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Abstract

Background: Low levels of oxygen in tissues, seen in situations such as chronic lung disease,
necrotic tumors, and high altitude exposures, initiate a signaling pathway that results in active
transcription of genes possessing a hypoxia response element (HRE). The aim of this study was to
investigate whether a change in miRNA expression following hypoxia could account for changes in
the cellular transcriptome based on currently available miRNA target prediction tools.

Methods: To identify changes induced by hypoxia, we conducted mRNA- and miRNA-array-based
experiments in HT29 cells, and performed comparative analysis of the resulting data sets based on
multiple target prediction algorithms. To date, few studies have investigated an environmental
perturbation for effects on genome-wide miRNA levels, or their consequent influence on mRNA
output.

Results: Comparison of miRNAs with predicted mRNA targets indicated a lower level of
concordance than expected. We did, however, find preliminary evidence of combinatorial
regulation of mMRNA expression by miRNA.

Conclusion: Target prediction programs and expression profiling techniques do not yet
adequately represent the complexity of miRNA-mediated gene repression, and new methods may
be required to better elucidate these pathways. Our data suggest the physiologic impact of miRNAs
on cellular transcription results from a multifaceted network of miRNA and mRNA relationships,
working together in an interconnected system and in context of hundreds of RNA species. The
methods described here for comparative analysis of cellular miRNA and mRNA will be useful for
understanding genome wide regulatory responsiveness and refining miRNA predictive algorithms.
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Background

MicroRNAs (miRNA) are approximately 22-nucleotide,
non-coding RNA sequences important in the control of
gene expression. They are involved in a variety of cellular
processes, including development, cell differentiation,
signaling, and tumorigenesis[1], and are believed to rep-
resent 1% of the predicted genes in mammalian and nem-
atode genomes[2,3]. Mammals in general (and primates
in particular) appear to have a large number of miRNAs
not found in other animal orders|2], suggesting that many
functional miRNAs may have emerged during recent evo-
lutionary periods. According to current functional and
predictive models, each miRNA regulates multiple genes
during differentiation and/or development at the tran-
scription, translation, and posttranslational levels[1,4,5].
However, few of these targets and regulatory pathways
have been experimentally validated, and the number of
authentic (as opposed to predicted) miRNAs that exist in
the mammalian genome as well as the actual number of
their targets are not yet known.

Considerable effort has been directed toward understand-
ing which mRNAs within the human genome are subject
to regulation by miRNA-mediated repression. The miRGen
Targets interface allows users to search either for targets or
particular miRNA(s) that influence a particular gene.
DIANA-microT[6], MiRanda|7], TargetScanS[5], and Pic-
Tar[4] are four genome-wide prediction algorithms whose
results are available through miRGEN  http://
www.diana.pcbi.upenn.edu/miRGen.html[8-11], an inte-
grated database of (i) positional relationships between
animal miRNAs and genomic annotation sets, and (ii)
animal miRNA targets according to combinations of
widely used prediction programs. These algorithms can
provide quite a variable picture of miRNA behavior, and
it is difficult to assess which in silico predictive method is
best for identifying true miRNA targets[12]. It is probable
that the use of multiple programs combined with mRNA
expression profiling will be necessary to address this ques-
tion. As a result, we considered four different algorithms
(PicTar, TargetScanS, miRanda(microrna.org), and
miRanda(miRBase)) in this report when assessing the
relationship between mRNA and miRNA expression.

Previous studies have evaluated the influence of a particu-
lar miRNA on potential mRNA targets and found a high
degree of correlation in specific tissues [13-15]. In general,
these reports have examined the regulatory relationships
between miRNAs and the genome wide transcriptome,
with a focus on pathological conditions (such as cancer)
rather than acute perturbations such as hypoxia, although
hypoxia in particular has been shown to regulate discrete
miRNAs [16-23]. Hypoxia results in a change in expres-
sion of a significant portion of the human transcriptome.
After oxygen restriction, we observed down-regulation of
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hundreds of transcripts, including the cystic fibrosis trans-
membrane conductance regulator (CFTR), in which we
could not identify a consensus hypoxia regulatory motif
(HRE, hypoxia regulatory element[24]; an indicator of
transcriptional regulation by hypoxia inducible factor
(HIF)). In the present study, we hypothesized that many
of these transcripts may be down-regulated by miRNAs.

Kulshreshtha et al[22] recently demonstrated a functional
link between hypoxia and microRNA expression,
although the relationship to mRNA expression was not
evaluated. We therefore investigated the effects of hypoxia
on a model epithelia and found that 3125 unique genes
were significantly altered. Of these, approximately 53%
were down-regulated, presenting 1649 unique possible
targets for miRNA-mediated repression. Expression data
from a miRNA Bioarray (see Methods) was compared
with the mRNA expression profile, and the strength of cor-
relation against predicted targets with differentially
expressed miRNAs was analyzed using computational
techniques we developed specifically for this purpose. We
found no compelling evidence that miRNA-mediated
repression plays a major role in down-regulation of CFTR,
and present evidence that the individual miRNA levels do
not correlate well with their algorithm-predicted target
mRNAs. However, the groups of miRNAs predicted to reg-
ulate the same mRNA target were found to be co-regu-
lated, indicating that a level of combinatorial control may
exist.

