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Abstract
Background: Many critical maturational processes take place in the human brain during postnatal
development. In particular, the prefrontal cortex does not reach maturation until late adolescence
and this stage is associated with substantial white matter volume increases. Patients with
schizophrenia and other major psychiatric disorders tend to first present with overt symptoms
during late adolescence/early adulthood and it has been proposed that this developmental stage
represents a "window of vulnerability".

Methods: In this study we used whole genome microarrays to measure gene expression in post
mortem prefrontal cortex tissue from human individuals ranging in age from 0 to 49 years. To
identify genes specifically altered in the late adolescent period, we applied a template matching
procedure. Genes were identified which showed a significant correlation to a template showing a
peak of expression between ages 15 and 25.

Results: Approximately 2000 genes displayed an expression pattern that was significantly
correlated (positively or negatively) with the template. In the majority of cases, these genes in fact
reached a plateau during adolescence with only subtle changes thereafter. These include a number
of genes previously associated with schizophrenia including the susceptibility gene neuregulin 1
(NRG1). Functional profiling revealed peak expression in late adolescence for genes associated
with energy metabolism and protein and lipid synthesis, together with decreases for genes involved
in glutamate and neuropeptide signalling and neuronal development/plasticity. Strikingly, eight
myelin-related genes previously found decreased in schizophrenia brain tissue showed a peak in
their expression levels in late adolescence, while the single myelin gene reported increased in
patients with schizophrenia was decreased in late adolescence.

Conclusion: The observed changes imply that molecular mechanisms critical for adolescent brain
development are disturbed in schizophrenia patients.
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Background
The human prefrontal cortex is amongst the most phylo-
genetically recent regions of the brain, and ontogenically,
is one of the last to mature [1,2]. The region does not
reach adult volume until 10 years of age [3], and myelina-
tion continues to progress through adolescence well into
early adulthood [4]. A rapid loss of prefrontal grey matter
also occurs during adolescence [5,6], which is commonly
attributed to an increase in synaptic pruning [7,8]. This
peak and subsequent decrease in grey matter volume dur-
ing late adolescence is a notable feature of the develop-
ment of the prefrontal cortex and is not observed in other
cortical regions [7,2]. The late maturation of this brain
region functionally maps to the later development of
higher cognitive processes, particularly executive func-
tion, social cognition and judgement [9,10]. This period
of cognitive development also represents a time of
increased vulnerability to the effects of emotional stress,
illicit drug-taking, alcohol and nicotine exposure, and is
the most common age for patients to present with the
symptoms of major psychiatric disorders such as schizo-
phrenia, bipolar disorder and depression [11,12]. Thus
characterising the functional alterations occurring in the
brains of teenagers and young adults is an important area
of study.

To date, the majority of studies of the human adolescent
prefrontal cortex have employed brain imaging tech-
niques [2,6,13], with a limited number of histological
studies [14,8,15]. Animal studies have provided further
evidence for structural remodelling of the prefrontal cor-
tex in adolescence (reviewed in [16,12,17]) but little is
known about the molecular mechanisms underlying this
process. Several recent post mortem studies of the human
prefrontal cortex have begun to address the lack of knowl-
edge in this area by characterising the expression of key
genes across post-natal life-span [18-24]. Extending this
concept, microarrays can be employed to assess such pat-
terns for thousands of genes simultaneously, an approach
which has recently been employed to investigate gene
expression patterns in the prefrontal cortex from young
adulthood to old age [25].

Using whole genome microarrays we have investigated
gene expression in post-mortem prefrontal cortex tissue
from healthy individuals aged from birth to middle age.
Preliminary analysis of these data focused on gender dif-
ferences in postnatal development [26]. In the present
study, we focus specifically on the period of late adoles-
cence, with the goal of identifying genes whose expression
is altered during this period. The data are presented in the
context of identifying the molecular processes that are the
most likely candidates for the susceptibility to psychiatric
dysfunction occurring in late adolescence.

Methods
Tissue samples
Fresh frozen post mortem prefrontal cortex tissue (Brod-
man area 46) from 48 individuals varying in age from 0 to
49 years was obtained from the National Child Health
and Human Development Brain and Tissue Bank for
Developmental Disorders at the University of Maryland,
Baltimore, USA (UMBB) (NICHHD Contract number
NO1-HD8-3283). The collection protocol was reviewed
and approved by the Institutional Review Board of the
University of Maryland, Baltimore. The study conforms
with the Code of Ethics of The World Medical Association
(Declaration of Helsinki).

Subjects were defined as normal controls by forensic
pathologists at the UMBB, having no history of psychiatric
or neurological complaints, confirmed by next of kin
interview. The samples comprised 30 males and 18
females, mean pH was 6.7 ± 0.17 and post-mortem interval
(PMI) was 18 ± 7.5 hours. Full demographic details can be
found in Additional File 1.

