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Abstract

Background: Cardiomyopathies, degenerative diseases of cardiac muscle, are among the leading
causes of death in the developed world. Microarray studies of cardiomyopathies have identified up
to several hundred genes that significantly alter their expression patterns as the disease progresses.
However, the regulatory mechanisms driving these changes, in particular the networks of
transcription factors involved, remain poorly understood. Our goals are (A) to identify modules of
co-regulated genes that undergo similar changes in expression in various types of
cardiomyopathies, and (B) to reveal the specific pattern of transcription factor binding sites, cis-
elements, in the proximal promoter region of genes comprising such modules.

Methods: We analyzed 149 microarray samples from human hypertrophic and dilated
cardiomyopathies of various etiologies. Hierarchical clustering and Gene Ontology annotations
were applied to identify modules enriched in genes with highly correlated expression and a similar
physiological function. To discover motifs that may underly changes in expression, we used the
promoter regions for genes in three of the most interesting modules as input to motif discovery
algorithms. The resulting motifs were used to construct a probabilistic model predictive of changes
in expression across different cardiomyopathies.

Results: We found that three modules with the highest degree of functional enrichment contain
genes involved in myocardial contraction (n = 9), energy generation (n = 20), or protein translation
(n = 20). Using motif discovery tools revealed that genes in the contractile module were found to
contain a TATA-box followed by a CACC-box, and are depleted in other GC-rich motifs; whereas
genes in the translation module contain a pyrimidine-rich initiator, Elk-1, SP-1, and a novel motif
with a GCGC core. Using a naive Bayes classifier revealed that patterns of motifs are statistically
predictive of expression patterns, with odds ratios of 2.7 (contractile), 1.9 (energy generation), and
5.5 (protein translation).

Conclusion: We identified patterns comprised of putative cis-regulatory motifs enriched in the
upstream promoter sequence of genes that undergo similar changes in expression secondary to
cardiomyopathies of various etiologies. Our analysis is a first step towards understanding
transcription factor networks that are active in regulating gene expression during degenerative
heart disease.
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Background

Heart disease is the leading cause of death in the devel-
oped world. Chronic heart disease is usually associated
with tissue remodeling that induces maladaptive changes
in gene expression and the cellular composition of cardiac
tissue. Different forms of the disease are widely believed
to progress according to distinct programs of gene expres-
sion that converge in end stage heart failure to similar
phenotypes [1]. Microarrays have been used to character-
ize these differences, typically by focusing on changes in
gene expression that exceed a statistical threshold [2,3].
Such methods of gene selection have proven useful for
classifying different etiologies [4,5] and explaining certain
aspects of the pathophysiology [6-9]. However, such a
strategy is not able to identify the network of regulatory
factors that facilitate gene expression in healthy tissue and
during cardiac disease. In the present study, we apply a set
of basic analytical tools to identify regulatory factors using
microarray data and the upstream promoter sequence of
each gene. We apply these tools to predict cis-regulatory
motifs involved in remodeling cardiac tissue in different
types of human cardiomyopathy.

It is well established in yeast [10] and cultured human
cells [11] that genes involved in a common physiological
function tend to be regulated as groups. In such a group,
often called a co-regulatory module [12], genes undergo
similar changes in expression that act to roughly preserve
their expression ratio over different physiological condi-
tions and intrinsic genetic cues. Our goal is to identify
such modules in human cardiomyopathies, under the
assumption that these modules can provide information
about the regulatory factors that control expression. Our
analysis uses publicly available microarray data for
human ventricular tissue remodeling due to a variety of
cardiac disease states. To identify likely regulatory mod-
ules in this data, we applied a hierarchical clustering algo-
rithm to the Pearson correlation between gene expression
levels across the different cardiomyopathies. Resulting
clusters were visualized and characterized based on Gene
Ontology annotations for function. With this analysis, we
identified 35 modules, the largest of which are enriched in
genes whose primary function is related to energy genera-
tion or protein translation.

Next, we addressed the question of what controls the
coordinated changes in gene expression that are observed
during heart disease. It is well accepted that changes in
gene expression are encoded by the combinatorial activity
of several different transcription factor proteins working
in concert [13-15]. Changes over different physiological
conditions presumably involve the activity of different
combinations of transcription factors; genes whose
expression is controlled by the same set of transcription
factors may be expected to undergo similar changes in
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expression [15]. Transcription factors associated with the
regulation of a gene can be identified by the presence of
characteristic cis-regulatory motifs in the upstream pro-
moter sequence to which they bind. Therefore, we sought
to identify putative regulatory motifs involved in tran-
scriptional regulation of genes composing the different
co-regulatory modules. Our motif discovery strategy iden-
tified 17 motifs, and we validated their function with
additional bioinformatic analysis using other genes.