Methods

Cell line and culture conditions

The HT29 (human colonic) cell line was obtained from
ATCC http://www.atcc.org and seeded on 12-mm diame-
ter Transwell filters (Corning-Costar, Corning, NY). Cells
were cultured in media (HT29: McCoy's 5a medium sup-
plemented with 7% Fetal Bovine Serum (FBS)) for 5-7
days (media bathing both the apical and basolateral com-
partments) at 37°C (5% CO, - 95% air gas mixture).
Under these conditions, cells form polarized monolayers
with transepithelial resistances of >1000 Q- cm?2. In some
monolayers, media was removed from the apical side to
expose cells to air (A/L or air-liquid interface). Media
remained on the apical surface (L/L or liquid-liquid inter-
face) of other monolayers to a depth of one centimeter, a
condition that markedly impairs access to ambient oxy-
gen, conferring a hypoxic environment at the cell surface
and a glycolytic cytosol due to an impairment of oxygen
diffusion through liquid [25-27]. Several studies have
established that altered physiology of cells under sub-
merged conditions is primarily the result of a lack of oxy-
gen (with otherwise equal volumes or composition of
overlying media) [27-29]. For example, it has been deter-
mined that cells cultured under liquid (L/L) are hypoxic as
judged by three criteria; (i) HIF protein level is increased
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in L/L culture, (ii) HRE-driven luciferase activity is
increased, and (iii) well known genes activated under
hypoxia such as VEGF are dramatically elevated. The assay
represents a useful and commonly used test for observing
changes in vitro due to hypoxia.

mRNA expression array

Total RNA was purified from HT29 cells using the mir-
Vana™ miRNA Isolation Kit per manufacturer instructions
(Ambion, Inc., Austin, TX), and RNA quality assessed
before RNA labeling (2100 Bioanalyzer, Agilent, Palo
Alto, CA). Detailed analysis procedures are presented in
the Manufacturer's GeneChip Expression Technical Man-
ual (Affymetrix, Santa Clara, CA). Briefly, 2 ug of total
RNA from each sample was used to generate double
strand ¢cDNA by linear amplification using oligo dT-T7
primer and reverse transcriptase. Subsequently, biotin-
labeled cRNA was synthesized by in vitro transcription
(IVT) using 3'-Amplification Reagents for IVT labeling
(Affymetrix, Santa Clara, CA) followed by cRNA fragmen-
tation. The Affymetrix Human Genome U133 Plus 2.0
Array was used for hybridization. This array contains
54675 probes designed to over 47,000 transcripts and var-
iants. Arrays were hybridized overnight at 45°C, and then
washed, stained, and scanned on a GeneChip Scanner
3000 (Affymetrix, Inc., Santa Clara, CA). Gene expression
levels were analyzed with GeneChip Operating Software
(Affymetrix, Inc., Santa Clara, CA). Raw data were ana-
lyzed using Microarray Suite, Version 5.0 software
(Affymetrix, Santa Clara, CA). The raw data set is available
through Gene Expression Omnibus under accession
number GSE9234.

miRNA expression array

Total RNA was purified from HT29 cells using the mir-
Vana™ miRNA Isolation Kit per manufacturer instructions
(Ambion, Inc., Austin, TX) which efficiently purifies RNA
as small as 10 nucleotides. Expression profiling was then
performed using the mirVana miRNA Bioarrays V2 (Asur-
agen, Inc., Austin, Texas) which contains probes for all
mouse, rat, and human miRNAs (266, 238, 482 con-
firmed miRNAs, respectively) in miRBase http://micro
rna.sanger.ac.uk/. Samples for microRNA profiling studies
were processed by Asuragen, Inc. (Austin, TX) and the
microRNA enriched fraction obtained by passing total
RNA through a flash PAGE™ Fractionator apparatus
(Ambion, Inc., Austin, TX) and cleaned. The 3' ends of
RNA molecules were tailed and labeled using the mir-
Vana™ miRNA Labeling Kit (Ambion, Inc., Austin, TX).
Amine-modified nucleotides were incorporated during
the poly (A) polymerase mediated tailing reaction, and
Cy3 succinimide esters (Amersham Biosciences (GE
Healthcare), Piscataway, NJ) were conjugated to amine
moieties on microRNAs. Hybridization to the mirVana
miRNA Bioarrays (Ambion, Inc., Austin, TX) was per-
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formed. The Cy3 fluorescence on the arrays was scanned
at an excitation wavelength of 532 nm using a GenePix
4200AL scanner (Molecular Devices, Union City, CA).
The fluorescent signal associated with the probes and
local background was extracted using GenePix Pro (ver-
sion 6.0, Molecular Devices, Union City, CA). The raw
data set is available through Gene Expression Omnibus
under accession number GSE9234.

mRNA expression array analysis

The raw microarray data obtained from Microarray Suite
v5.0 software were analyzed using a two-sided t-test cor-
rected for unequal variances (Welch test) to compare the
mean expression level for each gene between the two
groups. A Bayesian posterior probability of being a false
positive result (expressed as the false discovery rate, FDR)
was estimated for each probe set individually, based on
the Welch ttest p-values and wusing a mixture
model[30,31]. We focused on the genes among those
most differentially expressed that had corresponding
probe sets with a lower than 1% FDR, that is, with a pos-
terior probability of being differentially expressed of 99%.
These genes were annotated with their chromosomal loca-
tions, UniGene number, LocusLink ID and Gene Ontol-
ogy (GO) information (genes were grouped according to
biological process, cellular component, or molecular
function) using NetAffx resources[32]. We used Onto-
Express  (available at  http://vortex.cs.wayne.edu

Projects.html, last accessed in March 2007) [33] to calcu-
late whether any of the GO terms were significantly over-
represented among differentially expressed genes, as
determined by a two-sided binomial test. The p-value cal-
culation is only valid if the expression levels of the genes
are independent, which is probably not the case in expres-
sion studies; thus, the p-values reported for these analyses
should only be considered as heuristic ranking statistics.
The fold change represents the ratio between microarray
probe expression values.