RNA extraction and chip hybridization
All procedures have previously been described [27]. In
brief, total RNA was extracted from prefrontal cortex grey
matter samples using Trizol (Sigma) and RNA quality was
assessed using a high-resolution electrophoresis system
(Agilent Technologies) (Additional File 1). Isolated total
RNA was then carried through the Affymetrix preparation
protocol [28] and each sample was hybridized to one HG-
U133 Plus 2.0 GeneChip (Affymetrix) to assess gene
expression for the whole human genome.

Microarray data pre-processing
Raw data were processed and analysed using the R statis-
tical program [29] and Bioconductor packages [30]. Our
quality control procedures for Affymetrix microarray data
obtained from human post-mortem brain tissue have pre-
viously been described [31,27]. Briefly, these included an
assessment of chip quality using the AffyPLM package
[32] to fit a probe level model to the data, calculation of
pairwise correlation coefficients between chips and box-
plots of RMA normalised expression values for each chip
to identify outlier chips. Based on these analyses, 4 sam-
ples were considered outliers and removed from further
analysis. Three were from subjects aged less than one year;
however, as there were several other samples of similar
age, the removal of outliers did not substantially alter the
distribution of ages in this series. Normalised expression
values (log base 2) for each probe-set on the 44 chips pass-
ing our stringent quality standards were computed using
the robust multi-chip average (RMA) method [33]. Data
were submitted to the GEO archive, with series accession
GSE13564.
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Template matching
A method of template matching was used to identify
probe-sets whose expression profile with age was signifi-
cantly correlated with a pre-defined template. The age
range of interest was defined as 15–25, corresponding to
the peak period for onset of schizophrenia [34,35]. The
template was a simple step design with samples from sub-
jects aged 15–25 assigned a value of 1 and all other sam-
ples assigned a value of 0 (Figure 1). A gene with relatively
high expression levels in the 15–25 year age-range com-
pared to other ages would produce a strong positive corre-
lation with the template. Conversely, a gene showing
relatively low expression in the 15–25 year age-range
would produce a strong negative correlation and thus pro-
files matching the template or its inverse can be detected
simultaneously. Spearman's correlation test was used to
identify probe-sets matching the template, using the
'cor.test' function within R [29]. Raw p-values for the cor-
relation tests were extracted and adjusted for multiple test-
ing using the false discovery rate method (FDR) of
Benjamini and Hochberg [36]. Adjusted p values are
referred to using the notation q throughout and where
multiple probe-sets exist for a gene the result for the most
significant probe-set is reported.

Functional profiling
Gene Set Enrichment Analysis (GSEA) [37] was used to
identify functionally related groups of genes whose
expression pattern was correlated with the template. This
algorithm identifies groups of genes which are enriched
towards the top or bottom of a ranked list of genes based
on a running sum statistic. To rank the genes, Affymetrix
probe-set identifiers were converted to HUGO gene sym-
bols using OntoTranslate [38], which were then ranked in
order of strength of correlation with the template (most
positive to most negative Spearman's correlation coeffi-
cient). Where a gene was represented by multiple probe-
sets, the probe-set with the strongest correlation was used,
leaving a single value for each gene. The pre-ranked list
was submitted to GSEA using the default parameters and
a list of biological process categories from the Gene

Ontology consortium [39] as the gene sets database. Cat-
egories with fewer than 15, or greater than 500 members,
were excluded from the analysis. The default FDR p value
cut-off within GSEA is 0.25, however in the present anal-
ysis the significance cut-off was reduced to 0.20 due to the
large number of significant categories. This adjustment
did not qualitatively alter the results. Next, the leading
edge analysis tool within GSEA [37] was used to cluster
significant categories for which common genes accounted
for the core enrichment signal. This tool clusters gene sets
based on the ratio of the intersection and union of genes
in the leading edge; a value of more than 0.25 was
required for genesets to be considered to cluster together.

QPCR validation
For quantitative real-time PCR (QPCR), complementary
DNA was synthesized from 1 μg total RNA with an oligo-
nucleotide deoxythymidine primer and Superscript First-
Strand synthesis system (Invitrogen). QPCR was per-
formed using the Applied Biosystems 7900 HT Sequence
Detection System following manufacturer's instructions.
Four genes of interest were selected for validation using
TaqMan gene expression assays (Applied Biosystems)
(glucose metabolism genes PKBFB2 and ACADSB, myelin
component MBP, and the schizophrenia risk factor gene
NRG1 (probe chosen to be non-isoform specific)). To
avoid any potential amplification of genomic DNA, cho-
sen QPCR assays spanned intron-exon boundaries. Addi-
tionally, the assays were designed to detect the same or
very similar transcript populations measured by the corre-
sponding significant microarray probeset. PPIA, a stand-
ard endogenous control from Applied Biosystems was
chosen for the normalization of all target genes as it was
consistently expressed in microarray samples, and showed
no correlation with age or with the template. Triplicate Ct
values were generated for all assays and the median value
in each case was used for subsequent analysis. Standard
curves were constructed for each assay to ensure adequate
amplification efficiencies and comparable data across all
assays. The relative standard curve method was also
employed for quantification of the transcript expression
levels.