Methods

Microarray Data Normalization and Batch Effect
Correction

The first step in our basic experimental plan (outlined in
Figure 1) was to identify genes that are co-expressed across
the spectrum of different heart diseases. All ventricular
microarray experiments based on the Affymetrix U133A
or U133 2.0 platform for which raw CEL files were availa-
ble, were collected from Gene Expression Omnibus [16]
and Harvard's Cardiogenomics website (http://www.car
diogenomics.org, Jan 2007). CEL files for the U133A and
U133 2.0 platform were RMA normalized separately using

|dentify gene expression
A: modules over different
cardiomyopathies

Y

Identify motifs enriched
B: | in the promoter sequences of
genes in a given module

Y

Identify other promoters with
C: |the same motifs in the cardiac
transcriptome

Y

Compare expression patterns
D: of other promoters to co-
expression module

Figure |
Flowchart for identifying and testing putative motifs
that affect gene transcription in cardiac disease.
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Bioconductor's Affy package [17]. Data sets were com-
bined by dropping probesets not present in the U133A
array from the U133 2.0 data. To correct for batch effects
we used a recently described method [18]. First, samples
were grouped categorically by biological condition and
lab of origin, as in Figure 1. The same category of "normal
ventricle" was assigned to control samples from the
GSE1145, GSE2240, and GSE3585 datasets, and the cate-
gory "ischemic cardiomyopathy" was assigned to the cor-
responding samples from GSE1145 and GSE974 datasets.
All other samples were assigned a separate category. Next,
the Empirical Bayes batch effect correction method [18]
was applied using an R script kindly provided on the
authors' website. We dropped one outlier from the final
table (GSM14948) because we noted abnormally low
expression of many cardiac genes, potentially indicating
changes in the cellular composition of the tissue.

We verified the effectiveness of batch-effect correction
using hierarchical clustering of the 149 different condi-
tions. Whereas prior to the correction of batch effects,
hierarchical clustering grouped samples by different labs,
after correction samples were not grouped together (not
shown). We also ensured that our correction preserved
legitimate biological variation by training a naive Bayes
which classifier correctly classified the disease type with
75% accuracy (not shown). The resulting data table was a
matrix with rows representing each probe in the Affyme-
trix U133A platform, and columns representing each of
the 149 individual microarray samples.

The mean and variance of each probe was calculated for
each of the 16 biological conditions described in Addi-
tional file 1, leaving a data table with rows representing
each of the Affymetrix U133A probesets and 16 columns
corresponding to each biological condition. This data
table was used for subsequent analysis, and is referred to
below as the "cardiomyopathy data".

Creating Pairwise Correlations and Assembling the
Correlation Matrix

All highly expressed genes in normal human heart tissue
with a mean expression greater than 20,000 units in the
Gene Atlas whole-heart data [19] were selected for analy-
sis. This included 298 different Affymetrix probesets mon-
itoring the expression of 222 unique genes. A matrix
representing the degree of co-expression between each
pair of these probesets was calculated by taking the Pear-
son correlation coefficient of the cardiomyopathy data
table using R [20]. To visualize the matrix of Pearson coef-
ficients for these highly expressed genes, Pearson correla-
tions in this matrix were assigned a color-scale (Figure 2,
right) that ranges between red indicating high correlation
(R = +1), fading to black indicating no correlation (R =
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+0), fading to green indicating negative correlation (R = -

1).

We sorted this matrix using a procedure based on hierar-
chical clustering. Clustering was preformed using the R
package "Cluster". The data presented here are based on
complete-linkage, Euclidean distance hierarchical cluster-
ing. Subsequently, gene order was refined using a proce-
dure that maximizes the correlation between neighboring
clusters while maintaining the same network of connec-
tions in the dendrogram. Briefly, the algorithm proceeds
from top to bottom along the dendrogram. At each
branch, the mean correlation between neighboring clus-
ters left and right of the new branch on the dendrogram is
calculated for both potential orders of the clusters below
the branch. The order is set such that it maximizes the
mean correlation between neighboring clusters. Since the
procedure is applied from top to bottom, it does not affect
the composition of clusters, only the order of clusters in
the visualization. The resulting visualization is depicted in
Figure 2, and details for three clusters are shown in Figure
3.

Choosing the Optimal Number of Modules that Describe
the Data

To determine the optimal number of clusters, we used the
hypothesis that genes that are clustered together will share
a biological function. Based around this idea, we intro-
duce a measure of uniformity for the biological function
of genes in each cluster. This measure can be expressed as:
Q; = Sumy[(N/N;) * (Nj-1)/Nm;]/i, where N¢; is the
number of probesets that share the biological function
annotation assigned to cluster j using the minimal Fisher's
exact p-value assigned using the Bioconductor package
"topGO", Nj;is the number of probesets in cluster j, N™; is
the mean cluster size (expressed as the number of
probesets) when the data is broken into i clusters. The
measure was designed such that the contribution of trivial
clusters with size 1 is 0, and the contribution from smaller
clusters is reduced. The value of this measure for each
number of clusters between 2 and 60 is plotted in Addi-
tional file 2. At 35 clusters, the measure reaches a global
maximum. This number of clusters is used in all subse-
quent analysis.

