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Abstract
Background: Recent advances in whole-genome association studies (WGASs) for human cancer risk are
beginning to provide the part lists of low-penetrance susceptibility genes. However, statistical analysis in
these studies is complicated by the vast number of genetic variants examined and the weak effects
observed, as a result of which constraints must be incorporated into the study design and analytical
approach. In this scenario, biological attributes beyond the adjusted statistics generally receive little
attention and, more importantly, the fundamental biological characteristics of low-penetrance
susceptibility genes have yet to be determined.

Methods: We applied an integrative approach for identifying candidate low-penetrance breast cancer
susceptibility genes, their characteristics and molecular networks through the analysis of diverse sources
of biological evidence.

Results: First, examination of the distribution of Gene Ontology terms in ordered WGAS results
identified asymmetrical distribution of Cell Communication and Cell Death processes linked to risk.
Second, analysis of 11 different types of molecular or functional relationships in genomic and proteomic
data sets defined the "omic" properties of candidate genes: i/ differential expression in tumors relative to
normal tissue; ii/ somatic genomic copy number changes correlating with gene expression levels; iii/
differentially expressed across age at diagnosis; and iv/ expression changes after BRCA1 perturbation.
Finally, network modeling of the effects of variants on germline gene expression showed higher
connectivity than expected by chance between novel candidates and with known susceptibility genes,
which supports functional relationships and provides mechanistic hypotheses of risk.

Conclusion: This study proposes that cell communication and cell death are major biological processes
perturbed in risk of breast cancer conferred by low-penetrance variants, and defines the common omic
properties, molecular interactions and possible functional effects of candidate genes and proteins.
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Background
Technical and methodological advances in genome-wide
assessment of genetic variation have provided tools for
detecting low-penetrance susceptibility genes for com-
mon human diseases [1]. As a result of this progress, the
last year has seen a spectacular increase in the number of
published studies in which these types of variants or sin-
gle nucleotide polymorphisms (SNPs) are detected.
Projects such as the National Cancer Institute's Cancer
Genetic Markers of Susceptibility (CGEMS) and work car-
ried out by deCODE Genetics and the Breast Cancer Asso-
ciation Consortium have produced partial lists of the risk
variants of different cancer types in diverse populations
[2-4].

Whole-genome association studies (WGAS) are unbiased,
which is highlighted by the fact that they identify unex-
pected candidate genes that are not strictly involved in a
priori biological process such as DNA damage response in
breast cancer [2-4]. The absence of bias is further revealed
by the identification of possible master susceptibility loci
for different cancer types, such as the convergence of risk
variants at chromosome 8q24 [3,5-12]. The drawback of
the agnostic nature of WGAS is the challenging statistical
analysis and, thus, the biological interpretation of the
results beyond single candidate SNPs and their P values.
The vast number of variants interrogated means that P val-
ues below 10-7 must be obtained to pass multiple-compar-
ison corrections. Consequently, the number of samples
needed to obtain the necessary statistical power is an
important limitation, as is the fact that uncontrolled pop-
ulation stratification may introduce false positives. In
addition, most variants seem to confer very modest risks
in the order of 1.2–1.6 fold, which are hard to detect given
the statistical difficulties described above. Indeed, current
WGAS results contain thousands of SNPs and, by exten-
sion, thousands of candidate genes with unadjusted P val-
ues of < 0.05. As a result of these complications, the
findings cannot be considered true positives until they
have been replicated in an independent, preferentially
larger-scale study [13,14].

Given these statistical constraints, possible biological
interpretations of WGAS results are generally overlooked.
In most cases genes are interpreted individually, and a
gene ranked below the significance threshold will not be
measured or experimentally characterized in relation to
the disease or to genes that passed the threshold unless
strong evidence is obtained from additional association
studies. In this scenario, the fundamental principles of
low-penetrance susceptibility genes and/or proteins
(genes/proteins) – such as biological processes or path-
ways, properties and the molecular networks in which
they commonly participate – have yet to be defined.

Systems-based interpretation of biological data is a com-
mon strategy in many areas of research [15-17]. It is clear
that genes and proteins are organized in higher-order
structures within complex molecular networks to execute
biological functions [18]. The genes/proteins organized in
these structures are the indivisible elements that are dis-
rupted or regulated abnormally in disease but alterations
of different genes/proteins in the same functional unit
often converge in a common disease phenotype [19].
Genetic variability that confers risk of common diseases is
also likely to converge at some level in specific processes
or functions. Pioneering work by Wang and Bucan [20]
has shown that the use of biological labels and microarray
data analysis tools can facilitate the interpretation and pri-
orization of candidate genes in WGAS.