Results
Gene expression was examined in a series of post-mortem
brain tissue samples obtained from 44 healthy individuals
aged from 0 to 50 years of age with the aim of identifying
genes whose expression levels were at their highest or low-
est levels during late adolescence/early adulthood.

Correlation of probe-set expression profiles with pre-
defined template
For each probe-set, we assessed the correlation between
the expression profile with age and a template that
described a peak or trough in expression level between
ages 15 and 25. A total of 3244 probe-sets were signifi-

Template designFigure 1
Template design. Subjects aged between 15 and 25 years 
old were assigned a value of one and all other samples a value 
of zero. The correlation between expression values in the 
15–25 group and other samples is tested for each probe-set 
in turn, using Spearman rank correlation test.
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cantly correlated with the template (Spearman's rank cor-
relation test, q < 0.05) after correcting for multiple testing,
out of a total of 54675 probe-sets. Of these, 1839 (57%)
showed a positive correlation with the template, while
1405 (43%) showed a negative correlation (Additional
File 2).

The 3244 significant probe-sets represented 2348 anno-
tated genes (based on Entrez ID information in the
Affymetrix HG-U133 Plus 2.0 annotation file, March
2007). Where multiple probe-sets existed for a gene we
have reported the result for the most significant probe-set.
As expected, consistent results between multiple probe-
sets for the same gene were obtained for almost all genes.
However, six genes had one probe-set that showed oppo-
site correlation with the template to others for the same
gene and these were excluded from further analyses.

Examination of the expression profiles of the most signif-
icantly correlated genes revealed that in many cases, rather
than showing a precise relationship to the template, gene
expression showed a steep change during early develop-
ment, plateauing during the late adolescent period, with
only subtle changes thereafter. To verify that our results
reflected changes occurring in the adolescent period, and
were not driven by the more dramatic early changes, we
tested alternative more complex templates which took the
early changes into account; these templates gave highly
similar results to the original (data not shown).

Genes correlated with the adolescence template
A complete list of genes significantly correlated with the
template can be found in Additional File 2 and represent-
ative expression plots for several genes of interest are
shown in Figure 2. For many of these genes, the most dra-
matic changes in gene expression occur in early post-natal
development (0–2 years), reaching a peak around adoles-
cence and showing only subtle changes in expression
thereafter. A number of genes relevant to the field of psy-
chiatric research were identified in this analysis; of note
are neuregulin (NRG1) and its ligand ERBB4, which were
both significantly negatively correlated with the 15–25
template (q = 0.008 and 0.011 respectively). NRG1
remains one of the more convincing genes to show
genetic linkage to schizophrenia in multiple studies
[40,41], albeit with a small effect size. NRG1 exists in mul-
tiple isoforms, and two independent studies have shown
that the type I isoform is selectively increased in schizo-
phrenia [42,43] and the recently described type IV iso-
form has also been implicated [43]. The HG-U133 Plus
2.0 array contains 5 probe-sets for NRG1, two of which
were significant in our analysis; all of these are annotated
as targeting the type I isoform and most target multiple
isoforms. Interestingly, the most significant probe-set is
the only one which targets type IV with 100% coverage;

further investigation by microarray or QPCR using iso-
form-specific probes is required to confirm expression of
NRGI isoforms during adolescence. The other major
schizophrenia candidate risk factor genes, COMT (r = -
0.33; q = 0.16), DTNBP1 (r = 0.35; q = 0.14), DISC1 (r = -
0.40; q = 0.08) and RGS4 (r = 0.39; q = 0.09), all showed
trends but did not reach statistical significance for correla-
tion with the template.

Functional profiling
GSEA was used to identify functionally defined sets of
genes enriched among the genes most strongly positively,
or negatively, correlated with the template (Tables 1 and
2, Figure 3). The gene sets investigated in this analysis
comprised all biological process categories represented on
the HG-U133 Plus 2.0 array as defined by the Gene Ontol-
ogy (GO) consortium [39] (subject to size filters as
described in the Methods section; around 3000 categories
in total). As GSEA examines each gene set independently,
multiple significant categories containing the same or
similar genes can arise due to the nature of the GO hierar-
chy. We therefore used the leading edge analysis tool
within GSEA to identify and group related gene sets, i.e.
those in which the significance is driven by an overlap-
ping subset of genes (the "leading edge"). In Tables 1 and
2, the range of q values for grouped gene sets is indicated.
Gene sets/groups of gene sets that are functionally associ-
ated but are composed of non-overlapping genes in the
leading edge are indicated by sub-headings in the tables.
Results are presented using the relatively relaxed q-value
cut-off of 0.2; however the majority of overlapping gene
sets has at least one member with a significance level of q
< 0.1. Full details of significant gene sets can be found in
Additional File 3.

