC-M (metastasis of HCC) GBM1207
(primary glioblastoma), and eRMS (embryonic Rhab-
domyosarcoma). All cell lines were treated with 50 μM
genistein and analysed by phase contrast microscopy after
48 h.

We frequently observed a decrease in cell density after 48
h of genistein treatment in all primary cell lines analysed
(Figure 2A). To investigate if this genistein-induced reduc-
tion is caused by mitotic arrest, we performed immun-
ofluorescence staining for phosphorylated histone H3
(H3P), which is a well characterized mitotic protein.
Reduction in mitotic index was found predominantly in
the primary cell lines (Figure 2B). Foreskin cells and trans-
formed cell lines had a low reduction of the mitotic index,
NCCIT cells and primary cell lines had moderate to severe
reductions in MI levels (Figure 2B). Interestingly, poorly
differentiated, high-grade cancer such as the glioblastoma
cell line showed the mildest reduction. The data presented
is that of independent duplicates showing the same pat-
tern of reduction.

In addition to reduced cell numbers, we observed a dra-
matic change in morphology in all cancer cell lines. We
identified an increasing number of individual cells exhib-
iting cytoplasmic condensation and nuclear polymor-
phism (pleiomorphy). The embryonic fibroblast foreskin
cell line Hs68, did not show visible morphological
changes (Figure 2A).

Global gene expression analysis
RNA isolated from the cell samples was used for global
gene expression analysis employing the Illumina platform
and following the manufacturer's recommendation. The
reproducibility between replicate samples was assessed by
calculating correlation coefficients. The values ranging
between 0.98 and 0.99 for biological replicates indicate a
high degree of reproducibility (see Additional file 2).

We investigated the primary cancer cell lines GMB1207,
eRMS and the NCCIT cells for differential expression of
genes upon genistein treatment. Based on a detection
score = 0.99 and a p-value < 0.01 in all cell lines (genistein
vs. DMSO-control), we observed that in GBM1207 cells,
3419 genes were up-regulated (>1.5-fold) and 516 genes
down-regulated (<0.66-fold). Compared to NCCIT and
eRMS, GBM1207 presented the largest set of differentially
regulated genes. In eRMS cells, we found 161 genes up-

and 471 genes down-regulated, compared to the NCCIT
cells, where 2214 genes are significantly up-regulated,
with 789 genes showing down-regulated expression. The
overlap of differentially expressed genes between treated
and untreated cells is shown in Figure 3. We have com-
pared the common down-regulated genes between the
cell lines (3A), the up-regulated genes (3B) and compared
all differential regulated genes to that of previously pub-
lished studies in long-term cell lines (3C).

Analysis of genistein-dependent pathways
To identify common signaling and metabolic pathways in
cancer cells that are modulated by genistein, we merged
the datasets of all the primary cancer cell lines and com-
pared the differentially expressed genes. We found 15
genes that were down-regulated and 53 genes with
increased expression (see Additional file 3). David Path-
way annotation analysis was then carried out with these
53 genes as input. The top five most enriched KEGG path-
ways are, Cell-cycle (hsa04110), p53 signaling pathway
(hsa04115), MAPK signaling pathway (hsa04010), regu-
lation of actin cytoskeleton (hsa04810), DNA polymerase
(hsa03030). Up-regulated genes included members of the
TNF-superfamily (e.g. TNFSF9), p53-signaling cascade
(e.g. DDIT3), and apoptosis (e.g. PDCD6IP). Amongst the
differentially regulated genes were predominantly those
involved in regulating the progression of the cell-cycle.
GO-analysis identified the cellular localization and bio-
logical function of the identified proteins; these are
nucleus (32%), microtubule cytoskeleton (20%), the
spindle (10%), and the presence of condensed chromo-
somes (4%). GO annotation also revealed significantly
regulated genes which identified factors responsible for
driving differentiation of NCCIT and cancer cells and fac-
tors responsible for maintaining the undifferentiated
state. These factors are involved in the following biologi-
cal processes mitotic cell-cycle, cell proliferation, and cell-
cycle checkpoint, regulating the cell-cycle process, DNA-
metabolism, response to DNA damage stimulus, and
DNA repair. These fulfill important functions for main-
taining chromosomal integrity.

The largest group of genes encoding proteins that regulate
cell proliferation (ie mitotic index) came from within the
genistein treated primary cancer cells.

The reduction of mitotic indices was confirmed by the
RNA-expression data. In order to validate the array gener-
ated data, we performed Real-Time PCR analysis of
selected genes using NCCIT and GBM1207 cells. These
genes included some of the master-regulators of the cell-
cycle like CDC20, BUB1, and PBK. As expected, we
observed a reduction of expression for these genes as com-
pared to the control (Figure 4A, B).
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Figure 2 (see legend on next page)
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As shown in Table 1, only 5 genes are involved in the I-
phase and G2-phase transition, whilst 20 genes are
involved in M-phase regulation. Amongst these are regu-
lators of mitosis e.g. BUB1, CDC20, and PBK, which are
known to play important roles in the ontology of various
types of cancers. Unlike the NCCIT cells, expression of
OCT4, SOX2 and NANOG could not be detected in any
primary cancer cell line tested. Real time validation with
GBM1207 confirmed this result.