Taking breast cancer as a model, we applied an integrative
approach for uncovering the biological processes underly-
ing breast cancer susceptibility mediated by low-penetrant
alleles, as well as the genes/proteins and their properties
and molecular interactions that are critical in cancer risk.
Our strategy avoids the statistical constraints of WGAS by
providing a method for prioritizing candidate markers
based on the identification of common biological proc-
esses and characteristics. In addition, we provide hypoth-
eses on the possible molecular mechanisms of risk
between novel candidates and known susceptibility
genes/proteins.

Methods
WGAS ordered gene lists
The breast cancer pre-computed WGAS data set released
by the CGEMS initiative was downloaded from the corre-
sponding public web site on September 2007. To examine
biological information in WGAS results, we generated two
complementary gene ranks: one according to the lowest P
value per gene for the genotypic test in a genomic region
of +/- 10 kilo bases (kb) at each locus, adjusted for age and
hormone therapy [2]; and the other according to the low-
est P value but also taking into account the direction of the
association using the OR of the minor allele homozygotes
(ORs of either > 1 or < 1). Assigned SNPs were curated
using Ensembl gene annotations. Note that P values and
ORs are not strictly comparable as they reflect different
statistical analyses; the P values indicate the significance
of an SNP in a logistic regression model, whereas the OR
compares the magnitude of association of an allele against
major homozygotes. The "one SNP-one gene" simplifica-
tion was applied to obtain a single representation of each
gene in the ranks. This approach might over-estimate large
gene loci, and other strategies that account for the number
of SNPs per gene, their linkage disequilibrium and allele
frequencies could be used to enhance this analysis. The
rank based on P values was then examined for differential
representation of biological processes at one tail (low P
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values), while the rank based on ORs may differentiate
disease-risk mechanisms (OR > 1) from protection mech-
anisms (OR < 1). By assigning SNPs as described above, a
rank of 24,458 unique gene symbols (NCBI build 36.1)
was obtained from an initial number of 528,173 SNPs [2].
Note that with P values of < 0.05, the original data set con-
tains 26,859 SNPs corresponding to 7,611 genes. The
number of unique genes in the OR-based rank was slightly
lower (n = 24,135) because some of the SNPs had no data
for minor homozygotes. The reference unit in our analy-
ses was either the Entrez gene symbol or the Ensembl
identifier (release 49), and other identifiers were con-
verted to these references using BioMart [21]. Inconsisten-
cies or missing values between Entrez and Ensembl
identifiers were curated manually.

GO term annotations
The Gene Ontology (GO) [22] annotations were down-
loaded from Open Biological Ontologies version 1.2,
release 200804 (MySQL version). GO terms were assigned
to gene symbols after record linkage in which regular
expression searches were required. Splicing variants were
collapsed for each gene symbol. Genes annotated at Level
4 or lower in the GO hierarchy were assigned to a parent
in Level 3, but those also occurring at Level 2 were
excluded. This analysis gave 14,659 (~60%) genes anno-
tated (271 terms and a median of 641 genes in each term)
from the starting list of 31,591 while 24,458 of the genes
were present in the WGAS, of which 11,675 were anno-
tated. The remaining ~40% of genes were unannotated,
mainly because they represent uncharacterized genes/pro-
teins or do not contain known biological features. The
same procedure was used when evaluating terms at Level
4 giving 1,867 gene sets.

Analysis of rank partitions
We implemented the procedure devised by Al-Shahrour
and colleagues [23,24] to examine outputs flexibly (Addi-
tional file 1). The implementation was performed in the R
language and environment [25] and consisted of the fol-
lowing steps, as defined by the original authors: 1/ the list
of gene/protein identifiers was ordered according to a
measure of association; 2/ a selected number of partitions
p was applied, each of which separated the ordered list
into two parts, and used the index in order to force each
partition to increase with the same number of genes (we
show results for 50 partitions, but we also explored the
range between 30 and 50 that was recommended in the
original publication [24], which revealed similar results);
3/ for each partition, the frequencies of genes/proteins
with a specific GO term annotation were compared using
a Fisher's exact test for two-by-two contingency tables; 4/
the previous step was repeated for m terms; 5/ a multi-test-
ing adjustment procedure was applied to P values taking
into account p × m tests, using the FDR approach [26]

implemented in the multtest package [27]; 6/ significant
terms were selected and graphics were created in R. In
comparison with GSEA, the partitions methodology may
be capable of detecting modest differences [24], although
it is probably less effective at providing detailed interpre-
tations of the position of these differences. One hundred
permutations of gene order in WGAS ranks were exam-
ined for possible asymmetries obtained by chance. In
addition, in our analyses using partitions, we controlled
for possible background bias of annotated and unanno-
tated genes for any term.

GSEA analysis
The GSEA algorithm was applied using the Java imple-
mentation [28], with ordered gene lists and annotations
from Level 3 and 4 Biological Process GO terms, and the
enrichment weighting exponent p = 1 (except when exam-
ining gene index ranks). The statistical significance (nom-
inal P value) of the enrichment score (ES) was calculated
in the implementation by permuting the class labels
(genes) 1,000 times. Log-transformed P values were used
in the analysis of WGAS-ordered gene lists.