A large number of the categories significantly enriched
among genes positively correlated with the template are
associated with energy metabolism, including glycolysis,
the tricarboxylic acid cycle, oxidative phosphorylation,
the electron transport chain, ATP synthesis and mitochon-
drial membrane function. Related to these processes are
categories pertaining to the oxidative stress response.
Other major positively correlated categories include tran-
scription/translational processes and protein trafficking
and turnover, suggesting that increased levels of these cel-
lular processes may occur in the cells of the adolescent
prefrontal cortex.

The majority of the categories enriched among negatively
correlated genes are related to neuronal developmental
processes, such as axon guidance, morphogenesis and
synaptogenesis. Genes related to glutamate signalling,
including GRM4, GRIK5 and GRIN3A, are decreased, as
are neuropeptide signalling genes. No genes or categories
relating to dopamine or 5 HT signalling were found signif-
Page 4 of 14
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:28 http://www.biomedcentral.com/1755-8794/2/28

Page 5 of 14
(page number not for citation purposes)

Expression plotsFigure 2
Expression plots. Expression levels (log normalized; arbitrary units) versus age (years) were plotted for selected genes of 
interest which were significantly correlated with a template showing a peak of expression in the age range 15–25: (a) myelin 
component myelin binding protein (MBP) (r = 0.51, q = 0.020) (b) signaling molecule MAP kinase-1 (MAPK1) (r = -0.55, q = 
0.010); (c) glucose metabolism gene acyl coA dehydrogenase (ACADSB) (r = 0.59, q = 0.008) and (d) the electron transport 
chain component ATP6V1E1 (r = 0.54, q = 0.014); (e) schizophrenia candidate risk factor gene neuregulin-1 (NRG1) (r = -0.59, 
q = 0.008); (f) ionotropic glutamate receptor subunit GRIK5 (r = -0.60, q = 0.007); (g) axon guidance molecule plexin-D1 (r = -
0.56, q = 0.011). For comparison, the housekeeping gene (h) PPIA is also shown (r = 0.14, q = 0.758).
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Table 1: Functional profiling, positively correlated genes

Functional group Gene set name No. of related sets No of members in gene set
(range)

FDR q value
(range)

Vesicle trafficking Membrane fusion 2 27–52 0.022–0.026
Vesicle transport 9 16–348 0.002–0.149
Vesicle docking during exocytosis 1 21 0.141

Transcription/translation Ribosome function 4 69–89 0.042–0.179
mRNA processing 5 157–452 0.056–0.166
Transcription from RNA pol III promoter 1 25 0.089
mRNA catabolism 2 17–23 0.027–0.125
translation 3 30–157 0.012–0.062

Protein transport/metabolism Protein transport 9 17–294 0.012–0.129
Ubiquination/proteolysis 11 133–448 0.013–0.024
Protein folding 1 195 0.003
Carboxylic acid metabolism 7 17–410 0.087–0.195
Aspartate family amino acid metabolism 1 18 0.016
Amine metabolism 2 55–57 0.142–0.152

Electron transport chain Coenzyme metabolism 4 85–159 0.007–0.029
Nucleotide metabolism 16 53–178 0.014–0.126
ATP metabolism 9 36–490 0.012–0.192
Oxidative phosphorylation 4 21–63 <0.001
Electron transport 1 289 0.022
Mitochondrial membrane 2 19–21 0.027–0.149

Glycolysis Aerobic respiration 7 22–32 0.005–0.016
Glucose metabolism 13 20–138 0.005–0.079

Oxidative stress Response to oxidative stress 2 44–63 0.069–0.164
Peroxisome organization and biogenesis 1 17 0.164

Cell cycle Mitotic cell cycle 5 17–60 0.077–0.144
Induction of apoptosis by intracellular 
signals

1 20 0.067

Lipid metabolism Sphingomyelin synthesis 3 17–41 0.035–0.187
Lipid modification 2 15–19 0.032–0.041
Phospholipid metabolism 6 54–427 0.012–0.054
Lipoprotein metabolism 3 29–42 0.027–0.069
Glycerolipid metabolism 6 19–39 0.013–0.180