Comparison with previously published data

We compared our data with that of previously published
datasets related to genistein [29-31] dependent expression
patterns. Because the different pre-requisites used to carry
out these studies, we included all genes significantly dif-
ferentially expressed, regardless if they were over- or
under-expressed. This analysis revealed a common set of
only three genes differentially expressed between the data-
sets (Figure 3C). DCXR, NQO1and SCD are involved in
key metabolistic pathways, thus suggesting their impor-
tant role in genistein-processing and translation of the
stimulus into a cellular response. Another important find-
ing of the comparison between these gene-sets is that on a
pathway level all gene-sets point towards the mitotic cell
cycle (Figure 5), specifically towards the M-phase regulat-
ing genes.

Discussion
Cancer is a complex disease, characterized by deregulated
proliferation, and aberrant cell-cycle control. This is an
important difference between normal and malignant cells
[32-34].

Previous experimental work addressing the effects of gen-
istein on cell proliferation and differentiation were per-
formed using prolonged-cultured, transformed cell lines.
These earlier findings, though informative, have short
comings with respect to the genomic integrity of the cells
used for these analyses. We have shown that genistein
applied to low passage cultured cells has a noticeable
effect on the transcription of common key regulators of

cell-cycle progression. In terms of the mechanism(s) of
action of genistein, NF-kB-mediated repression of
GADD45A and G expression has been shown to be essen-
tial for cancer cell survival [35]. Furthermore, GADD45A
expression has been shown to be induced by genistein
treatment of human prostate cancer cell lines [36]. To test
if genistein also imparts similar effects in other cancer
cells, we initially used the embyonal carcinoma cell line
(NCCIT) which has properties of cancer cells as well as
pluripotent cells [26,27]. GADD45G and GADD45A are
regulators of the cell-cycle at the G2/M transition [37] and
act as tumor suppressors [38]. The direct effect of genistein
on GADD45 gene expression has been shown before [36].
In this study, we have verified this effect for GADD45G
and GADD45A. Furthermore, GADD45G has been shown
to be a negatively regulated, direct downstream target of
OCT4 [27,39,40]. Indeed, genistein treatment of NCCIT
cells led to the induction of GADD45A and GADD45G
expression, as shown previously with other cancer types.
Additionally, we noticed a reduction in NANOG tran-
scription but not that of OCT4 and SOX2. A reduced level
of NANOG could not be linked to a differentiation phe-
notype, but rather to reduced proliferation in NCCIT cells
[27]. As shown before, down-regulation of OCT4 leads to
the down-regulation of NANOG, we assume that our
observed decrease in the transcript level of NANOG is a
downstream effect of genistein-induced depletion of
OCT4 protein [41]. Furthermore, a decrease in OCT4 and
NANOG protein was detected. We speculate that genistein
treatment might indirectly down-regulate OCT4 expres-
sion, possibly mediated by the up-regulated expression of
GADD45G. Our investigation was designed to evaluate
the effects of genistein on cellular proliferation and
changes in cell morphology in primary cancer cells
derived from tumour tissue and cultured for only a brief
period. Employing both a cell culture system and global
expression analysis, we elucidated effects of genistein
which are shared between 3 different primary cancer cells
and the embryonal carcinoma cell line -NCCIT.

Evidence for genistein-induced effects was the obvious
reduction of cells in the treated sample, and closer exami-

Morphology and mitotic index of genistein treated cellsFigure 2 (see previous page)
Morphology and mitotic index of genistein treated cells. (A) Phase-contrast and immunofluorescence micrographs of 
untreated (DMSO) and treated (50 μM genistein/48 h) cells. Hs68 cells serving as negative control did not show changes in 
morphology upon treatment. Genistein-treated cancer cell lines in comparison (GBM1207, HCC, HCC-M) show clear mor-
phological changes, resembling a more fibroblast-like type. (B) The effect of genistein treatment on 8 different cell lines was 
investigated by calculating the mitotic index of each sample. Frequency of mitosis in each matching DMSO-control was set as 
100% for each cell line and the relative decrease upon treatment was calculated. The threshold for significance was set to 75% 
mitoses (grey line). Hs68 cells served as negative control (MI >87% after treatment). Interestingly, both cell lines (MCF7 and 
U373) also showed only mild response to the treatment and mitotic indices were preserved at levels >82% compared to the 
corresponding control. In NCCIT cells as well as primary cancer cells, the observed effect on levels of mitosis was significantly 
high. Mitosis rates were as low as 3,3% (eRMS); 36,21 (NCCIT); 43,43% (prim. GBM); 73,28 (metastasis of HCC).
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nation showed a complete re-structuring of the morphol-
ogy of the cells towards that of fibroblasts. This
observation is unclear at the moment because we could
not see an increase in the expression of the epithelial
markers, EPCAM, CDH1 or KRT10 in NCCIT cells, unlike
the primary cancer cell lines.