Analysis of breast cancer-related data sets
Differential expression between normal breast tissue and
tumors was assessed at the genome-wide level using the
data set provided by Richardson and colleagues [29]. Dif-
ferences were evaluated using the t-statistic across all
tumors and also for basal-like or non-basal-like sub-
classes. No differences were observed in GO term profiles
so we used the comparison with all tumors. Genetic alter-
ations in tumor subclasses were evaluated using copy
number information from the study of Chin and col-
leagues [30]. For each SNP-gene position of the WGAS an
average copy number was obtained in each tumor class.
To calculate correlations between gene expression and
copy numbers, we first obtained average gene expression
values in tumor classes using all possible probes mapping
each gene, and then calculated correlations with copy
numbers using the Pearson correlation coefficient (PCC).
To evaluate prognosis we used the data set of Chang and
colleagues [31], which contains 295 breast tumors. We fit-
ted a Cox regression model to each probe using disease-
free survival time information. Models were fitted adjust-
ing for ER tumor status and grade, and likelihood ratio
tests were calculated to evaluate the effect of microarray
probe values on survival. Genes were then ordered accord-
ing to hazard ratios and/or P values using only the
extreme probe results. To evaluate age at diagnosis we
used the same data set and fitted a linear model for each
probe, adjusting for ER tumor status and grade. Next, we
applied the same procedure as that used for the prognosis
analysis to obtain a definitive ordered list of genes based
on the regression coefficient and the corresponding P val-
ues. The same data set was used to assess expression differ-
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ences between ER-negative and ER-positive breast tumors
and for co-expression analyses with benchmark breast
cancer genes using the PCC. In addition, we investigated
expression perturbations after BRCA1 depletion in
MCF10 cells [32], using fold-changes, and expression per-
turbations between BRCA1 and sporadic breast tumors
(non-hereditary ER-negative and grade 3) using the t-test
[33]. Finally, we examined gene expression changes in tis-
sue abnormalities precursors of breast cancer, using the t-
test [34].

Analysis of the human interactome network
The human interactome network was built by combining
three previously published data sets, which consist mainly
of experimentally verified interactions. The data set based
on the Human Protein Reference Database (HPRD) was
combined with high-confidence yeast two-hybrid interac-
tions from Rual and colleagues [35] and Stelzl and col-
leagues [36]. Orthology-based predictions and
homodimers were excluded from our analyses. Shortest
paths were calculated using only the giant network com-
ponent and the geodesic formulation given by Freeman
[37] using the R programming language [25]. GO term
annotations were used as detailed above. Proportions of
annotations in direct and one-hop interactors of bench-
marks were evaluated in the giant network component
using as controls seed proteins annotated with the same
terms as the benchmark that was being compared. P val-
ues were then computed using empirical distributions.

Genetics of gene expression
The Dixon and colleagues data set [38] was down-loaded
from the public web site and analyzed focusing on SNPs
with lod scores of > 2.3. Variants at r2 > 0.8 were identified
using Phase II HapMap release 21a data for individuals
with European ancestry. Data is provided for lod scores of
> 6 and SNPs-genes in the combined rank, whereas infor-
mation for variants at lod scores of > 2.3 and r2 > 0.8 is
available from the authors. To avoid any bias, the network
and simulations only refer to the original SNPs annotated
by Dixon and colleagues [38] and exclude variants at r2 >
0.8. Networks were generated in Cytoscape [39] and using
the R programming language [25]. SNPs at each gene
locus (+/- 10 kb) were collapsed into a single node for net-
work representation.

Results
Biological processes in breast cancer risk
Breast cancer is probably the paradigm of deeply charac-
terized neoplastic process at many molecular levels. The
key to this study was the public availability of the land-
mark WGAS for breast cancer risk released by the CGEMS
initiative [2]. We analyzed the results of this WGAS along-
side various omic data sets of breast cancer and normal
cellular conditions, following a biology-driven strategy

based on the asymmetrical representation of biological
information in ordered gene lists (Figure 1). The com-
bined rank provides a prioritized list of gene/protein can-
didates and their interactions in pathology.

To examine the distribution of biological information in
WGAS ordered gene lists (see Methods), we compiled
Level 3 Biological Process GO term annotations and
applied two complementary algorithms: one that uses the
"partitions" concept devised by Al-Shahrour and col-
leagues [23,24] (the implementation of this algorithm is
available in Additional file 1); and the Gene Set Enrich-
ment Analysis (GSEA), which evaluates asymmetries
based on the Kolmogorov-Smirnov statistic [40]. The first
algorithm generates p partitions in an ordered gene list
and then computes a Fisher's exact test for each of the p
two-by-two contingency tables to detect asymmetries
between the top and the bottom parts of the list. Next, P
values are corrected based on the false FDR approach [26].
All known genes in the human genome NCBI build 36.1
were included in the examination of WGAS ranks. In our
implementation we took into account both annotated
and unannotated genes/proteins, which we found to pre-
vent false positives due to background asymmetrical dis-
tributions (not shown).