Assembling Promoters for Motif Discovery Analysis

Transcription start sites for each gene selected for detailed
promoter analysis were obtained using the database of
transcription start sites version 6.0 [21]. When multiple
transcription start sites were reported, we chose the most
frequent start site reported to be expressed in the heart or
pericardium. Promoter sequences from -1 kb to +200 bp
were obtained from the ENSEMBL genome browser,
release 49, March 2008 [22], as this range allowed us to
focus on the strength of IAMMS position filtering algo-
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Figure 2
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Identification of gene expression modules in cardiac disease. Highly expressed genes in the heart were sorted using
hierarchical clustering (dendrogram shown on left) based on the similarity in their expression pattern over different types of
cardiac disease. These relationships are visualized on a correlation matrix (center), in which each pixel represents the correla-
tion between a pair of genes, and each row represents the relationship between one gene and all others. The color scale (right)
represents the degree of correlation, ranging from strongly positive (red) to uncorrelated (black) to strongly negative (green).
Boxes along the diagonal of the matrix correspond to modules formed by chopping the dendrogram at the level indicated by
the dotted line (determined by maximizing the number of genes in each module associated with the same gene ontology term;
see methods). Boxes shown in bold contain genes with particular relevance to cardiac disease, and are shown in detail in figure

3. The bold portion of the dendrogram is also shown in Figure 3.

rithm to identify motifs in the core and proximal pro-
moter. A background group of 129 promoter sequences (-
1 kb to +200 bp) whose genes show uniform expression
across all human tissues was constructed. To build the list
of genes, we calculated the ratio of maximum expression
to the sum of expression in all tissues across the Gene
Atlas. We took the probes with the lowest ratio (indicating
uniform expression across tissues). Analysis using DAVID
[23] revealed that this group is not enriched in any biolog-
ical function. For each of these genes, 1 kb of promoter
sequence and the entire 5' UTR were obtained using
BioMart. The UTR was then truncated at +200 bp to yield
the same -1 kb to +200 bp as the foreground set.

IAMMS De Novo Motif Discovery Search

The upstream region of genes in the contractile, energy
generation, and protein translation sets were scanned
against the background promoter set using IAMMS, as
described previously [24]. In the initial stage, IAMMS
detected 10,240, 19,665, and 16,719 motifs to test for
enrichment in the contractile, energy, and translation pro-
moter groups, respectively. The p-value of enrichment of
each motif in each group was calculated using the hyper-
geometric distribution, and a p-value threshold of 1e-5
was used to select significantly enriched motifs. At this sig-
nificance threshold, maximal expected false discovery
rates of 0.10, 0.20, and 0.17 were estimated using the
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Detailed composition of gene expression modules identified by the hierarchical clustering algorithm (high-
lighted boxes in Figure 2). Genes in each module are given by MGI ID along the vertical axis. The same gene order is pre-
sented along the horizontal axis, as shown for (I). Module (1) is strongly enriched in genes whose products function primarily in
the cardiac muscle contractile apparatus (6/9). Note that some genes are represented by two probes (e.g. TPMI) and counted
only once. The dendrogram for this module is given on the left (bold section in Figure 2). A heatmap representing the relative
expression of each gene over the different cardiac diseases is shown on the right. In the heatmap, color indicates the Z-score
of expression relative to the mean over all diseases. Modules (1) and (i) are enriched in genes involved in generation of precur-
sor metabolites and energy (16/20). Modules (Ill) and (iii) are entirely comprised of genes involved in protein translation (20/
20). Genes whose primary function is not known to match these groups are indicated using italic font.

Bonferroni method for the contractile, energy generation,
and translation promoter sets, respectively.

After motif detection, variations that distinguish contrac-
tile, energy, and translation genes were discovered by
identifying IUPAC degenerate consensus sequences that
optimally separate genes in the each module from those
in the other modules. For nearly identical motifs detected
independently in energy and translation promoter
sequences, occurrences were optimized with respect to
genes in the contractile module. To avoid over-fitting,
only sequences with a Pearson correlation of 0.9 or above

were scanned for enrichment (values of 0.7 were used for
Initiator and TATA sequences). Similarity between
sequences was measured by concatenating column vectors
from the position-weight-matrix representation of a
motif, and taking the Pearson correlation between vectors.

Detection of Known Motifs

To complement the de novo search, our next objective was
to identify known motifs that are enriched in the pro-
moter. We used the Gene Set Enrichment Analysis (GSEA)
software package [25] to identify phylogenetically con-
served motifs that are correlated with the contractile,
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energy generation, or protein translation module. For
each module, the 298 highly expressed probesets were
ranked based on their correlation to the mean expression
patterns of each module. Gene lists were compared
against the curated motif gene list ("all", v. 2.5) using
GSEA v.2.0.4, requiring motifs to occur in at least 8 of the
genes. All motifs that have a false discovery rate corrected
g-value less than 0.1 are reported.

Determining Motif Interval

To determine motif intervals, we built a histogram of the
number of occurrences in a sliding window. The mean
number of occurrences was calculated based on the size of
the motif, assuming a GC content of 50%. We took the
interval nearest the transcription start site for which the
histogram was above the 99% confidence interval of
expected occurrences given a Poisson distribution (as
illustrated in Figure 5). Intervals were determined for
motifs for which we expected to find a significant bias,
either because it was detected by IAMMS as position spe-
cific, or (for TATA) because previous literature indicated a
significant bias [26].