MIiRNA expression array analysis

Thresholding and signal scaling were generated using
algorithms selected by Asuragen. The background-
adjusted fluorescent values generated by GenePix Pro
were normalized for each microRNA using a variance sta-
bilization method described by Huber et al[34], followed
by a Welch two-sample t-test carried out for every gene;
and a multiplicity correction was conducted to control
FDR at 5% using a step-up approach, as described by Ben-
jamini and Hochberg[35].

Results

Expression profiles of mMRNA in HT29 cells

Data analysis was performed using three replicates of
array data per group (within group Mean 12 = 0.996, range
0.004-0.998). Genes were considered differentially

Page 3 of 17

(page number not for citation purposes)


http://microrna.sanger.ac.uk/
http://microrna.sanger.ac.uk/
http://vortex.cs.wayne.edu/Projects.html
http://vortex.cs.wayne.edu/Projects.html

BMC Medical Genomics 2009, 2:15

expressed between normoxic and hypoxic conditions if
absolute expression changes were 1.5-fold or greater, a
lower than 0.1% false discovery rate (FDR) was observed,
and the p-value from a Welch two-sample t-test was less
than 0.001. Over 8% of all probes satisfied these criteria
(1999 probes up-regulated and 2099 down-regulated, see
Figure 1). These probe sets map on to 1476 up- and 1649
down-regulated genes with a HUGO gene symbol, along
with 208 probe sets that did not map to a HUGO identi-
fier. Table 1 provides examples of selected genes known to
be regulated by hypoxia with a broad biological signifi-
cance, which are also predicted to contain target sites (in
the 3'UTR) for miRNAs, according to the miRanda(micro-
rna.org) target prediction database (for complete dataset
of all genes altered by oxygen restriction in our studies, see
GEO series GSE9234). Interestingly, the
miRanda(mirorna.org) Target Database predicted that
every 3'UTR in this set had target sites for between 4 and
69 miRNAs, although only 30% of the genome has been
suggested to be regulated by miRNA-based mecha-
nisms[1,4,5].

Over-represented GO Categories

We next analyzed our mRNA array data to identify various
cellular processes affected by hypoxia according to Gene
Ontology (GO) annotation[36]. GO is organized into
three partially overlapping categories that consider three
different aspects of each gene: biological processes, molec-
ular functions, and cellular component. To investigate
whether any GO terms were significantly over-represented

Log;oHypoxia

Log;oNormoxia

Figure |

Differentially expressed mRNAs. Comparison of
changes in HT29 mRNA levels under hypoxic vs. normoxic
conditions. Unique genes that were differentially expressed
I.5 fold or greater are shown on the log-scale scatter plot.
Upper cloud indicates transcripts at increased levels under
hypoxic conditions and lower cloud indicates those
decreased under hypoxic conditions.
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among the differentially expressed genes, we used the
Onto-Express tool[33] to calculate statistical significance
values for each category. Categories with the most signifi-
cant corrected p-value are shown in Table 2. The highest
fraction of differentially expressed genes among the bio-
logical processes class included genes linked to choles-
terol biosynthesis, protein metabolism, or ribosome
biogenesis. Among the molecular function class, highly
represented genes included those involved in L-ascorbic
acid binding, ATP-dependent RNA helicase activity, oxi-
doreductase activity, NAD binding, and tRNA binding. A
high fraction of mitochondrial inner membrane prese-
quence translocase complex proteins was found among
the cellular components class. Only a small portion of GO
terms in each category changed significantly (less than 1%
of entire terms, p < 0.05), suggesting the hypoxia-response
may be highly specialized. Taken together, all three cate-
gories indicate considerable effects on glycolysis, transla-
tion and protein metabolism, and RNA processing. Of
note was one group of proteins particularly affected by
hypoxia. At least 20 members of the DEAD box family
were significantly down-regulated, 2 to 33 fold, and com-
prised individual gene products in molecular function
and biological process categories important in cellular
pathways involving RNA (Table 3) [37,38]. These results
suggest a substantial impact on RNA metabolism and
activity by hypoxia.

miRNA expression profiles in HT29 cells

Unlike well-characterized hypoxia-mediated transcrip-
tional activation[24], the general mechanisms underlying
gene repression due to hypoxia are not well understood.
We hypothesized that miRNAs may play an important
role in the down-regulation of gene expression by
hypoxia. We addressed this hypothesis by combining a
comprehensive mRNA expression array with miRNA bio-
array to evaluate not only the potential for a specific,
hypoxic stress-induced miRNA profile, but also to corre-
late the expression of specific miRNAs with their algo-
rithm-predicted targets. The mirVana miRNA Bioarrays
V2(Ambion, Inc., TX) used in this study contain probes
for mouse, rat, and human miRNAs in miRBase. A hierar-
chical cluster analysis, using average linkage and Pearson's
correlation as the weight function, of all the significant
miRNAs evaluated in three hypoxic and three normoxic
conditions is shown in Figure 2, illustrative of miRNAs
differentially expressed by hypoxia. Approximately 8%
(53 miRNAs) of all human miRNAs tested (640 unique
miRNAs) were significantly different in the hypoxic group
compared to the normoxic group. Twenty-eight miRNAs
(4%) were up-regulated in a statistically significant fash-
ion (p < 0.05) by hypoxia and twenty-five miRNAs (4%)
were significantly down-regulated (p < 0.05) (Tables 4
and 5). No correlation of target mRNAs as predicted by
miRanda (microrna.org) with any particular GO term was
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Table I: Representative list of genes changed between hypoxia and normoxia including number of miRNAs predicted to have target

sites in each gene (p < 0.001).