Of the 271 terms in Level 3, asymmetries were identified
in the distribution of Transport, Cell Communication and
Cell Adhesion processes using the partitions methodology
and two possible WGAS ranks (Figure 2a and Methods).
To evaluate the significance of these results we performed
the same analysis for 100 permutations of gene order.
None of the permutations showed significant differences
for any of the 271 terms at any partition. In addition,
when the GSEA algorithm and our Level 3 annotations
were used, the greatest asymmetries were found in the
same terms (particularly Cell Adhesion), and smaller dif-
ferences were observed in other terms including Cell
Development and Death (Additional file 2). The consist-
ency of the results suggests that the terms identified repre-
sent key biological processes in breast cancer risk
conferred by common variants.

As expected, profile differences were observed between
the two defined WGAS ranks, and Cell Adhesion was
more clearly asymmetrically distributed in the ordered
gene list that takes into account the lowest P value per
gene locus and the corresponding odds ratio (OR) (Figure
2a, right panels). Cell Communication is visibly asym-
metrically distributed in the P value based rank, whereas
the inclusion of OR criteria suggests the existence of gene
subgroups in this process associated with risk. Under-rep-
resentation of genes involved in Metabolism was also
revealed at the top of the rank, which leads us to speculate
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that common variants in this process play a protective
role.

Fine mapping of processes
Given the asymmetries at Level 3, and taking into account
that the gene sets were relatively large, candidate processes
were narrowed down using child terms at Level 4. In
agreement with results above, terms for Transport, Cell
Communication and Cell Adhesion were found to be dis-
tributed asymmetrically in both WGAS ranks (Figure 2b).
For example, Signal Transduction was a child of Cell
Communication and was found to be over-represented at
low P values. Several recognized low-penetrance suscepti-
bility genes are annotated in this term (AURKA [41-
45],CASP8 [46],LSP1 [3]and TGFBR1 [47-51]). The child
terms for Transport and, in particular, for Cell Adhesion
also showed similar asymmetries to those at Level 3 (Fig-
ure 2b). Profiles were also found to be consistent with the
list ordered by OR/P value, with many child terms for Cell
Adhesion over-represented at ORs of > 1. These observa-
tions corroborate the identification of key processes – in
particular Cell Communication and Cell Adhesion –
mediating breast cancer risk.

Breast cancer-related properties
To further define the characteristics of candidate suscepti-
bility genes in breast cancer conditions, we examined var-
ious sources of biological evidence according to the

observed WGAS rank GO asymmetries. Nine types of evi-
dence were examined (Additional file 3):

1/ Differential expression between normal breast tissue
and tumors [29] (accounting for different known molecu-
lar classes of breast tumors [52]).

2/ Differential expression between normal breast tissue at
terminal duct lobular units and hyperplasic units [34].

3/ Correlations between transcript profiles using as
benchmarks known genes of low/moderate risk (ATM,
AURKA, BRIP1, CASP8, CHEK2, FGFR2, HMMR, LSP1,
MAP3K1, PALB2, RASSF1, TGFBR1 and TNRC9), high risk
(BRCA1 and BRCA2) and cancer syndromes (LKB1, PTEN
and TP53) [53].

4/ Somatic loss of heterozygosity and copy number alter-
ations in tumors [30] (accounting for the different known
tumor types).

5/ The correlation between somatic copy number altera-
tions and transcript profiles [30] (again, accounting for
the different known tumor types).

6/ The dependence of the estrogen receptor (ER) pathway
signaling on differential expression between ER-positive
and ER-negative tumors [31,33,54].