Others Iron compound metabolism 6 15–52 0.002–0.053
Autophagy 1 16 0.062
Polysaccharide biosynthesis 1 18 0.120
Biopolymer biosynthesis 1 18 0.128
Telomere maintenance 1 21 0.132
Respiratory gaseous exchange 1 17 0.188
Regulation of Wnt receptor signalling 1 15 0.188
Vitamin metabolism 1 48 0.188

Functional gene sets are shown which show enrichment in the list of genes positively correlated with a template showing peak expression in the 
15–25 age range. Related gene sets as defined by leading edge analysis are grouped together in column 2 and the range of q values for these gene 
sets is indicated. Gene sets/groups of gene sets which are functionally associated but are composed of non-overlapping genes in the leading edge are 
indicated by headings in column 1. A full detailed list of significant gene sets can be found in Additional File 3.
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icantly altered in the current analysis. Due to the filtering
parameters for category size, categories relating to GABA
signalling were excluded from the analysis; however two
GABA receptor subunits were significantly correlated with
the template (GABRG1, -0.46, q = 0.037; GABRG2, r =
0.45 q = 0.041).

As additional validation of the functional profiling, a
repeat analysis was carried out using a different approach
implemented in the software GoSTAT [44]. This algo-
rithm examines a list of significant genes and identifies
overrepresentation of GO categories in the list, relative to
their representation on the entire chip. This analysis gave
qualitatively very similar results to those obtained using
GSEA (data not shown).

Myelination
Due to the strong evidence for white matter alterations
during adolescent brain development, and evidence for
the involvement of aberrant myelination in major neu-
ropsychiatric disorders, we predicted that genes related to
myelination would be detected in this analysis. Several
GO categories relating to myelin sheath synthesis and
membrane lipid metabolism were significant (q < 0.2,

Table 1). Other categories containing the keyword 'mye-
lin' did not pass the minimum size filter (i.e. contained
fewer than 15 genes) and therefore could not be tested.

To further investigate myelination processes in this data-
set, we turned to individual genes. We previously identi-
fied differential expression of key genes associated with
the mature myelinating oligodendrocyte in the brains of
schizophrenia patients [45], many of which have since
been replicated in independent studies,[46-51]. More
recently, we have shown upregulation of the ASPA
enzyme, important in white matter maintenance, in schiz-
ophrenia [52]. We assessed the present dataset for 11 spe-
cific myelination genes previously reported dysregulated
in schizophrenia brain tissue. Of the 10 genes previously
shown to be downregulated in the brains of schizophrenic
patients, 8 were significantly positively correlated with the
template, i.e. they reached a peak in their expression levels
during late adolescence (Table 3). The other two genes
were also positively correlated but did not quite reach sig-
nificance (CLDN11 r = 0.42, q = 0.06; MOBP r = 0.35, q =
0.14). Strikingly, the one gene that had previously been
found upregulated in schizophrenia, MPZL1, was signifi-
cantly negatively correlated with the template i.e.

Table 2: Functional profiling, negatively correlated genes

Functional group Gene set name No. of related sets Gene set size
(range)

FDR q value
(range)

Neuron development Axon guidance 1 26 0.156
Learning and/or memory 1 15 0.152
Neuron development 10 47–246 0.074 – 0.165
Cell development 7 36–425 0.059 – 0.192
Chemotaxis 1 113 0.194
Cell motility 4 94–219 0.151 – 0.167
Cell adhesion 4 37–178 0.066 – 0.177
Cell recognition 1 16–26 0.158

Neurotransmitter signalling Neuropeptide signalling pathway 1 72 0.008
Glutamate signalling pathway 1 18 0.198

Receptor signalling Enzyme linked receptor protein signaling 2 128–176 0.046 – 0.047
Regulation of G protein coupled receptor protein 1 25 0.194

Ion transport Cation transport 2 79–120 0.052 – 0.130
Regulation of heart contraction 2 22–106 0.153 – 0.158

Protein processing Positive regulation of protein metabolism 1 51 0.061
Positive regulation of protein kinase activity 1 56 0.149
Proteoglycan biosynthesis 1 17 0.181
Protein polymerization 1 34 0.199

Others Detection of stimulus 4 19–34 0.116–0.163
Regulation of cell shape 1 30 0.076

Functional gene sets are shown which show enrichment in the list of genes negatively correlated with a template showing peak expression in the 
15–25 age range. Related gene sets as defined by leading edge analysis are grouped together in column 2 and the range of q values for these gene 
sets is indicated. Gene sets/groups of gene sets which are functionally associated but are composed of non-overlapping genes in the leading edge are 
indicated by headings in column 1. A full detailed list of significant gene sets can be found in Additional File 3.
Page 7 of 14
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:28 http://www.biomedcentral.com/1755-8794/2/28
expressed at relatively low levels during adolescence
(Table 3).