Symbol  Gene Description Number of miRNAs as predicted by miRBase Fold Change
ALDOC fructose-bisphosphate aldolase C 35 76.01
ANGPTL4 angiopoietin-like 4 69 7401
PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 14 20.63
HIG2 hypoxia-inducible protein 2 34 16.55
EGLN3 egl nine homolog 3 (C. elegans) 13 13.80
CA9 carbonic anhydrase IX 15 12.04
VEGF vascular endothelial growth factor 15 9.68
EGRI Early growth response | 15 0.02
DDX28 DEAD (Asp-Glu-Ala-Asp) box polypeptide 28 7 0.03
NOXI NADPH oxidase | 8 0.03
CFTR cystic fibrosis transmembrane conductance regulator, ATP- 13 0.16
binding cassette (sub-family C, member 7)

DDX52 DEAD (Asp-Glu-Ala-Asp) box polypeptide 52 6 0.18
DDX27 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 8 0.26
FPGT fucose- | -phosphate guanylyltransferase 34 0.31

Examples of genes relevant to oxygen deprivation or related areas are shown.

identified, supporting previous reports that miRNAs regu-
late a wide variety of mRNAs and their action is not
restricted to specific groups of genes[5,39].

Correlation of differentially expressed genes with the
expression of their predicted regulatory miRNAs

While it is well established that miRNAs play an impor-
tant role governing gene expression, the correlation of
mRNA and miRNA profiles across the entire genome and
in response to an acute cellular perturbation (such as
hypoxia) have not been thoroughly assessed. Accordingly,
we next evaluated the extent to which the profile of miR-
NAs observed during hypoxia was consonant with mRNA
expression (i.e., the transcriptome response). The distri-
bution of t-statistics for all probes on mRNA expression
arrays was used as a reference distribution (dotted line), as
shown in Figure 3. In comparison to the reference distri-
bution, the thirteen most significant differentially
expressed miRNAs (Tables 4 and 5) and twenty randomly
selected non-significant miRNAs were analyzed. The dis-
tribution of t-statistics for mRNA probes that are predicted
targets of the given miRNAs were generated (solid lines,
Figures 3a and 3b). Figure 3 depicts the distribution of
mRNAs with one predicted target site for a given miRNA
(microrna.org); a deviation from the reference curve (dot-
ted lines) would be interpreted as a significant relation-
ship between the mRNA and miRNA arrays, as mediated
via the target predictions. This methodological approach
to investigating 'cause and effect' allows a visualization of
mRNA/miRNA correlations. No consistent deviations,
however, were observed in the combined t-statistics. As a
further test of this finding, evaluations of individual miR-
NAs were performed (representative examples in Figures
3c and 3d). No consistent deviations were noted in t-sta-

tistics for any single miRNA in either the significant or the
non-significant miRNA group. Figure 3 illustrates the dis-
tribution for miRanda-predicted targets, while Figure 4
through Figure 6 contain the results for PicTar, TargetS-
canS, and miRBase, respectively. When all miRNAs that
changed significantly during oxygen restriction were com-
pared against mRNAs containing one target prediction site
in the 3'UTR, none of the target prediction programs indi-
cated a significant relationship between data from the
mRNA and miRNA expression arrays. When the findings
were evaluated using the most recent TargetScanS predic-
tive method (i.e. a more stringent threshold [40] that
includes only the highest ranked targets with a context
score percentile of 85%), no consistent deviations were
observed in the combined t-statistics (Figure 5).

Similar comparisons were made for mRNAs containing at
least three target sites within each 3'UTR for the same
miRNA (Figure 7). As in Figure 3, the 13 most significant
differentially expressed miRNAs (Figure 7a) and 20 ran-
domly selected, non-significant miRNAs (Figure 7b) were
investigated. Certain miRNAs did exhibit some relation-
ship with their predicted targets (indicated by arrows);
however, miRNAs without statistically significant differ-
ential expression also demonstrated a roughly compara-
ble relationship (arrows, Figures 7c and 7d), suggesting
that this observation occurred by chance.

Combinatorial regulation by groups of diverse miRNA
species binding to different numbers of target sites within
a single 3' UTR of a given gene has been hypothesized as
a mechanism underlying miRNA-mediated gene repres-
sion[4]. Therefore, we next compared expression under
hypoxia or normoxia of all miRNAs predicted to target a
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Table 2: Most significant GO functions in three GO classes.
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Most significant GO Biological Processes