Naive Bayes Classifier

The Pearson correlation was calculated between the mean
expression patterns for genes in the contractile, energy,
and translation module, and all genes designated as
"present” in the Gene Atlas heart data [19]. All promoter
sequences in the database of transcription start sites [21]
corresponding to genes with Pearson correlation above a
"high" threshold (0.8, test) or below a "low" threshold (0,
background) were obtained for analysis. Other values of
"high" and "low" correlation thresholds gave similar
results (Additional file 5). The number of occurrences in
the respective intervals of each of the motifs in Figure 4
were determined using custom Java software based on the
BioJava [27] libraries for position-enriched motifs. GSEA
annotations were taken from the file "c3.all.v2.5.sym-
bols.gmt" obtained from the GSEA website, and were
applied to each promoter sequence using custom java
software. These two sources of annotation were combined
into a single data table with columns representing the dif-
ferent IUPAC consensus sequences or GSEA annotations
(those shown in Figure 4), and rows representing test and
background promoter sequences. Values in this table rep-
resented the number of occurrences of each IUPAC con-
sensus sequence in the specified interval in each promoter
sequence, or a categorical variable indicating whether the
gene is a member of each GSEA gene set.

This data table was used to train and test a naive Bayes
classifier. We use an implementation of the naive Bayes
classifier in the "e1071" R package with default parame-
ters for both training and prediction. The classifier was
trained using values based on the promoter sequences of
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contractile, energy, and translation module depicted in
Figure 6 (high co-expression), and 150 of promoters with
a Pearson correlation lower than 0 (low co-expression).
The classifier was then tested on the remaining promoter
sequences not used in training. Default parameters were
used for both training and prediction. Statistical analysis
of the procedure was completed using Fisher's exact test in
R.

Results

Identifying Gene Expression Modules

Our overall strategy is outlined in Figure 1. The first objec-
tive was to identify groups of co-regulated genes (called
co-regulatory modules). To this end, we use gene expres-
sion microarray data from 149 human ventricle samples
collected from public microarray sources, including Gene
Expression Omnibus and Harvard's CardioGenomics
website (see Methods). Samples were separated into 16
disease conditions (Additional file 1). Different condi-
tions include cardiomyopathies of eight different etiolo-
gies, including familial, hypertrophic, idiopathic,
ischemic, post-partum, viral, and dilated cardiomyopa-
thy. The response of ischemia and myocardial infarction-
induced myocardial failure to treatment by a left ventricu-
lar assist device (after LVAD) was also included. Control
("normal") ventricle samples from three different labs
were included and treated separately to correct microarray
samples for batch effects (see Methods for the normaliza-
tion procedure).

We started with the identification of co-regulated gene
pairs. Figure 2 shows the matrix of pairwise correlation for
the 222 highest expressed genes in the Gene Atlas heart
data. In our visualization scheme, each pixel represents
the degree of co-regulation between a pair of genes. Color
represents the square of the Pearson correlation (preserv-
ing the sign), with red representing a high Pearson corre-
lation of +1 and green a negative correlation of -1 (see the
color scale in Figure 2). Each row (or column) represents
the correlation between a single gene and all others. Since
the order of genes in the matrix is the same from left to
right and bottom to top, the visualization is symmetric
about the diagonal. The order of genes is chosen using
hierarchical clustering (see Methods), locating co-regu-
lated genes near one another in the matrix.

To identify the most biologically relevant gene expression
modules, it was important to identify the best possible
divisions between groups of genes provided by the cluster-
ing algorithm. We used the hypothesis that the most accu-
rate groups inferred from the data should share a
biological function. Therefore, we defined a measure to
maximize the number of genes classified as the same bio-
logical function in each module (uniformity) and maxi-
mize module size (see methods). We found that our
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Figure 4

Top scoring motifs detected in the promoter sequence of genes in the contractile, energy generation, and pro-
tein translation modules (Figure 3). From the left, columns give: (1) The motif logo; (2) IUPAC consensus sequence(s); (3)
Interval relative to the transcription start site in which motif enrichment was observed (+2 to -2 for GSEA matches in which no
enrichment detected in the core promoter); (4) P-value of enrichment, identified by IAMMS (ND indicates detection by GSEA);
(5) Q-value of enrichment by GSEA (ND indicates detection by IAMMS); (6) Mean phylogenetic conservation score (motifs
identified by GSEA are conserved by definition, and thus < -2); (7) Similarity to known motifs. Motifs are ordered based on
position relative to the transcription start site or g-value for non-position specific motifs detected by GSEA. IUPAC ambiguity
codesare R(AorG),Y (CorT),W (AorT),S(CorG),andN (A, T, C, or G).
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Identifying the range of motif enrichment. Each plot tracks the number of occurrences of a given motif in enriched pro-
moter sequences within a sliding window. The lower dotted line indicates the number of occurrences expected by chance. The
range in position was determined by taking the approximate point at which the largest peak crosses the 99th percentile (upper
dashed line) calculated using a Poisson distribution. For each motif, this range is marked by the colored lines above and below
each plot.
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Specific patterns of top-scoring motifs in the promoter sequence of genes in either the contractile (top),
energy generation (center), or protein translation (bottom) modules. Gray bars represent 435 bp of promoter and
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measure reaches a global maximum when the data is
divided into 35 groups (Additional file 2), indicating that
this number is the optimal balance between group size
and uniformity of biological function. The divisions indi-
cated by this analysis are denoted on the correlation
matrix visualization (Figure 2) by the white, teal, and yel-
low squares along the diagonal. These divisions are also
indicated by the red-dotted line along the dendrogram
(Figure 2, left).

