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Abstract
Background: The ability to predict the spatial frequency of relapses in multiple sclerosis (MS)
would enable physicians to decide when to intervene more aggressively and to plan clinical trials
more accurately.

Methods: In the current study our objective was to determine if subsets of genes can predict the
time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were
utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite
MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression
levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that
appear in the microarray.

Results: We designed a two stage predictor. The first stage predictor was based on the expression
level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate
0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage
predictor based on an additional different set of 9 genes was used to give a more accurate
estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second
stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p
< 0.001). The predictors were further evaluated and found effective both for untreated MS patients
and for MS patients that subsequently received immunomodulatory treatments after the initial
testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient
groups).

Conclusion: We conclude that gene expression analysis is a valuable tool that can be used in
clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing
with other autoimmune diseases that characterized by relapsing-remitting nature.
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Background
Multiple sclerosis (MS) is an autoimmune demyelinating
central nervous system (CNS) disease characterized by an
unpredictable relapsing-remitting course. In MS and other
autoimmune diseases, a relapse is defined as the new
onset or worsening of clinical neurological symptoms,
and is followed by periods of remissions with no disease
activity. Relapses are the basic feature of MS and other
autoimmune diseases such as myasthenia gravis [1], sys-
temic lupus erythemathosus [2], rheumatoid arthritis [3],
and Crohn's disease [4]. In MS, relapses are the conse-
quence of complex immunological and neurodegenera-
tive processes. Relapses in MS are associated with myelin
and axonal loss; they may cause new acute inflammatory
lesions or can activate old lesions within the CNS [5-7].
Accordingly, relapses are the visible clinical expression of
the complicated immunopathological mechanisms oper-
ating in the CNS and peripheral blood. The ability to pre-
dict the occurrence of a subsequent relapse (yes/no) and
to estimate the time when that process will occur has
important clinical and practical implications. This knowl-
edge can help in decisions related to treatment – e.g. either
treat patients with more aggressive disease or avoid over-
treatment of patients with a more favorable disease
course. Prediction of the time to next relapse can also be
useful in the design of clinical trials as an additional crite-
rion for selecting active patients. For patients with clini-
cally isolated syndrome (CIS), who have just experienced
the first relapse, such a tool can be used for estimating the
probability to convert to definite MS by predicting the
time until the second relapse.

Biologically, analysis of genes and pathways that are
related to predicting relapses may help to better under-
stand the mechanisms underlying the progression of the
disease, and more specifically the processes that trigger
and operate in acute MS relapses.

Various demographic and disease-related variables have
been utilized for predicting clinical outcome. Late age at
disease onset, poly-symptomatic symptomatology at
onset, higher annual relapse rate and short time-interval
between attacks are correlated with poor outcome, while
onset with the presentation of optic neuritis or sensory
symptomatology have been associated with a good out-
come [8-15]. Disease-related variables, measurements of
autoantibodies, and gene expression were found to be
useful for diagnosis and prognosis in MS and in other
autoimmune diseases [16-18]. For example, in the case of
MS, Martinez-Yelamos et al [19,20] showed that CSF-TAU
and 14-3 3 proteins are independent predictive factors for
short time conversion to clinical definite MS. On the other
hand, the correlation between anti-myelin antibodies and
time to next relapse in CIS patients has produced contro-
versial results [21-23].

Imaging is considered as a more sensitive tool for predict-
ing MS progression; it was reported that various parame-
ters like brain MRI lesion load including the number,
volume and location of lesions, as well as the presence of
enhancing lesions and brain atrophy can predict disease
outcome [24]. In CIS patients, T2 lesion volume at onset
correlates with disability over the next 10 years, and with
the time to progress to definite MS [25].

The possibility to use peripheral blood gene expression
analysis for prediction of clinical outcome in MS patients
was demonstrated in our previous work [26] where we
showed that peripheral blood mononuclear cells (PBMC)
gene expression based classifier correctly predicted disease
progression for two years. Another relevant work is the
work of Baranzini et al. [27], they showed that PBMC gene
expression can be used to predict the response of MS
patients to recombinant human interferon beta (rINFβ).

The aim of current study was to evaluate whether it is pos-
sible to use peripheral blood gene expression to predict
the time to next acute relapse in CIS and relapsing-remit-
ting MS patients.

Most of the new radiological MRI lesions are clinically
silent. The frequency of new radiological lesions is ten
times higher than the frequency of clinical relapses; i.e.,
on average, a cumulative effect of about 10 new radiolog-
ical MRI lesions is equivalent to one clinical relapse [28].
Since most clinical relapses are associated with new MRI
lesions, and since MRI measurements was available only
for small fraction of the patients, in the current study we
focused only on clinically definite MS relapses.

We designed a comprehensive feature selection procedure
that was implemented on different sets of feature includ-
ing: 1) all genes represented in the microarray; 2) set of
genes significantly discriminated between groups of dif-
ferent classes of time to next relapse; 3) genes significantly
correlated with time to next relapse, and 4) clinical and
demographical confounders.