Strategy for candidate gene prioritization in WGAS resultsFigure 1
Strategy for candidate gene prioritization in WGAS results. Given a WGAS such as the breast cancer study of the 
CGEMS initiative [2], ~500,000 SNPs were initially interrogated, which represent a lower number of linkage disequilibrium 
(LD) blocks in which 24,458 known human genes are distributed. Even when a clear LD block contains several significant SNPs, 
different genes may be present and molecular and/or functional analyses are required to determine the most likely candidates 
and their interactions. To obtain this information at the genome-wide level, we propose first to use GO terms to examine the 
WGAS rank for asymmetries in biological processes. These asymmetries will then be used to guide the analysis of omic data 
sets relevant to breast cancer biology. Next, higher-level data analyses – protein-protein interactions that may be over-repre-
sented for the same processes, and variants in cis/trans affecting germline gene expression levels that lead to hypotheses on the 
possible functional effects of risk alleles – are performed using a combination of evidences, WGAS results and recognized low-
penetrance susceptibility genes/proteins or benchmarks.
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WGAS rank asymmetries for specific biological processesFigure 2
WGAS rank asymmetries for specific biological processes. (a) Graphical representation of over- and/or under-repre-
sentation of biological processes in partitions of WGAS ranks using Level 3 GO annotations. Top left panel, results of the anal-
ysis of the WGAS rank according to the lowest P value per gene locus. Differences are always shown from top to bottom, so 
the top shows over-representation in the GO terms Transport and Cell Communication. Graphics show significant partitions. 
Bottom left panel, graphical representation of the positions of genes annotated with GO terms distributed asymmetrically in 
the WGAS P value rank. Right panels, results of the analysis of the WGAS rank according to ORs and to P values. This analysis 
seems to better capture the differences in risk (ORs > 1) associated with the over-representation of Cell Adhesion. Under-
representation (negative differences when comparing top with bottom parts) of Metabolic processes annotations is also sug-
gested with ORs of > 1. The graphical representation of gene positions shows clear differences between Cell Adhesion and 
more complex patterns – perhaps with different gene subgroups – for Cell Communication and Metabolic processes. (b) 
Graphical representation of over- and/or under-representation of biological processes in partitions of WGAS ranks using Level 
4 GO annotations. Left panel, child terms of Cell Communication (Signal Transduction), Transport (Ion Transport) and Cell 
Adhesion (rest of terms shown in the inset) are over-represented at P values of up to 0.262. Right panel, over-representations 
in the WGAS OR/P value ordered list as shown in the insets.
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7/ The association between gene expression and patient
prognosis [31,33,54] (adjusting for major confounding
variables of ER status and tumor grade).

8/ The association between gene expression in tumors and
patient age at diagnosis [31,33,54] (again, adjusting for
major confounding variables of ER status and tumor
grade).

9/ Expression perturbation in BRCA1 tumors (tumors
originating in carriers of germline BRCA1 mutations) rel-
ative to sporadic (non-hereditary) tumors [33], or after
depletion of BRCA1 in a non-tumorigenic cell model
[32,55].

These different types of evidence characterize different
aspects of breast cancer biology, including the following:
the identification of putative tumor suppressors and
oncogenes by analyzing differential expression and/or
somatic genetic alterations [30]; genes with a role in the
early stages of breast tissue transformation [34]; hormone
dependencies that may be related to susceptibility, as
noted recently for newly identified low-penetrance sus-
ceptibility genes [4]; expression perturbations in BRCA1
tumors that may reveal functional relationships with
high-penetrance genes/proteins [32,56,57]; and associa-
tions with age at diagnosis that may also indicate critical
molecular roles in initiating tumorigenesis [57].

Analysis of the evidence described above identified bio-
logical processes consistent with existing knowledge in
the literature. For example, Cell Division was distributed
asymmetrically in genes ranked according to the hazard
ratio that measures survival probability (Figure 3), which
is consistent with the fact that the potential for cell prolif-
eration can be considered a strong predictor of prognosis
or metastasis [58-63].

Of the nine types of evidence described above, three
showed similar asymmetries in Cell Adhesion to those
observed in the WGAS ranks: differential expression
between normal breast tissue and tumors, patient age at
diagnosis, and BRCA1 depletion in MCF10A cells (com-
parison of BRCA1 and sporadic tumors also revealed sim-
ilar asymmetries, but it was excluded from the analyses
below to avoid duplication). Two of these data sets also
showed similar asymmetries for Cell Communication
(Figure 4). As mentioned above, permutation analysis of
gene ranks did not show asymmetries in any process,
which indicates that these evidences are useful for catego-
rizing and defining the omic properties of genes contrib-
uting to breast cancer risk.

Asymmetries in these processes were also observed in
tumor subclasses when the rank of correlations between

somatic genomic alterations and gene expression levels
were examined. This was found principally in luminal A
tumors (Additional file 4), and although the correspond-
ing combined rank did not vary considerably from those
of the three types of evidence described above, it captured
as likely candidate genes those involved in ER signaling
such as TFF1 (Additional file 5), which was expected for a
hormone-dependent tumor class [52]. This specific evi-
dence for a given subclass can then be used when examin-
ing breast cancer subtypes.

Evaluation of a combined evidence rank
Given that three breast cancer conditions showed similar
asymmetries in processes to those observed in the WGAS
ranks, a combined rank of these conditions might provide
a prioritized list of more likely candidates. This analysis
was performed using all genes in common between these
three omic data sets (n = 8,986) and the final rank was cre-
ated using the average position (Additional file 6).
Although there is not a large "gold standard" of low-pen-
etrance susceptibility genes, some features of the com-
bined rank suggest that it is biologically meaningful in the
assessment of genetic risk factors.