GO Term GO ID Changed Genes Total Genes in Class P-Value Fraction
Cholesterol biosynthesis GO:0006695 12 20 7.04E-09 0.600
Nuclear mRNA splicing, via splicecosome GO:0000398 29 110 9.77E-09 0.264
glycolysis GO:0006096 14 39 1.16E-07 0.359
Protein biosynthesis GO:0006412 38 247 8.00E-07 0.154
transport GO:0006810 50 415 8.94E-07  0.120
Protein metabolism GO:0019538 9 17 4.90E-06 0.529
Protein folding GO:0006457 28 174 5.59E-06 0.161
Ribosome biogenesis GO:0007046 6 14 3.22E-05 0.429
metabolism GO:0008152 39 316 9.36E-05 0.123
tRNA processing GO:0008033 8 33 5.32E-04 0.242
Regulation of the cyclin dependent protein kinase activity GO:0000079 8 34 9.72E-04 0.235
Amino acid biosynthesis GO:0008652 6 22 I.01E-03 0.273
Lipid metabolism GO:0006629 24 193 1.02E-03 0.124
Regulation of progression through cell cycle GO:0000074 27 200 I.14E-03 0.135
Cell cycle GO:0007049 41 338 1.64E-03 0.121
Regulation of translational initiation GO:0006446 7 22 1.88E-03 0.318
Most significant GO Molecular Function.
GO Term GO ID Changed Genes Total Genes in Class P-Value Fraction
Nucleotide binding GO:0000166 173 1405 6.92E-11 0.123
RNA binding GO:0003723 78 389 4.22E-10 0.201
Oxidoreductase activity GO:0016491 61 382 6.44E-10 0.160
ATP binding GO:0005524 123 116 |.20E-09 0.110
Unfolded protein binding GO:0051082 28 143 2.68E-08 0.196
Protein binding GO:0005515 220 2514 I.77E-07  0.088
Transferase activity GO:0016740 101 958 1.86E-07 0.105
L-ascorbic acid binding GO:0031418 6 I |.65E-05 0.545
Lyase activity GO:0016829 16 89 1.37E-04 0.180
binding GO:0005488 47 399 2.37E-04 0.118
ATP-dependent RNA helicase activity GO:0004004 7 18 4.61E-04 0.389
Isomerase activity GO:0016853 15 90 5.54E-04 0.167
Ligase activity GO:0016874 27 184 5.54E-04 0.147
Oxidoreductase activity GO:0016702 6 18 6.72E-04 0.333
NAD binding GO:0051287 8 24 7.05E-04 0.333
Catalytic activity GO:0003824 27 192 7.40E-04 0.141
Transporter activity GO:0005215 29 281 1.50E-03 0.103
Kinase activity GO:0016301 22 163 1.65E-03 0.135
tRNA binding GO:0000049 5 13 1.87E-03 0.385
Most significant GO Cellular Component

GO Term GO ID Changed genes Total genes in class P-value Fraction
cytoplasm GO:0005737 114 895 5.00E-10 0.127
nucleus GO:0005634 281 2999 5.00E-10 0.094
mitochondrion GO:0005739 70 528 1.01E-09 0.133
endoplasmic reticulum GO:0005783 49 405 2.47E-06 0.121
mitochondrial inner membrane presequence translocase GO:0005744 5 I 2.82E-04 0.455
complex
soluble fraction GO:0005625 24 194 3.22E-04 0.124
nucleolus GO:0005730 12 59 1.09E-03 0.203
The fraction reflects genes differentially expressed relative to the total number of genes in that class.
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Table 3: DEAD and DEAH helicases down-regulated in response to hypoxia.

Symbol Gene description Fold Change
DDXI DEAD (Asp-Glu-Ala-Asp) box polypeptide | 0.51
DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 0.43
DDXI10 DEAD (Asp-Glu-Ala-Asp) box polypeptide 10 0.26
DDX17 DEAD (Asp-Glu-Ala-Asp) box polypeptide |7 0.55
DDX18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 0.31
DDXI9%9A DEAD (Asp-Glu-Ala-As) box polypeptide |9A 0.35
DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 0.29
DDX27 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 0.26
DDX28 DEAD (Asp-Glu-Ala-Asp) box polypeptide 28 0.03
DDX31 DEAD (Asp-Glu-Ala-Asp) box polypeptide 31 0.09
DDX39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 0.34
DDX42 DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 0.49
DDX52 DEAD (Asp-Glu-Ala-Asp) box polypeptide 52 0.18
DDX55 DEAD (Asp-Glu-Ala-Asp) box polypeptide 55 0.44
DDX56 DEAD (Asp-Glu-Ala-Asp) box polypeptide 56 0.28
DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 0.16
DHX29 DEAH (Asp-Glu-Ala-His) box polypeptide 29 0.5
DHX33 DEAH (Asp-Glu-Ala-His) box polypeptide 33 0.17
DHX36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 0.51
DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9 0.28

Listed are genes downregulated 2-fold or more (p < 0.001) under hypoxia.

specific gene (termed a gene-specific miRNA group, Figure
8). This comparison evaluates whether specific groups of
miRNAs (namely those predicted to target a specific gene)
are significantly up- or down-regulated as a cluster. For
each gene, a regression line (solid line, estimated best fit
using the specific group of miRNAs indicated by red dots)
was plotted and an ANOVA test performed to determine
whether the regression line differed significantly from
equality (dotted line). Figure 8a shows a histogram of the
resulting p-values, indicating that a higher-than-expected
number (expected result shown by dotted line) of gene-
specific miRNA groups were regulated coordinately in
association with a particular mRNA target.

A representative sample of statistically significant gene-
specific miRNA groups is shown in Figures 8b-d. We
chose to analyze three genes; CFIR, KIAA2026, and
C160rf73. Selection of CFIR was based on our laboratory
interest in regulation of that particular gene product. The
other two genes shown in the figure (whose functions are
not known) were selected because of highly significant p-
values, indicating very strong co-regulation by gene-spe-
cific miRNA groups. Scatterplots were identical by this
method (black dots representing all miRNAs), indicating
the group of miRNAs predicted to regulate expression of a
particular gene of interest. Significant deviation from the
line of equality (dotted line) indicates co-regulation of a
cohort of miRNAs. The results presented here therefore
provide some of the first evidence to suggest that miRNAs
may be coordinately regulated in groups relevant to spe-

cific 3' UTRs. For example, Figure 8b shows predicted reg-
ulation of CFTR mRNA expression by CFIR specific
miRNAs (red dots, 9 predicted by miRanda(micro-
rna.org)). The regression line indicates considerable devi-
ation, suggesting that coordinated regulation of CFTR
mRNA may exist by these specific miRNAs. CFTR mRNA
levels were among the most significantly decreased under
hypoxia based on the mRNA array (Table 1). Figure 8
shows results for miRanda-predicted targets. Results for
PicTar, TargetScanS, and miRanda(miRBase) are provided
in the Figures 9, 10, 11. All four algorithms indicate gene-
specific groups of miRNAs reacted coordinately to
hypoxia, as shown by the histograms of p-values. How-
ever, different algorithms identified somewhat different
gene-specific groups as being most strongly affected by
hypoxia, as shown by the scatterplots (Figures 8b-d; and
Figures 9, 10, 11).