Validation
Quantitiative real time PCR validation of selected gene
expression patterns was performed. Although the pattern
of developmental expression changes in the microarray
data was clear, the differences between individual samples
were in most cases small, and we were unable to replicate
the template matching results using QPCR due to the
increased amount of variability in this dataset. This is
likely to have arisen from the high potential for small var-
iations in the reaction setup with this method and the
problems associated with normalising to a housekeeping
gene [53]. However, by examining the fold change in
expression level in the three age groups (0–14, 15–25, 26–
50) relative to the mean of all 44 samples, comparable
results from both microarray and QPCR data are revealed
(Figure 4). It should be noted, however, that the QPCR
data suggest NRG1 expression levels continue to decrease
after adolescence, whereas the microarray data indicates a
plateau effect.

To further demonstrate the validity of the results, we took
a second approach of using the microarray data to show

previously reported developmental alterations in gene
expression. Literature searches were undertaken to iden-
tify genes that have been reliably shown to be altered in
the developing primate prefrontal cortex. The NMDA
receptor subunit NR2B (GRIN2B) decreases postnatally to
a constant level in both rodent and primate prefrontal cor-
tex [54,55] and this pattern is reflected in our data (Figure
4a). Secondly, the glucocorticoid receptor gene is one of
the few that has previously been demonstrated to show a
specific change during adolescence in the human prefron-
tal cortex (in an independent brain series) [19]. This find-
ing was replicated in our results (Figure 4b, with the
glucocorticoid receptor gene NR3C1 showing a highly sig-
nificant positive correlation with the template (q = 0.008)
and all 5 probe-sets for this gene showed q values ≤ 0.07.

Demographics
The demographic variables brain pH and PMI (see Meth-
ods and Additional File 1) were assessed for correlation
with the template using Spearman's test and neither were
significant (pH: r = 0.08, q = 0.60; PMI: r = -0.29, q =
0.11). The categorical variable gender was also assessed
using Fisher's exact test to compare the distribution for the
12 samples in the 15–25 age range (7 male, 5 female) and
the other 32 samples (20 male, 12 female); no significant

Functional profilingFigure 3
Functional profiling. Example enrichment plots are shown for categories identified using GSEA as significantly enriched in 
either the (a) positively or (b) negatively correlated genes. Black bars represent the position of members of the category in the 
ranked list, together with the running enrichment score (plotted in green). The leading edge is defined as those genes in the 
gene set that appear in the ranked list at, or before, the point where the enrichment score reaches its maximum deviation 
from zero and can be interpreted as the core of a gene set that accounts for the enrichment signal. Examples shown are (a) 
oxidative phosphorylation (GO:006119) q = 0.000 (b) neuron differentiation (GO:030182) q = 0.143.
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difference was found (Fisher's p = 1.00). These results
indicate that pH, PMI and gender did not introduce a bias
among the samples that could account for the changes in
gene expression observed in late adolescence.

Discussion
In the present study, we have profiled gene expression
during normal postnatal development of the human pre-
frontal cortex, spanning the period from birth to middle
age. We designed a template to identify genes whose
expression is altered during late adolescence/early adult-
hood (defined as ages 15–25), compared to younger and
older ages. Many genes detected showed dramatic changes
in early development to reach a plateau in adolescence
with relatively subtle changes thereafter. One caveat to
these data is the lack of any samples from individuals aged
between 26 and 35; thus the expression levels of identi-
fied genes between these ages are unknown. However, it
would seem reasonable to assume that they would lie on
a curve fitted to the known datapoints.

We have functionally profiled the genes to provide insight
into the biological processes occurring as the prefrontal
cortex matures. Although data gained from functional
profiling studies are some way from providing hard cellu-
lar evidence that these biological processes are altered,
they can provide a useful indication of the most likely can-
didates, given the inherent problems of studying human
brain function at the molecular level.

The majority of gene categories showing relatively low
expression levels during adolescence are related to neuro-
nal developmental process, such as axon guidance, mor-
phogenesis and synaptogenesis. The most significantly
altered genes in these categories include growth cone
guidance molecules (eg netrins, semaphorins and the

semaphorin receptor neuropilin), and also neurexin and
neurolignin which link the pre-and post-synaptic machin-
ery and may control the balance of excitatory and inhibi-
tory synapses [56]. The expression profile of these genes,
especially those involved in synaptic maintenance such as
neurexin, suggests axon retraction and is consistent with
increased synaptic pruning in this developmental period
[7,8]. In recent years it has been debated whether the
decrease in grey matter volume in the adolescent prefron-
tal cortex found in brain imaging studies is a true reflec-
tion of synaptic loss or merely an artefactual
representation of increased white matter volume [2,6].
Our data provide evidence at the gene expression level
that there are indeed alterations in processes associated
with synaptic development during adolescence, in addi-
tion to increased expression of myelination genes. As all
samples were dissected to contain similar amounts of grey
(majority) and white matter (trace), it is unlikely that the
results could be a simple reflection of increased white
matter density in the adolescent samples.