Three of the larger modules, enriched in genes with func-
tional relevance to cardiac disease, are shown in detail in
Figure 3. In the module shown in Figure 3-I, 6/9 genes
(bold font) have a primary function related to muscle
contraction (Gene Ontology term GO:0006939). Specific
functions include two of three genes in the troponin com-
plex (TNNI3 and TNNC1), tropomyosin (TPM1), cardiac
alpha actin (ACTC1), and the ventricular myosin light
chain isoform (MYL2). One additional muscle-specific
gene (CSRP3) is also likely to play a supporting role in
contraction. The gene with the lowest correlation to others
in the module, ACTA1, is represented by the least-intense
red row (r = 0.70, with TNNC1 and CSRP3). This lower
correlation is indicative of a relatively large decrease in
expression in this gene in one of the dilated cardiomyop-
athy expression sets (heat maps are shown in Additional
file 3). Exceptions to the primary function (names in ital-
ics), such as myobglobin (MB), are nonetheless strongly
co-regulated with other genes in the module (r = 0.83 with
TNNC1).

In addition to the contractile module, other modules with
a primary function related to energy generation and trans-
lation are shown in Figure 3. In addition to the large mod-
ules shown in Figure 3II and 3III, small neighboring
modules enriched for genes with the same function are
also shown (Figure 3ii and 3iii). Modules shown in Figure
31I and 3ii contain 16/20 unique genes whose primary
function is relevant to the generation of precursor metab-
olites and energy (GO:0006091). One of the exceptions
encodes a selenoprotein (SEPW1), an oxygen free-radical
scavenger with a role in mitigating the oxidative stress
associated with energy generation [28,29]. Modules
shown in Figure 31II and 3iii contain 20/20 unique genes
that encode proteins in the 80S ribosome complex
(GO:0006412). Previous studies have linked both energy
generation and protein translation genes with particular
types of cardiomyopathy [4,7], highlighting the relevance
of these modules to cardiac disease.

Identification of Putative cis-Elements in the Promoter of
Co-regulated Genes

The next step was to identify motifs enriched in these pro-
moter sequences that may be able to explain the observed
patterns of co-regulation (Figure 1B). Our hypothesis was
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that co-regulated genes should share a common set of
transcription factor proteins, which could be detected by
the presence of a specific pattern of regulatory motifs in
the upstream promoter sequence. The three groups high-
lighted in Figure 3 were chosen for analysis because of
their relevance to expression patterns previously observed
in cardiac disease [4,7]. We used two strategies to analyze
the core promoter region of co-regulated genes. First, the
motif discovery algorithm Iterative Alignment/Modular
Motif Selection (IAMMS) [24] was used to identify puta-
tive regulatory sites de novo. Second, we searched for an
enrichment of known regulatory motifs using the gene set
enrichment analysis (GSEA) tools [25]. To minimize the
possibility of false-positive errors, a stringent p-value cut-
off threshold (p < 1e-5) was chosen based on a Bonferroni
correction for IAMMS, and a corrected g-value cutoff (q <
0.1) for GSEA (see methods). Sequences are presented
both as sequence logos and as IUPAC consensus
sequences using the degeneracy codes R (A or G), Y (C or
T), W(AorT),S(CorG),and N (A, T, C, or G).

The highest scoring motifs enriched in contractile, energy
generation, and translation groups are shown in Figure 4.
Among the highest scoring motifs enriched in contractile
promoter sequences (Figure 4, top) was found to be a
degenerate TATA consensus found in all 12 contractile
promoter sequences, but only rarely found in energy gen-
eration or translation promoters. Several C-rich sequenc-
ers were also discovered by IAMMS to be enriched in
contractile promoter sequences. One C-rich variation
closely resembles a CACC-box known to be involved in
the transcriptional regulation of several cardiac genes [30-
33]. Our CACC-box includes all of these experimentally
validated occurrences, strongly suggesting a functional
role for this motif in the other genes as well. Several addi-
tional motifs similar to previously characterized cardiac-
muscle specific transcription factors were discovered using
the GSEA software, including motifs annotated as MEF2
[33], SRF [34], and E-box [35]. GSEA also detected a
strong enrichment in a motif annotated as ERR1
(TGACCT), with no previously known role in regulating
contractile genes.

Motifs enriched in energy generation and translation pro-
moter sequences are shown in the middle and bottom of
Figure 4, respectively. Of the motifs detected as enriched
in each set, three nearly identical motifs were detected
independently in energy and translation promoters. Sim-
ilar motifs are GC-rich, including a 4 bp core sequence
GCGC, an SP-1-like motif (CCGCC), and a sequence
nearly identical to the core of Elk-1 (TTCCGG). Individual
motifs that separate energy from translation promoters
include a degenerate pyrimidine-rich initiator element
enriched near the transcription start site in translation
genes (YYCITTYY), and a GC-rich sequence found to be
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enriched only in energy generation genes (GCGGA).
Energy generation promoters were also found by GSEA to
contain the ERR1 motif (TGACCT), which was also dis-
covered independently in the contractile promoter
sequences.