As anticipated, the Gene Ontology (GO) and the KEGG
pathway analysis revealed an over-represented number of
genes involved in check-point control of the cell-cycle and
associated signaling pathways (p53- and ubiquitin-pro-
teasome-pathway). The most over-represented pathway in
our studies was the cell-cycle, specifically the control of
cell-cycle progression (Figure 4).

Cell-type comparison of differentially regulated genes after Genistein treatmentFigure 3
Cell-type comparison of differentially regulated genes after Genistein treatment. Venn diagram illustrating distribu-
tion of down-regulated (A) and up-regulated (B) genes after genistein treatment compared to their respective DMSO-controls. 
The description of the common regulated genes is given in Additional file 3. (C) Venn diagram of differentially regulated genes 
identified in our study, compared to [29-31].
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The cell-cycle regulates cell growth and division to ensure
that every cell receives a complete set of chromosomes.
Mis-segregation of chromosomes may lead to genomic
instability, which can be found in a wide variety of
tumors, such as colon, breast, prostate, oropharynx or
lung cancer, leukemia and lymphoma [42-49].

The expression pattern of CYCLINS dictates the point in
the cell-cycle at which they act. CYCLIN A and B, which
were down-regulated in NCCIT, glioblastoma and rhab-
domysarcoma cells are associated with both CDK1 and
CDK2, which govern the transition through G1-phase of
the cell-cycle, past the restriction point.

Down-regulation of CYCLIN A could be a potential target
for cancer treatment, because its over-expression is known
to feedback onto p53 and is associated with an increased
risk of cancer in humans [50].

The G1/S checkpoint appears to be the most crucial step
in the genesis and progression of cancer [51,52]. It is trig-
gered by the kinase, CHK1, which we found down-regu-
lated in NCCIT cells and in the GBM and the eRMS cell
line. This could be a possible explanation for the decrease
in mitosis seen upon genistein treatment.

A specific mechanism which guarantees genomic integrity
is the control of the spindle assembly checkpoint [53,54].
This is under the control of BUB1, believed to function
primarily on the mitotic spindle checkpoint. The ultimate
target of the checkpoint is inhibition of the anaphase pro-
moting complex (APC), which is essential for cell differ-
entiation or accurate DNA replication in the following S
phase [55,56]. The affinity of activators of the APC is reg-
ulated by CDC20; although it is controversial whether
phosphorylation of CDC20 is necessary for APC activa-
tion in human cells [57-59], it is required for its inhibition
by the spindle checkpoint [60].

The PDZ binding kinase (PBK), which is up-regulated in
various neoplasms [61,62] and in genistein-treated cells,
has been the focus of attention, especially the elucidation
of its role in malignant conversion and as a possible ther-
apeutic target in numerous types of cancers. Although PBK
expression has been shown to correlate with proliferation
of cancer cells [63], PBK silencing does not prevent pro-
gression through the cell-cycle. However, cells with
decreased PBK expression have impaired p38 activation
after growth-factor stimulation. This correlates with
decreased motility, and after treatment with DNA-damag-
ing agents, results in increased DNA damage and sensitiv-
ity towards genotoxic agents [63]. These cells also
displayed reduced long-term proliferation and a reduc-
tion in anchorage-independent growth.

PBK expression has been shown to be down-regulated
during induced growth arrest in G2/M phase and to be
regulated by cell-cycle-specific transcription factors such
as E2F and CREB/ATF [64]. Aberrant entry into the mitotic
phase has been shown to be due to down-regulation of
p53 caused by direct physical interaction with PBK [65].

Inactivation of the pRb and p53 pathways at the G1/S
transition is a fundamental requirement for the genesis of
most human cancers. This finding further provides the
link to p53-signaling and the ubiquitin-proteasome sign-
aling, both categories found over-represented in the
KEGG analysis of common genes between genistein
treated cell lines.