Several mRNA changes were statistically significant due to
pronounced differential expression of a single miRNA (for
example Figure 10), a finding that may or may not be bio-
logically relevant. In addition, while many mRNAs within
a gene-specific miRNA group were found to be coordi-
nately up-regulated, many others predicted to have target
sites by miRanda(microrna.org) and other algorithms
were not differentially expressed (Figure 8), suggesting
that the definition of gene-specific miRNAs requires fur-
ther refinement. Only a subset of genes with significantly
regulated gene-specific miRNA groups were differentially
expressed in our data set. The implication of these find-
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Figure 2

Bicluster of microRNA expression. Hierarchical cluster-
ing was carried out using correlation distance as the distance
metric and average linkage between clusters to perform the
analysis. This is a non-supervised method to illustrate poten-
tial relationships between the miRNA expression profiles
from different samples. Hierarchical clustering was carried
out for all samples and miRNA. The top of the figure indi-
cates relationships between the various samples. The left-
hand side shows the relationships between the miRNA iden-
tified on the right-hand side. The color of each cell reflects
fold-change of the observed hybridization intensity relative to
average hybridization intensity across all samples. Saturated
green cells represent decrease in hybridization intensity,
whereas saturated red cells represent an increase.
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Table 4: MicroRNAs up-regulated by hypoxia (p < 0.05).

p-value
MicroRNA (Hypoxia vs Normoxia)
ambi_miR_8488 0.00038
hsa_miR_152 0.00064
ambi_miR_13232 0.00137
hsa_miR_193b 0.00161
hsa_miR_26a 0.00204
ambi_miR_2537 0.00460
hsa_miR_512_5p 0.01019
mmu_miR_431 0.01033
hsa_miR_23a 0.01074
ambi_miR_7036 0.01075
hsa_miR_210 0.01103
hsa_miR_125a 0.01483
ambi_miR_10594 0.01708
hsa_miR_188 0.01969
hsa_miR_27b 0.02119
hsa_miR_191 0.02243
hsa_miR_30d 0.02262
hsa_miR_339 0.02339
hsa_miR_200b 0.02427
hsa_miR_23b 0.02885
hsa_miR_452_AS 0.03012
hsa_miR_491 0.03651
hsa_miR_30a_5p 0.03778
hsa_miR_30c 0.04013
rno_miR_333 0.04207
ambi_miR_562 0.04695
hsa_miR_213 0.04702
hsa_miR_206 0.04786

ings is that although miRNAs may be coordinately regu-
lated, they do not predict expression changes of every
predicted target.

Discussion

Cellular responses to hypoxia can occur through stabiliza-
tion of HIF, a well-established transcriptional activator,
and result in enhanced expression of a variety of hypoxia-
related genes. Much less is known regarding hypoxia-
dependent transcriptional repression. Our mRNA array
data indicate that a large number of transcripts are
robustly downregulated following oxygen restriction in
human epithelial cells. One goal of the present study was
to investigate the extent to which changes in miRNA could
account for these variations in the cellular transcriptome.
We hypothesized that miRNAs would play a role sup-
pressing certain genes during hypoxia, and tested this by
comparing expression data from miRNA and mRNA
expression profiles investigated in parallel.

Recent studies describe hypoxia specific miRNA signa-
tures in a variety of cell types [16-23]. A functional link
between hypoxia and miRNA expression has therefore
been observed by others, although the relationship
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Table 5: MicroRNAs down-regulated by hypoxia (p < 0.05).

p-value
MicroRNA (Hypoxia vs Normoxia)
hsa_miR_25 4.53630E-05
hsa_miR_196b 0.00014
ambi_miR_7510 0.00088
ambi_miR_13143 0.00129
ambi_miR_9630 0.00263
hsa_miR_92 0.00361
hsa_miR_I81b 0.00507
hsa_miR_128b 0.00521
hsa_miR_196a 0.00894
hsa_miR_181d 0.00942
hsa_miR_449 0.00999
ambi_miR_7075 0.01053
rno_miR_I5I 0.01208
hsa_miR_150 0.01709
mmu_miR_7b 0.02328
hsa_miR_I55 0.02363
hsa_miR_519e_AS 0.02637
mmu_miR_155 0.02638
ambi_miR_7105 0.02947
hsa_miR_373_AS 0.03220
mmu_miR_302c_AS 0.03309
hsa_miR_200a_AS 0.03337
hsa_miR_489 0.04173
ambi_miR_1154I 0.04190
mmu_miR_I51 0.04840

between mRNA and miRNA from a genome-wide per-
spective has not been investigated previously. Kulshresh-
tha and colleagues emphasized that a spectrum of
miRNAs can be induced during hypoxia, and at least some
of these occur via a HIF-dependent mechanism. Ten miR-
NAs reported previously as hypoxia-responsive were also
identified in our experiments (e.g. miR-23a, -23b, -27b, -
30d, -191, -210, -213, -155, -200a, -181b) using a differ-
ent method of oxygen deprivation (Tables 4 and 5). Inter-
estingly, three miRNAs (miR-155, -200a, -181b) reported
to be upregulated in other cell systems (reviewed in [16-
23]) were noted to be repressed in colonic epithelia. These
differences most likely relate to the various cell-types,
growth conditions, or procedural aspects used in earlier
studies.