For each motif we identified the range of positions in
which it is enriched relative to the transcription start site
using the approach illustrated in Figure 5. Plots depict the
number of occurrences of a given motif found inside a
window of fixed size surrounding each point. The top
dashed line indicates the 99th percentile of expected occur-
rences based on a Poisson distribution. We define the
range of enrichment to be the interval near the transcrip-
tion start site in which the number of occurrences of a
motif increases above this dashed line, shown by the
colored boxes surrounding the plot. The range of any sig-
nificant bias in distribution discovered using this
approach is indicated in Figure 4, and used in subsequent
analysis.

Our analysis shows that for each module there is a pattern
of regulatory motifs present in nearly all promoter regions
that distinguish it from the other modules. Figure 6 shows
these patterns plotted to scale in the promoter region of
genes in the contractile, energy generation, and protein
translation modules. The CACC-box (shown by the red
box) occurs in all contractile promoters and only 7/37
energy generation and translation promoter sequences.
Similarly, the TATA-like motifs (YAYWWA and TAN-
WWR) can be found in all contractile promoters (dark
blue box), but only 4/37 energy generation and transla-
tion promoters. Translation promoters are characterized
by the presence of a pyrimidine-rich initiator-like element
(black box) that appears surrounding the transcription
start site in nearly all translation genes (18/19), whereas
this motif occurs only twice in energy generation promot-
ers. Occurrences of the Elk-1 motif (green box) and the
GC-rich motif (dark yellow box) are in enriched energy
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generation and translation promoters, but occur rarely in
contractile sequences.

We test the hypothesis that the unique pattern of motifs
discovered in highly expressed cardiac genes plays a role
in the co-regulation of additional genes with similar
expression patterns compared to the contractile, energy
generation, and protein translation module. Our bioin-
formatic approach to this question is outlined in Figure
1(C-D). First, we identified additional promoter
sequences from across the cardiac transcriptome that were
not used in motif discovery, but contain the same pattern
of motifs as those in Figure 6 (Figure 1C). Next, we looked
at the expression patterns of these additional genes and
assessed whether these promoters are more likely to be co-
regulated with those used to build the model (Figure 1D).
As shown in Table 1, genes with the reported pattern of
motifs are significantly more likely to be co-expressed
with each module compared with those in the larger pop-
ulation (p = 5.65e-4, 2.03e-3, and 1.16e-11, respectively).
The most accurate classifier was based on genes in the Pro-
tein Translation module where the odds of having the
motif pattern shown in Figure 6 for promoter sequences
of highly co-regulated genes (r > 0.8) were 35:51. Con-
versely, for promoters with low (r < 0) co-expression, the
odds of having the motif pattern were 178:1429. The over-
all strength of association between the presence of the
motif pattern and high levels of co-regulation were esti-
mated using the odds ratio OR = (35/51)/(178/1429) =
5.5 (95t Confidence Interval = 3.37 - 8.89), shown at the
bottom of Table 1. The classifier based on the contractile
and energy promoters also recognized co-regulated genes
significantly better than chance, with odds ratios of 2.7
(95t confidence interval = 1.46 - 5.28) and 1.9 (95t con-
fidence interval = 1.24 - 3.13), respectively. Moreover, the
statistical significance of each classifier is robust across a
wide range of definitions for high and low co-regulation
(Additional file 5). This provides strong evidence that the
pattern of motifs described here plays a role in the
changes in gene expression observed in heart disease.

Table I: The pattern of motifs in the core promoter has a significant association with gene expression in a group of holdout genes not

used in motif discovery analysis.

Module
Correlation (microarray): Contractile Energy Generation Protein Translation
High Low High Low High Low
Pattern: Yes: 74 1638 152 1371 35 178
No: 13 768 25 437 51 1429
Odds Ratio: 2.66 (1.46 —5.28) 1.93 (1.24-3.13) 5.50 (3.37 - 8.89)
Fisher's p < 5.65e+ 2.03e3 I.16e!!

Contingency tables show the relationship between the pattern of motifs in the core promoter region and the expression patterns of genes in the
test group (n = 3473), not used during motif the discovery procedure. The correlation thresholds were set to r > 0.8 (high) and r < 0 (low). The
odds ratio measures the strength of association between the pattern of motifs in each promoter and the pattern of expression. The 95% confidence
interval of the odds ratio is shown in parentheses. The p-value calculated using Fisher's exact test is given in the bottom row.
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Discussion

In the present study, we divide genes into groups, or mod-
ules, that undergo similar changes in their expression pat-
terns over different forms of heart failure. The modules
indicated by our analysis are exploited to identify putative
cis-regulatory motifs which may bind transcription factors
that contribute to the observed pathological expression
patterns. Our approach was motivated by the hypothesis
that genes with similar expression patterns are regulated
by the same set of transcription factors, and therefore are
likely to have similar cis-regulatory motifs in their
upstream promoter region. The power of this assumption
was recently demonstrated in the yeast model [15], where
motifs were discovered that were able to predict gene
expression patterns. To our knowledge, this article is the
first in which this assumption has been applied to human
tissue or to the study of a specific disease in which a hold-
out set of genes has been used to validate predictions. We
report 17 putative cis-regulatory motifs, including ELK-1,
a CACC-box, and a pyrimidine-rich initiatory variant that
are predicted to play a role in cardiac gene expression. Our
predictions may serve as a base for experimental studies
seeking to understand how genes are reorganized during
heart failure.