Asymmetries in biological evidence of breast cancerFigure 3
Asymmetries in biological evidence of breast cancer. 
An example of the results of applying the methodology used 
to examine the WGAS ranks to a breast cancer biological 
evidence data set. This analysis identifies the association 
between gene expression levels and patient survival or prog-
nosis measured by the hazard ratio (HR). The results suggest 
an association between poor prognosis (HRs > 1) and genes 
involved in Cell Division, and between good prognosis (HRs 
< 1) and Gene Expression and Metabolic processes. Impor-
tantly, the association between cell proliferation and poor 
prognosis has been demonstrated in previous studies using 
different approaches [58-63].
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Examination of the 50 top-ranked genes in the combina-
tion identified candidate tumor suppressors and/or onco-
genes from the literature (DKK3 [64] and TFPI2 [65]),
genes with variants that confer breast cancer risk (IGF1
[66]) and, notably, four genes (PDGFRA, PDGFRL,
MAP3K12 and NTRK2) whose products participate in the
MAPK signaling pathway, where known susceptibility
genes also participate (FGFR2 and MAP3K1 [2-4]) (Table
1 shows the results for the 50 top-ranked genes in the
combined evidence ranking ordered by their lowest
WGAS P value). This 50-set also contains genes previously
linked to breast cancer prognosis, metastasis or treatment
response (BCL2 [67], CXCL12 [68-70] and FBLN1
[71,72]). In addition, consistent with predicted relation-
ships in this set, experimental studies have demonstrated
interactions between the corresponding proteins in neo-
plasia; for example ABTB1 and EGR2 are mediators of
PTEN tumor suppressor function [73]. These observations
support the hypothesis that the combined rank contains
numerous functional and molecular associations of rele-
vance for breast tumorigenesis.

The second position of the combined ranking that takes
into account the WGAS results is occupied by the platelet-
derived growth factor receptor-like (PDGFRL) gene, while
the first gene in the combined rank is PDGFRA (Table 1).
PDGFRA is expressed in invasive carcinomas and is asso-
ciated with aggressiveness [74], and, importantly, PDG-
FRL is mutated in cancer cells [75,76] and maps at
chromosome 8p22-p21, where it is thought to map a
breast cancer tumor suppressor gene(s) [77-79]. More
recently, an integrative approach based on disease-specific
pathways has revealed that PDGFRL may play a critical
role in promoting breast tumorigenesis [80]. Our inde-
pendent observations of breast cancer risk may lead to the
replication of the WGAS findings for these PDGFR genes
and others shown in Table 1. In this way, evaluation of
genes with somatic point mutations in breast tumors as
compiled in the COSMIC database (release v36) [81]
placed MAP3K12 at the top of the combined rank (Addi-
tional file 7), which reinforces the putative involvement
of the MAPK signaling pathway and supports MAP3K12 as
a likely candidate.

Examination and integration of higher-order evidence
Correlations across different biological levels provide bet-
ter proof of molecular associations and their possible per-
turbation in disease [16,18,82]. We examined the network
of protein-protein interactions (interactome network) of
recognized low-penetrance susceptibility gene products
(hereafter referred to as benchmarks) for proportions of
annotations in Cell Communication and Cell Adhesion.
Proportions of annotations were compared between inter-
actors of benchmarks and the average in the giant network
component and, to avoid bias, only proteins annotated at

Asymmetries for Cell Communication and Cell AdhesionFigure 4
Asymmetries for Cell Communication and Cell 
Adhesion. Of the biological evidence of breast cancer 
examined in this study, three cases showed asymmetries in 
biological processes that are similar to those observed in the 
WGAS ranks. Three cases showed similar asymmetries for 
Cell Adhesion: 1/ top panel, differential expression between 
normal breast tissues and tumors measured using the t-statis-
tic, as a result of which genes involved in Cell Adhesion are 
over-represented at the bottom, which indicates that they 
are generally under-expressed in tumors, while Cell Commu-
nication is under-represented at the top (note that both pat-
terns follow the same direction); 2/ middle panel, association 
between age at diagnosis and gene expression levels meas-
ured using the coefficient from the linear model, so coeffi-
cients < 0 indicate association with early age at diagnosis, 
which is consistent with the expected contribution of genetic 
effects to breast cancer risk [57]; 3/ bottom panel, fold 
change in gene expression changes between BRCA1-depleted 
and control-treated MCF10A cells, which indicates possible 
molecular and/or functional dependencies on processes 
linked to breast cancer risk [57]. Differences in annotation 
percentages between top and bottom range from -8% to -4% 
for the most significant partition at the bottom end. On the 
basis of these results, all three ranks were inverted and com-
bined for comparison with the WGAS results.
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Combination of breast cancer biology evidence and evaluation of WGAS results for priorization of candidate low-penetrance susceptibility genesTable 1
Combination of breast cancer biology evidence and evaluation of WGAS results for priorization of candidate 
low-penetrance susceptibility genes
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any GO level were considered. Using as network seeds
those nodes representing seven benchmark proteins with
at least one known interaction in the giant component
(CASP8, CDH1, FGFR2, HMMR, LSP1, RASSF1 and
TGFBR1), over-representation of Cell Communication
and Cell Adhesion was detected in several neighborhoods
using the shortest path measure, particularly in direct and
one-hop interactors (Figure 5a/b). The benchmark neigh-
borhoods showing the highest over-representation of
these processes were those corresponding to CDH1,
FGFR2, HMMR and RASSF1 (Additional file 8).