The epithelial model of hypoxia described here represents
a well-defined in vitro system for studying subacute
(including transcriptional) effects of oxygen restriction
[25-29]. We used the model to evaluate miRNA regulation
of gene expression. We found changes in the epithelial
transcriptome resulting from low oxygen, as well as fur-
ther evidence for a potential signature of miRNAs induced
by hypoxia [16-23]. However, in contrast to several extant
models [13-15], we did not observe a significant correla-
tion between mRNA expression levels and miRNAs on a
genome-wide scale. Earlier studies have relied primarily

http://www.biomedcentral.com/1755-8794/2/15

on particular tissue types and developmental stages from
a variety of organisms, suggesting results most relevant to
embryologic gene regulation. The present investigation of
mRNA:miRNA association applied a novel analytical
approach to widely available data visualization tools, and
monitored miRNA and mRNA expression on a genome-
wide basis, including the potential role of environmental
stressors (found commonly in pathologic conditions) on
miRNA-mediated regulation.

Our analysis incorporated four miRNA target predictions
programs (MiRanda, PicTar, miRBase, TargetScan). When
miRNA targets were compared to mRNA output, the data
sets failed to indicate a significant relationship between
expression arrays. In a very recent study, Baek et al. [40]
reported that the top third TargetScan predictions (ranked
by 'total context score') may correlate best with protein
downregulation. In the present experiments, applying this
stringent threshold and strict site conservation (after [40])
did not result in a stronger association. This included use
of the most recent TargetScan algorithm (release 4.2;
http://www.targetscan.org/) and restriction of targets to a
context score of 85% or higher. Our results therefore indi-
cate limitations of the currently available target prediction
algorithms. While high stringency methods can be valua-
ble for an individual miRNA [40], TargetScan/PicTar
modifications do not appear to enhance the available
algorithms in a broader, genomic context.

The lack of a significant and robust correspondence
between mRNA levels and miRNA expression could repre-
sent a lack of specificity and/or accuracy of miRanda or
other target prediction algorithms. The observed magni-
tude of miRNA expression changes (Figures 8b-d) in the
present experiments is lower than observed for mRNA
(Figure 1). In addition, the relatively small sample sizes
used in this study could contribute to a lack of informa-
tion, making it difficult to test the assumptions underly-
ing the statistical method (such as normality), in a fashion
that could impact results. MiRanda typically produces
more potential targets than other programs, and a large
number of false targets would seriously limit the compu-
tational methods described here. We also note that the
available programs have only partially overlapping pre-
dicted targets for the same miRNA and produce smaller
data sets than miRanda. Due to the differences among
databases and because there are no clearly superior meth-
ods, future studies of mRNA and miRNA regulation
should consider analysis of multiple predictive algorithms
rather than use of a single data analysis tool.

Although miRNAs can act to promote cleavage and subse-
quent degradation of their mRNA targets, this may not be
the only (or even primary) mechanism of miRNA action
in mammalian epithelia. A strong consensus is not yet
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Correlation of miRNAs with at least one target site in miRanda-predicted target mRNA. In each panel, the refer-
ence distribution of t-statistics from all probes of the mMRNA expression arrays is given by a dotted line. These are compared
with the distribution of t-statistics for those probes that are predicted targets of given miRNAs, shown as a solid line. 'N' rep-
resents the number of transcripts in the reference sample (dotted line), and therefore is the same in each plot. Sample size (n)
is the number of genes predicted to have target(s) of given microRNA(s) (solid line), and therefore changes from plot to plot.
Note that n depends on the number of predicted target probes contained within the dataset, either combined among all miR-
NA:s, or specific to an individual miRNA. The plotted distributions are Gaussian kernel density estimates (loosely, smoothed
histograms), and the indicated bandwidth is in terms of the standard deviation of the smoothing kernel. The x-axis in each fig-
ure reflects the t-statistics for the comparison between groups (dotted line represents random distribution). The y-axis repre-
sents the density of observations at a given t-statistic value. a. Combined t-statistics for all significantly changed miRNAs with |
site in the 3'UTR of predicted target miRNAs. b. Combined t-statistics for a set of non-significant miRNAs with | predicted tar-
get site. c. Representative significantly changed miRNA compared to all of its predicted targets. d. Representative non-signifi-
cantly changed miRNA compared to all of its predicted targets.

available regarding the predominant pathway(s) that
underly miRNA gene repression [41-44]. One explanation
for our findings could relate to translational repression as
a major action of miRNA in human cells. It has been
shown that certain miRNAs bind their targets and prevent
adequate translation. However, mRNA levels are not
always affected by this process. A quantitative, proteomic
approach to evaluate hypoxic protein expression in epi-
thelia followed by in silico statistical correlation would be
necessary to investigate this possibility. On the other
hand, miRNA levels are also governed by DNA promoter
elements, stability of miRNA, degradative pathways
related to differential RNA editing, transport into the cyto-
plasm, and/or deficient processing by Drosha. Alternative
transcript splicing and polyadenylation can eliminate

miRNA regulatory sites from a message, and miRNA
directed repression can be blocked by certain RNA bind-
ing proteins. It seems less likely that common promoter
element(s) or a single pathway (by itself) could explain
the very large number of up- or down-regulated miRNAs
noted as a result of oxygen restriction (Figure 1). Moreo-
ver, translation of miRNA targets leads to secondary tran-
scriptional and post-transcriptional regulation that
contributes to the observed mRNA profile. The diversity of
potential regulatory sequences, difficulty predicting bio-
logic regulation based solely on a consensus miRNA bind-
ing site, and the increasingly apparent need for
confirmation in living cells indicate that additional, cell-
based studies should be used in the future to address tran-
scriptome regulation by miRNA.
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Figure 4