As shown in Figure 3, the overlap of the genes found in
our dataset compared to that of others [29-31] recovers
only three genes. These three genes were DCXR, NQO1
SCD, which are all involved in metabolism. DCXR and

Real-Time PCR validation of selected target genesFigure 4
Real-Time PCR validation of selected target genes. 
(A) NCCIT cells (B) GBM1207 cells. In the NCCIT cell line, 
the expression of the mitotic M-phase related gene, PBK, 
was not detected and BUB1 was not significantly regulated 
based on the Illumina microarray analysis.
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NQO1 have been implicated in various tumors, thus not
specifically linked to genistein treatment. On the other
hand, Stearoyl-CoA desaturase (SCD) seems to be of par-
ticular interest in investigating the effects of genistein.
SCD is an iron-containing enzyme that catalyzes a rate-
limiting step in the synthesis of unsaturated fatty acids
and has been implicated in the regulation of cell growth
and differentiation through effects on cell membrane flu-
idity and signal transduction [66,67].

A comparison of the Gene Ontology of the other datasets
to ours revealed an astonishing similarity between the
studies. For example, the percentage-distribution of genes
accompanying the various phases of the cell cycle is more
or less identical, with about 75% of genes involved in M-
phase transition.

In summary, it appears that genistein has multiple effects.
Depending on the cell line and the phase of the cell cycle
at the time of treatment, cells that may have already
passed G1/S checkpoint or the intra-S-checkpoints were
arrested at the G2/M checkpoint by differential reduction
of CDC2 expression as shown in NCCIT cells and primary

GBM. The G2/M checkpoint prevents cells from entering
mitosis when they experience DNA damage during G2 or
when they carry unrepaired DNA from G1 or S to progress
into G2 of the cell cycle [68]. The critical targets of p53 at
G2/M are p21, GADD45A and GADD45G, which induce
the dissociation of the CDC2 and CYCLIN complex
[68,69]. In addition, p53 appears to repress the transcrip-
tion of CDC2 and CYCLIN B. Two isoforms of MAP
kinase, p38 alpha and gamma, have also been implicated
in the G2/M checkpoint [70].

Conclusion
On a broad basis, our results from low-passage primary
cancer cells may explain the observations made by others
using long-term cultured cells. But more importantly, this
study provides insights into the molecular mechanisms
underlying the morphological changes elicited by genis-
tein treatment of embryonal carcinoma and distinct pri-
mary and transformed cancer cell lines.

From the comparisons of distinct datasets obtained under
various conditions in terms of concentration and induc-
tion-time of genistein, as well as varying cell culture con-

Table 1: Cell cycle related genes differentially regulated upon genistein treatment

Symbol Definition

Interphase of the mitotic cell cycle

CCNB1 cyclin B1
CDC2 cell division cycle 2, G1 to S and G2 to M, transcript variant 1
CDCA5 cell division cycle associated 5

G2-phase of the mitotic cell cycle

CENPF centromere protein F, 350/400 ka (mitosin)
GTSE1 G-2 and S-phase expressed 1

M-phase of the mitotic cell cycle

ASPM asp (abnormal spindle)-like, microcephaly associated (Drosophila)
BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)
CCNA2 cyclin A2
CCNB2 cyclin B2
CDC20 CDC20 cell division cycle 20 homolog (S. cerevisiae)
CENPE centromere protein E, 312 kDa
CIT citron (rho-interacting, serine/threonine kinase 21)
DLG7 discs, large homolog 7 (Drosophila)
HCAP-G chromosome condensation protein G
KIF2C kinesin family member 2C
PBK PDZ binding kinase
SPAG5 sperm associated antigen 5
TTK TTK protein kinase
UBE2C ubiquitin-conjugating enzyme E2C, transcript variant 6
UBE2C ubiquitin-conjugating enzyme E2C, transcript variant 5
UBE2C ubiquitin-conjugating enzyme E2C, transcript variant 2
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ditions, it seems that the molecular mechanisms triggered
by the treatment are very robust and universal. Collec-
tively, our findings provide clear evidence that genistein
has a specific effect on major cell-cycle regulatory genes
and their associated pathways, which include apoptosis
(down-regulation of p53) and motility (by cross-signaling
to p38; MAPK).

In conclusion, genistein may be a potent cell-cycle regulat-
ing drug targeting the M-phase, both in cell lines and pri-
mary patient-derived cancer cells from various tumor

entities. But still, enthusiasm has to be dampened,
because these doses will not be attained pharmacologi-
cally. However, if this pitfall of high dose levels can be
overcome – for example by adjuvant administration of
other compounds making cancer cells more sensitive
towards genistein treatment, genistein may well justify
emerging phase I and II trials of this potent cell-cycle reg-
ulating compound in the treatment of cancer patients.
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Distribution of genistein induced cell-cycle regulating genesFigure 5
Distribution of genistein induced cell-cycle regulating genes. Amongst the down-regulated targets (> 0.66), genes of 
the M-phase of the mitotic cycle are significantly over-represented. (A) GO clustering for biological processes (B) Pie chart 
representing the relative number of M-phase related genes. (C) GO clustering for biological processes from the datasets of 
[29-31]. (D) Pie chart illustrating the relative numbers of genistein targeted M-phase genes. The corresponding table shows 
examples of genes specified in each GO cluster
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