We discovered several motifs that are similar to known
regulatory elements. Of these, many are variations of
either core promoter (TATA, Initiator) or proximal
enhancer (ELK-1, CACC, SP-1) elements. We show here
that these motifs are more likely to be found together in
promoter sequences that drive specific changes in gene
expression during heart disease (Table 1). This implies
that the motifs discovered here are strong candidates for
modulating disease-related changes in gene expression.
Our study highlights the importance of core and proximal
promoter motifs in determining changes in transcription,
and suggest that they play a larger role in the combina-
tional regulatory code than has previously been ascribed.

Promoter regions of genes in the contractile module are
characterized by the presence of a TATA variation (TAN-
WWR), CACC box (GGGRWGG), MEF2 (YTAWWWW-
WTIR), SRF (CCWWWWWWGG), and an E-box
(CAGCTG). Single-promoter experimental studies have
associated both all of these motifs with certain contractile
promoters [30-37]. For instance, an AT-rich sequence that
resembles a TATA-box has been previously identified in
the promoter of TNNI3 [30], TNNC1 [36], MYH7 [37],
and MB [33]. Similarly, the CACC box has also been pre-
viously identified in certain contractile-related promoter
sequences, including TNNI3 [30,31], TNNC1 [32], and
MB [33]. All of these experimentally verified occurrences
were discovered by our motif discovery strategy, along
with previously unknown occurrences in nine additional
promoter sequences, including ACTA1, MYL2, TNNCI1,

http://www.biomedcentral.com/1755-8794/2/31

MYH?7, TPM1, HSPB1, CRYAB, CSRP3, and PTGDS. Our
results complement the single-promoter experimental
studies, and suggest that many of these motifs play a larger
role in mediating cardiac gene expression than previously
anticipated.

At the level of the core promoter, energy generation and
protein translation genes are controlled by surprisingly
similar regulatory programs. Of four motifs discovered as
significantly enriched in both energy and translation
sequences, three share nearly identical GC-rich core
sequences (Figure 4), including an Elk-1 binding site
(CCGGAA), a motif with a GC-rich core sequence
(GCGC), and a degenerate SP-1 like motif (CCGCC).
These motifs were all found to be enriched in additional
promoter sequences not used in the motif discovery pro-
cedure that share the expression patterns with the energy
or translation module (not shown; p < 0.02) and were
important for our naive Bayes classification analysis.
These results suggest that these factors may play a role in
mediating gene expression changes during cardiac dis-
ease.

The Elk-1 prediction has particular relevance to the study
of cardiac disease, because Elk-1 activity is modulated by
both MAPK-p38 and calcineurin signaling pathways [38]
that are implicated in animal models of heart failure
(Reviewed in [39]). Calcineurin signaling is activated by
calcium, particularly under conditions of calcium over-
load that are a nearly universal effect of end-stage heart
failure. The literature on MAPK-p38 in heart failure sug-
gests that p38 is activated, at least in the early stages of ani-
mal models of hypertrophy [40]. Unfortunately, the two
signaling pathways have opposite effects on Elk-1 activity
[41,38], making it difficult to predict how a particular
heart disease will affect the transcription of Elk-1 targets.
Experimental studies in human patients have directly
demonstrated changes in Elk-1 signaling during heart fail-
ure [42], however, highlighting the importance of discov-
ering heart-specific targets. Our analysis suggests that Elk-
1 occurrences bind preferentially in the promoters of
energy and translation genes and may be relevant to
understanding changes in expression during cardiac dis-
ease.

We also discovered a novel motif with a GC-rich core
sequence (GCGC) that occurs many times in the pro-
moter of genes in the energy and translation modules. In
addition to this motif, we also found a longer, non-posi-
tion specific motif highly enriched in the same promoter
sequences that closely resembles two nearby position-spe-
cific GC-rich half sites (Additional file 4). Moreover, we
find that at least seven promoters contain either directly
adjacent or partially overlapping occurrences of the short
GCGC-rich sequence (dark yellow motif, shown in Figure
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6), which is consistent with the idea that this finding rep-
resents half of a longer motif. Occurrences of the longer
motif are highly conserved through evolution compared
to surrounding sequence (Additional file 4), strongly sug-
gesting that this motif plays a functional role.