Correlation of miRNAs with at least one target site in PicTar-predicted target mRNA. a. Combined t-statistics for
all significantly changed miRNAs with | site in the 3'UTR of predicted target mRNAs. b. Combined t-statistics for a set of non-
significant miRNAs with | predicted target site. c. Representative significantly changed miRNA compared to all of its predicted
targets. d. Representative non-significantly changed miRNA compared to all of its predicted targets.
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Figure 5

Correlation of miRNAs with at least one target site in TargetScanS (with total context score)-predicted target
mRNA. a. Combined t-statistics for significantly changed miRNAs (top 15%) with | site in the 3'UTR of predicted target
mRNAs. b. Combined t-statistics for a set of non-significant miRNAs with | predicted target site. c. Representative significantly
changed miRNA compared to top 15% of its predicted targets. d. Representative non-significantly changed miRNA compared
to top 15% of its predicted targets.
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Correlation of specific genes with predicted groups of miRNAs (miRanda, microrna.org). The expression levels in
hypoxia and normoxia of each gene specific miRNA group were plotted. Significant deviation of the regression line (solid) from
the line of equality (dotted line) indicates co-regulation of the group. Panel a shows histogram of the p-values for miRNA
groups of all coding genes represented in the study for miRanda. Frequency on y-axis refers to the number of genes involved.
Panels b-d depict CFTR, KIAA2026, and Cl60orf73 as examples of mRNA regulation by gene-specific miRNA groups. The red
dots indicate gene-specific miRNAs for each given gene; this includes 9 miRNAs predicted by miRanda(microrna.org) for

CFTR, 28 each for KIAA2026 and Clé6orf73.

miRNA expression arrays represent a relatively new tech-
nology, and potential issues exist with regard to data
acquisition. The correlation of biological replicates in our
studies was >0.99, which indicates the technology is pre-
cise, although accuracy is undefined. In addition, we ran-
domized the order of miRNA and mRNA extraction to
minimize non-biological, confounding variables. The
goal of identifing a method to predict levels of mRNAs
based on miRNA profiling, regardless of the underlying
regulatory mechanism, was strengthened by correlation
against predicted mRNA targets across the entire transcrip-
tome. While previous studies have evaluated effects of a
single miRNA after high level recombinant overexpres-
sion, the present experiments allowed us to study the
dynamics of miRNA and mRNA regulation in parallel
with a common physiologic insult (oxygen deprivation).
This approach avoided potential variables introduced by
overexpression of foreign DNA elements or otherwise
manipulating the cellular genome.

The present findings suggest that correlation between
miRNAs and their predicted targets based primarily on the

number of consensus sites in the 3'UTR may be overly
simplistic. Combinatorial analysis reveals much more sig-
nificant agreement between specific genes and their pre-
dicted miRNA regulators as a group; however, this too
may reflect a one-dimensional view of miRNA activity.
Based on evidence presented here that entire (GO) func-
tional categories of mRNAs are regulated in parallel by
hypoxia (Table 2), higher order miRNA groupings may
exist along functional or developmental lines that
respond as networks. In either case, the present experi-
ments provide a means by which other predicted target
lists — either currently available or under development -
may be optimized to yield a better correlation between
miRNA levels and gene expression.

The observation that a gene-specific group of miRNAs
may work in concert to repress CFTR mRNA during
hypoxia also points to a novel mechanism of regulation.
Previous experiments have failed to establish a direct role
for HIF during the pronounced inhibition of CFTR that
occurs during oxygen deprivation. Moreover, very few
gene products are believed to be down-regulated in a
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Correlation of specific genes with predicted groups of miRNAs (PicTar). The expression levels in hypoxia and nor-
moxia of each gene specific miRNA group were plotted. Significant deviation of the regression line (solid) from the line of
equality (dotted line) indicates co-regulation of the group. Panel a shows histogram of the p-values for miRNA groups of all
coding genes represented in the study for PicTar. Frequency on y-axis refers to the number of genes involved. Panels b-d
depict CFTR, NRBF2, and GALNT3 as examples of mRNA regulation by gene-specific miRNA groups. The red dots indicate

gene specific miRNAs for each given gene.

direct fashion by HIF. If a cohort of miRNAs target CFIR
and coordinately suppress its message, this could repre-
sent an important and novel example of miRNA based
repression following an environmental stress. The find-
ings may also help explain in vivo suppression of CFTR
mRNA during low oxygen exposure[45,46], and suggest a
role for miRNAs governing levels of hundreds of gene
products following hypoxic insult (Figures 2 and 8).

Conclusion

Our results suggest that the expected inverse relationship
between miRNA and target mRNA may be a rare event.
Several previous studies [13-15] have indicated a clear cor-
relation between a specific miRNA and suppression of a
target mRNA. These earlier studies in some cases were
based on marked overexpression of a particular miRNA,
followed by expression studies of the mRNAs of interest.
However, our experiments suggest that under physiologi-
cal conditions in human epithelium, miRNA acts in a
more subtle fashion distinct from that of marked overex-

pression. In addition, the physiologic impact of miRNAs
on cellular transcription appears to result from a multifac-
eted network of miRNA and mRNA relationships, work-
ing together in an interconnected system and in context of
hundreds of other RNA species. It may be that target pre-
diction algorithms and expression profiling techniques do
not yet adequately represent the complexity of miRNA-
mediated gene repression, and new methods may be
required to truly understand these systemic aspects.
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to the number of genes involved. Panels b-d depict CFTR, NRBF2, and LARPI as examples of mRNA regulation by gene-spe-
cific miRNA groups. The red dots indicate gene specific miRNAs for each given gene.
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