The pattern of changes detailed in this study indicates that
genes associated with energy generation via glycolysis and
oxidative phosphorylation reach peak expression during
adolescence, coupled with other active cellular processes
such as transcription, translation and protein transport.
This may represent an increase in energy supply to the pre-
frontal cortex. PET studies have indicated a peak in resting
cortical glucose utilisation in childhood with a gradual
decline to reach adult values in late adolescence [57].
However more recently, fMRI studies have shown
increased activation of the prefrontal cortex in adolescents
in certain tasks [58].

It is not clear what function this increased cellular energy
supply might support. Based on the evidence for synaptic

Table 3: Myelination related genes showing expression changes during adolescence

Gene Symbol Correlation with 15–25 template Change in SZ Number of studies

r Adjusted p-value

Claudin 11 CLDN11 0.42 0.0613 Down 3 (2,4,6)

2',3'-cyclic nucleotide 3' phosphodiesterase CNP 0.49 0.0258 Down 4 (2,3,4)

myelin associated glycoprotein MAG 0.44 0.0496 Down 4 (1,2,3,4)

mal, T-cell differentiation protein MAL 0.44 0.0471 Down 3 (1,3,5)

myelin basic protein MBP 0.51 0.0201 Down 2 (5,6)

Myelin-associated oligodendrocytic basic protein MOBP 0.35 0.1384 Down 2 (5,6)

myelin oligodendrocyte glycoprotein MOG 0.49 0.0271 Down 2 (4,6)

plasma membrane proteolipid (plasmolipin) PLLP 0.48 0.0285 Down 1 (1)

proteolipid protein 1 PLP1 0.46 0.0386 Down 2 (1,6)

myelin protein zero-like 1 MPZL1 -0.63 0.0063 Up 1 (6)

aspartoacylase ASPA 0.48 0.0298 Down 1 (7)

Myelination related genes showing expression changes during adolescence and relevant findings from the schizophrenia literature are shown. 
Citations are indicated by a footnote in the final column as follows: 1 [46] 2. [47] 3. [48] 4. [49] 5[50] 6. [45] 7. [52]
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pruning in this study and others [7,2,8], and a decrease or no
change in the expression of neurotransmitter signalling
genes, increased neuronal activity seems unlikely to be the
explanation (although it cannot be ruled out). Both the cur-
rent analysis and previous studies suggest that myelination
may be the major energy-demanding process occurring in
the adolescent prefrontal cortex. Myelin synthesis is an ATP-
dependent process [59] and oligodendrocytes normally oxi-
dise glucose and lactate at far higher rates than either neu-
rons or astrocytes, both for energy and directly in lipogenesis
[60]. Alterations in many of the other positively correlated
functional categories identified here are consistent with
increased myelination, including the metabolism, sorting

and transport of proteins and lipids [61-64]. Moreover
SNARE complex and other related genes are expressed in oli-
godendrocytes and may be implicated in myelin targeting to
the plasma membrane [62,65]; thus a peak in the expression
of these genes in adolescence is consistent with increased
myelination and may represent an alternative interpretation
for their function in adolescence, besides their well-docu-
mented role in synaptic vesicle trafficking. Furthermore,
although the molecular processes underlying synaptic prun-
ing are not fully understood, it is conceivable that large scale
removal of synapses may itself be a drain on energy
resources. Indeed, the concurrent strengthening of remain-
ing synapses may well consume ATP [66].

ValidationFigure 4
Validation. (a) Quantitative real-time PCR (QPCR) validation of microarray (MA) data for 4 genes, PFKFB2, NRG1, ACADSB 
and MBP. Expression values shown are fold change in each of 3 age groups relative to the mean for the whole dataset. (b) Plots 
showing log normalized expression levels (arbitrary units) versus age (years) of two genes, NMDA receptor subunit 2B 
(GRIN2B) and the glucocorticoid receptor NR3C1, which show the expected expression pattern based on previous studies of 
the developing primate prefrontal cortex.
Page 10 of 14
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It remains unclear what the control mechanisms for ado-
lescent brain alterations are, although previous studies
have pointed towards a complex interaction between hor-
monal and neural systems. Candidates for the control of
this process include the glucocorticoid receptor which
shows a profound alteration in expression during adoles-
cence, demonstrated in this and an independent study
using a different brain series [19]. Other candidates
include the POU factor genes, which have been proposed
as master regulators of puberty in the hypothalamus [67-
69] and are also involved in the control of myelination
processes [70]. The present study suggests that POU3F2
expression dips during adolescence in the prefrontal cor-
tex (q = 0.025) and may provide a link between the hor-
monal control of puberty and the molecular alterations
seen in this developmental period.