A non-canonical initiator motif (YYCTTTYY) appears to
be a nearly universal feature of translation promoter
sequences. In addition to its sequence, the motif is highly
specific to the positive strand and the area immediately
surrounding the transcription start site (Figure 5, bottom
right panel). Given the pyrimidine-rich sequence and the
unambiguous bias in position, it is clear that this motif is
a degenerate initiator consensus common to the promoter
of translation genes. A similar motif has been identified in
a previous study [43] and found to be enriched in transla-
tion promoter sequences. Here, we identified this motif in
the promoter of a group of co-regulated genes, suggesting
that it may play a direct role in transcriptional regulation.
Given that the initiator consensus is the initial binding
site for RNA polymerase 1I, it is not far-fetched to specu-
late that small differences in the sequence may play a role
in determining either the affinity of polymerase II or the
energy required to separate the DNA strands and initiate
transcription; both of which could potentially modulate
the quantity of transcript produced. Nonetheless, we can-
not rule out the possibility that this motif it is just more
likely to occur in combination with another motif (such
as Elk-1) that more directly determines the level of tran-
scription.

Conclusion

We describe an analysis of public microarray experiments
that identifies groups of genes, or co-regulatory modules,
that undergo similar changes in expression over different
forms of hypertrophic and dilated cardiomyopathy. Three
of these modules were associated with cardiac disease by
previous microarray studies. The promoter sequence of
genes in these modules were used to identify putative reg-
ulatory motifs predicted to cause the observed changes in
gene expression. Our analysis discovered 17 regulatory
motifs, including a CACC-box, Elk-1, a degenerate initia-
tor sequence, and a novel GC-rich motif. Searching for the
reported pattern of motifs in additional promoter
sequences (not used for motif discovery) reveals that pro-
moters with each pattern are significantly more likely to
drive similar changes in gene expression in the cardiomy-
opathies analyzed in this study. Our analysis reveals
motifs predicted to play a role in gene expression changes
associated with several different types of human heart dis-
ease.
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Additional material

Additional file 1

Sources of human ventricular microarray data collected for the
present study. Sources of human ventricular microarray data collected for
the present study. Samples were collected from four different experimental
data sources, for which the Gene Expression Omnibus experiment ID is
given (column 1). Sample sources include 16 physiological conditions sep-
arated by study and disease state (column 2). Collectively, this data rep-
resents 149 different microarray samples (column 3). The last column
gives references for the original publication (column 4). Abbreviations:
*LVAD - left ventricular assist device; **MI — myocardial infarction.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S1.jpeg]|

Additional file 2

Plots of the uniformity score, used to determine the optimal number
of clusters. The determination of co-regulatory modules by plotting the
uniformity score against the number of clusters. The uniformity score opti-
mizes the proportion of genes that share a biological function with respect
to the cluster size (see methods). The uniformity score reaches a maximum
at 35 clusters, shown expanded in the insert.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S2.jpeg]

Additional file 3

Heatmap of genes in the contractile, energy, and translation module
over different cardiomyopathies. Heatmap of genes in the myocardial
contraction (A), energy generation (B), and protein translation (C) mod-
ule over the different cardiomyopathies examined in the present study.
Heatmaps are presented side-by-side with correlation visualizations from
the text to ease comparison. Color indicates the Z-score of expression rel-
ative to the mean over all diseases. The order of genes is the same as pre-
sented in the text. Note that the order in which cardiomyopathies are
presented are not the same among the different heatmaps.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S3.jpeg]
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Additional file 4

A cis-element enriched in promoters driving expression of genes in the
energy generation module. A sample cis-element enriched in promoters
driving the expression of genes in the energy generation module. (A) The
motif logo. (B) The cross-promoter alignment. Columns, from left to right,
give the MGI symbol, start position, strand relative to the transcription
start site (+1), consensus sequence (shown on top), and cross-species con-
servation score (CSCS; negative indicates strong phylogenetic conserva-
tion). (C-D) Sample phylogenetic alignments for occurrences in ATP5G3
(CSCS = -1.0, C) and ATP5L (CSCS = -1.9, D).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S4.jpeg]

Additional file 5

Plot of negative log of p-value as a function of high and low correla-
tion cutoff thresholds. Negative log of p-values represent the enrichment
of the pattern of motifs in promoter sequences that drive highly correlated
("high") expression with respect to uncorrelated ("low") expression. Val-
ues along the horizontal axis are the Pearson correlation above which
genes are classified as "highly" correlated (between 0.65 and 0.85; top),
or below which genes are classified as having a "low" correlation (bottom;
-0.10 to 0.10), as described in Methods. P-values are plotted separately
for classification based on the contractile (black), energy generation
(green) and protein translation (red) module. High correlation thresholds
(top) are plotted with respect to a constant low correlation threshold (R =
0.0). Low correlation thresholds (bottom) are plotted using a constant
high correlation threshold (R = 0.80). The dotted line represents a p-value
cutoff of 0.05, indicating that 23 of 24 parameter combinations are sta-
tistically significant at this cutoff threshold (p < 0.05). This plot demon-
strates that the results of the naive Bayes classification are robust to
changes in these parameters.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S5.jpeg]

Additional file 6

Genes comprising each of the 35 clusters chosen for analysis in the
article. The cluster number, Affymetrix ID, and MGI symbol (if availa-
ble) of each of the 271 genes used in the analysis zipped into a tab delim-
ited and Microsoft Excel file format.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-31-S6.zip|
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