To assess which of these benchmarks shown the maxi-
mum information at the interactome level for breast can-
cer risk, we calculated the probability of showing similar
proportions of annotations in the giant component and,
to avoid functional bias, used as controls seed proteins
with the same annotations at Level 3 as each of the bench-
marks being compared. The results of this controlled anal-
ysis suggest higher enrichment of the processes in the
direct or one-hop interactors of CDH1 and FGFR2 (per-
centile 87 and 94, respectively) (Figure 5c). This observa-
tion suggests the close interactors of these low-penetrance
susceptibility gene products as more likely candidates.

The results in the interactome network provide additional
information that can be combined discretely with the
rank in Table 1. Consequently, annotating this rank for
direct and one-hop interactors of CDH1, FGFR2, HMMR
and RASSF1 provides a more restricted list of likely candi-
dates. Again, this set contains previously defined candi-
dates such as IGF1 [66] and members of the MAPK
signaling pathway such as NTRK2 and PDGFRA, which
are found in the one-hop neighborhood of FGFR2.

Functional effects of variants and their evaluation in the 
combined rank
To determine the possible functional effects of risk vari-
ants in candidates, we examined differences in germline
expression levels correlating with genetic variation, using
the data set of Dixon and colleagues [38] derived from
lymphoblastoid cell lines. To search SNPs we used the
original data or, in cases which provided no information
for an SNP, variants at linkage disequilibrium r2 > 0.8
according to HapMap individuals with European ancestry
[83]. In this analysis we not only examined single SNP/
gene effects (Additional file 9) but also generated expres-
sion-perturbation networks in which nodes are formed by
gene loci and edges represent direct or indirect expression
effects, possibly mediated by coding and/or regulatory
SNPs in candidate genes (see Methods).

Taking as candidates the 50 top-ranked genes from Table
1, we identified many edges between their loci and with
benchmarks (Figure 6, left panel). New candidates may

then be prioritized based on their high centrality in the
network (BCL2, BMP1, NTRK2, PTGER3 or RUNX2) or by
the fact that they connect two benchmarks (DKK3 and
NTRK2 connect HMMR-TNRC9 and FGFR2-TGFBR1,
respectively), which suggests a possible risk effect through
the expression perturbation of known low-penetrance
susceptibility genes.

To evaluate the biological significance of this network, we
performed similar analyses with 100 randomly chosen
sets of 50 genes and the same benchmarks. The connectiv-
ity was higher for the 50 top-tanked genes in the com-
bined rank than for any of the randomly generated
networks, both for the number of nodes and the number
of edges (Figure 6, right panels). This observation sup-
ports the functional association between the 50 top-
ranked candidates and, importantly, the association with
known genes of breast cancer risk. These results also pro-
vide many functional hypotheses of genetic variants in re-
defined candidates that may influence breast cancer sus-
ceptibility. Overall, this integrative study identifies candi-
date low-penetrance breast cancer susceptibility genes and
the corresponding wiring diagram of molecular interac-
tions.

Discussion
This study identifies biological processes that play key
roles in breast cancer risk, which are revealed by asymmet-
rical distributions of GO terms in complete WGAS ranks.
Common variants that affect, in particular, the function of
genes/proteins in Cell Communication and Cell Adhe-
sion probably confer breast cancer risk to a greater extent
than variants in genes associated with different processes.
Thus, this study provides a foundation for the analysis of
fundamental issues in breast cancer risk conferred by low-
penetrant alleles.