Links with schizophrenia
The period of late adolescent development is of particular
interest to psychiatry research, as this time window corre-
sponds to the age of onset of major neuropsychiatric dis-
orders, especially schizophrenia. A striking feature of the
data presented here is the similarity between genes and
processes altered during late adolescence and those
known to be dysfunctional in the schizophrenia brain. For
example, the leading candidate risk factor gene, NRG1
[40,41], which has also been linked to bipolar disorder
[71], is minimally expressed during late adolescence
together with its ligand ERBB4. This result is supported by
data from [25], showing that the expression of NRG1 and
ERBB3 decrease in early adulthood and increase thereaf-
ter. Despite a number of recent publications into the
molecular function of this gene in schizophrenia
[72,73,43], strong evidence for an etiological role in the
disorder is lacking. While previous hypotheses have
focused on the role of neuregulin in early development as
a predisposing factor in schizophrenia, the present data
suggest that it has an important additional function in the
maturation of the prefrontal cortex and may be one of
many factors involved in the "unmasking" of vulnerable
processes at this time point.

Neurotransmitter systems that show altered function dur-
ing adolescence may also be particularly vulnerable to
perturbation during this period; our results suggest that
neuropeptide and glutamate signalling may be particu-
larly important. There is strong evidence for glutamatergic
abnormalities in schizophrenia, not least due to the psy-
chosis-inducing effects of glutamate antagonists such as
PCP. Various studies have demonstrated alterations in
neuropeptides in neuropsychiatric disorders [74-76]; the
alteration in expression of these genes during this critical
developmental period, in a region of the brain strongly
associated with schizophrenia symptoms, strengthens the
evidence for their role in the etiology of schizophrenia. It

is of note that among the many other neurotransmitter
systems implicated in schizophrenia, only GABA-related
genes showed any alterations during late adolescence.
Notably, no significant changes were observed in gene
expression associated with the dopamine system, suggest-
ing that the reported changes during adolescence [21]
may be less pronounced than those in the glutamate and
GABA systems.

The present finding of a peak in energy metabolism-
related gene expression in the adolescent brain is of par-
ticular interest in light of an increasing body of evidence
from our laboratory [77-80] and others [81-84] implicat-
ing energy metabolism deficits in schizophrenia and, to a
lesser extent, bipolar disorder [82,85]. Such alterations
have been detected in both the brain and periphery, and
are present in first- onset drug-naïve patients. Based on
these findings, we hypothesize that individuals who are
predisposed to develop schizophrenia are unable to meet
the energy demand in critical brain regions during adoles-
cence, precipitating behavioural and cognitive symptoms.
At the molecular level the downstream effects of such a
deficit are currently unknown. Our finding that myelina-
tion genes in schizophrenia are regulated in direct oppo-
sition to their expression pattern during adolescent
development is consistent with hypotheses of delayed
maturation of the prefrontal cortex resulting in decreased
white matter volume [86]. More research is clearly
needed, but based on current knowledge we propose that
disturbances in energy metabolism which may be critical
in the adolescent prefrontal cortex have downstream
effects on myelination and other developmentally regu-
lated processes such as synaptic plasticity and neurotrans-
mitter function. These processes, or their outcome, have
in turn been demonstrated to be abnormal in the brains
of schizophrenia patients and are likely candidates for the
direct cause of behavioural and cognitive symptoms in the
disorder. Furthermore, as NRG1/ERBB4 function affects
many of the above functions, including glutamatergic and
GABAergic synapse stabilisation and oligodendrocyte
function [87-89], the modulation of NRG1 expression
during adolescence may represent a point of critical inter-
action between this genetic risk factor and other abnormal
processes in the brain of susceptible individuals.

One limitation of these data lies in the cross-sectional
study design, which relies on the assumption that gene
expression is comparable in all individuals. In addition,
the number of samples in each age range is fairly small
and precludes investigation of gene expression patterns in
adolescence by gender, for example, which would be of
interest. These and other limitations inherent to post mor-
tem studies of the human brain, such as variation in brain
pH and PMI between individuals, mean these results must
be considered in the context of data from human brain
Page 11 of 14
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imaging and animal studies, and dynamic studies of
human peripheral tissues.

Conclusion
In summary, our data provide molecular correlates of
known functional processes occurring in the developing
human prefrontal cortex at the gene expression level.
These alterations are highly specific to the period of late
adolescence and may represent the molecular founda-
tions of the vulnerability to neuropsychiatric disease
which occurs during this developmental time window.
Moreover, the processes show an intriguing link with
known alterations in the schizophrenia brain, and at the
individual gene level, especially in genes related to myeli-
nation, we have demonstrated a direct correspondence.
Further work is now required on this important brain
series to quantify and characterise molecular changes at
the protein and functional level.
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