The involvement of Cell Communication and Cell Adhe-
sion is intriguing given their long-known contribution to
epithelial neoplasia, although typically at the somatic
level [84]. Our results may link initial molecular perturba-
tions to subsequent events in cancer progression, which
suggests a more continuous path than previously thought
between germline and somatic alterations. This hypothe-
sis was highlighted primarily by the identification of risk
variants at the FGFR2 and MAP3K1 loci – two genes
known to be somatically altered in human cancer and
whose products are involved in signal transduction
among other processes [85,86]. These considerations
apply to sporadic breast cancer but may also provide
insights into the mechanisms of high-penetrance suscep-
tibility genes since risk variants at low-penetrance loci also
contribute to the risk of BRCA1 and BRCA2 mutation car-
riers [87]. Overall, these observations point to a molecular
diagram for breast cancer risk that may be more complex
Page 10 of 16
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Same biological processes in the interactome network neighborhoodsFigure 5
Same biological processes in the interactome network neighborhoods. (a) Left panel, strategy used to examine the 
interactome network; given a seed or benchmark protein encoded by a recognized low-penetrance susceptibility gene and 
using a shortest path algorithm, we calculated at each step the percentage of nodes annotated with Cell Communication or 
Cell Adhesion among proteins annotated with any term (excluding non-annotated proteins). Right panel, distribution of all pos-
sible short paths in the giant network component. (b) Left panels, results for percentages in short paths of up to seven steps 
for benchmark proteins. Over-representation in Cell Communication and Cell Adhesion annotations is suggested for CDH1, 
FGFR2, HMMR and RASSF1 at direct and/or one-hop interactions. Right panel, asymmetrical distribution of CDH1, FGFR2, 
HMMR and RASSF1 direct and one-hop interactors in the complete WGAS rank. (c) Over-representation of processes in the 
one-hop neighborhood of CDH1 or FGFR2 (vertical lines) using as controls seed proteins with the same Level 3 annotations 
(curves). The x-axis represents the cumulative percentage up to 200. The CDH1 and FGFR2 percentiles are shown.
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than previously thought, probably based not only on the
alteration of the DNA damage response.

However, the limitations of this study must also be pre-
sented. Firstly, methodological constraints might hamper
the detection of subtle asymmetries of GO terms. To
improve sensitivity, WGAS results could be ordered by
combining the effect and magnitude of variants using
Bayesian principles. Alternatively, different biological
labels could be used – we considered annotations of path-
ways [88] that did not reveal significant differences (not
shown). Secondly, although the application of the average
across ordered lists detected genes/proteins known to be
involved in breast tumorigenesis (Table 1), more sophis-
ticated methods for combining ranks could improve the
detection of susceptibility genes. Finally, this study is lim-
ited by the analysis of a single WGAS data set with certain
epidemiological specificities [2], thus any candidate high-
lighted here should be examined in an independent epi-
demiological study.

Based on the observations from the WGAS ranks, we then
examined different breast cancer conditions that could
provide further categorization of candidates and reveal
the common properties of low-penetrance susceptibility
genes. Variants of these genes appear to correlate with
transcripts that are differentially expressed in tumors, with
somatic copy number changes that correlate with gene
expression, differentially expressed across age at diagno-
sis, and which show changes in expression level after
depletion or in the presence of BRCA1 mutation. Correla-
tions between somatic genomic alterations and gene
expression may indicate tumor suppressors or oncogenes,
depending on the direction of the correlation [89]. The
association with age at diagnosis (identified when adjust-
ing for confounding variables) supports a role in cancer
risk, for example differential expression at early age [57].
Finally, changes mediated by BRCA1 perturbation suggest
molecular or functional dependencies with high-pene-
trance susceptibility genes/proteins [56,57]. This study

Functional effects and associations between candidates and benchmarksFigure 6
Functional effects and associations between candidates and benchmarks. Left panel, network of transcriptional per-
turbations mediated by SNPs at gene loci. Nodes represent SNP/gene loci of the 50 top-ranked candidates (Table 1) or of 
benchmarks, and edges represent the direction of the effect on gene expression, as shown in the inset. To avoid bias, we 
excluded those SNPs that are not annotated in the original data set of Dixon and colleagues [38]. Right panels, network results 
of the analysis of 100 randomly chosen sets of 50 genes and the same benchmarks (histograms and curves) compared to the 
observed values in the left panel (vertical arrows), for connected nodes (top) or edges (bottom).
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suggests that these are frequent features of low-penetrance
breast cancer susceptibility genes.

Combination of these evidences provides a comprehen-
sive rank to evaluate WGAS results beyond statistical con-
straints. This observation is supported by analyses at
higher-order molecular levels. Direct and one-hop physi-
cal interactors of susceptibility benchmarks are over-rep-
resented in the same biological processes as the top of the
WGAS ranks. In addition, modeling of a germline tran-
scriptional regulatory network identifies connections with
benchmarks but also reveals higher connectivity than ran-
domly expected, which supports that these genes/proteins
function in biologically related processes. We propose this
integrative study provides the basis for better biological
knowledge of the genes/proteins, their omic properties
and interactions that mediate the initial steps of breast
tumorigenesis. This strategy may be useful for revealing
the genes/proteins and their wiring molecular diagrams of
susceptibility for other cancer types where WGAS are
being carrying out and have vast omic data sets.

Conclusion
This study proposes biological criteria that may facilitate
the prioritization of candidate genes in WGAS for breast
cancer. The identification of the processes, omic proper-
ties and molecular interactions may represent the first step
towards a more comprehensive understanding of the
molecular mechanisms of risk of breast cancer conferred
by of low-penetrance susceptibility genes.
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