This approach enabled us to identify a PBMC gene expres-
sion based predictors that envisioned the time until the
next relapse with high accuracy.

Methods
Subjects
The study was approved by the Sheba Medical Center
Institutional Review Board, and all patients gave written
informed consent for participation.

It was a prospective collection of data. The data set
includes 94 patients, 62 patients diagnosed with definite
MS according to McDonald criteria [29] and 32 patients
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with CIS. All patients were free of steroids and immu-
nomodulatory treatments for at least 30 days before
blood withdrawal, and were at least one year after treat-
ment with cyclophosphamide (see Additional file 1). As
can be seen, 62 patients had not experienced previous
treatment; the rest of the patients had average distance of
300.4 ± 68.3 days from previous immunomodulatory
treatment. The time to next relapse was not a selection cri-
terion for inclusion patients in study; we randomly sam-
pled the blood of 100 patients (94 microarrays passed
quality control criteria).

We excluded from the study patients with Neuromylitis
Optica (NMO) according to the criteria of Wingerchuk et
al. [30].

The demographical characteristics of the patients are pre-
sented in Table 1. Patients were followed-up prospectively
for a maximal period of 3.5 years (1264 days) or up to the
first next acute relapse during the follow up period. Neu-
rological examination was performed every 3 months and
at the time of a suspected relapse, Expanded Disability
Status Scale (EDSS) assessment was completed accord-
ingly.

During the follow-up period, 33 definite MS patients ini-
tiated various immunomodulatory treatments (Table 2)
while 61 patients remained untreated.

As the aim of this study is the prediction of the time till the
next relapse we gathered patients with large range of this
parameter; our dataset included patients with long period
between relapses. Some of these patients have benign MS
(if they have EDSS < 3.0 after 15 years with the disease).
Patients with benign MS are not necessarily treated in our
country. Additionally, CIS patients (32 of the patients) are
not treated according medical regulations in our country.
Thus, in summery, our study included relatively high
number untreated patients

Definition of Relapses
MS relapse was defined as the onset of new objective neu-
rological symptoms/signs or worsening of existing neuro-
logical disability, not accompanied by metabolic changes,
fever or other signs of infection, and lasting for a period of
at least 48 hours accompanied by objective change of at
least 0.5 in the EDSS score. Confirmed relapses and EDSS

scores were recorded consecutively. Time from baseline
gene expression analysis to next acute relapse was
recorded and used as a variable for clinical outcome pre-
diction.

RNA isolation and microarray expression profiling
The blood samples were collected for this analysis. After
blood withdrawal, PBMC was immediately purified and
frozen in liquid nitrogen for the future microarray analy-
sis. Microarray analysis was performed each time that a
large enough set of samples was collected (between 10–12
samples for a working set).

PBMC were separated on Ficol-Hypaque gradient, total
RNA was purified, labelled, hybridized to a Genechip
array

(either HU-133A or HU133A-2) and scanned (Hewlett
Packard, GeneArray-TM scanner G2500A) according to
the manufacturer's protocol (Affymetrix Inc, Santa Clara,
CA, USA). All microarrays used in analysis passed all the
stringent quality control criteria. The gene expression
measurements used in this study are available and can be
downloaded from Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/; accession number
GSE15245).

Data Analysis
Data analysis was performed by Partek Genomics Solu-
tion software http://www.partek.com. Expression values
were computed from raw CEL files by applying the Robust
Multi-Chip Average (RMA) background correction algo-
rithm. The RMA correction included: 1) values back-
ground correction; 2) quantile normalization; 3) log2
transformation; 4) median polish summarization. In
order to avoid the noise caused by variable set effects we
normalized each set to pre-saved distribution pattern of a
well balanced set used as a reference distribution.

To reduce batch effect, Analysis Of Variance (ANOVA)
multiple model analysis was applied. Source of variation
was analyzed; non-relevant batches effects such as array
type, working batch, patient age and gender were elimi-
nated. Most Informative Genes (MIGs) were defined as
genes that distinguished between the different classes of
time to next acute relapse with p < 0.01 by ANOVA test.
Most Correlated Genes (MCGs) were defined as genes that

Table 1: Clinical and demographical characteristic of the analyzed patients.

Age (Years) Disease Duration (Years) Annual Relapse Rate EDSS F/M Yes/No Future IMD Treatment

CIS 32.1 ± 1.5 0.20 ± 0.02 ------ 0.9 ± 0.2 19/13 0/32

Definite MS 38.5 ± 1.4 8.50 ± 1.09 0.92 ± 0.1 2.4 ± 0.2 41/21 33/29
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were correlated with time to next acute relapse by Spear-
man, Pearson or Kendal method with p < 0.05.

Dividing the patients to classes
We divided the patients to three classes comprising at least
20 patients. Each class corresponded to relatively similar
time ranges until their next relapse: a) 31 patients that had
not experienced relapse in the 1264 days of the follow up
period; b) 40 patients that experienced relapse in less than
500 days and c) 23 patients that experienced relapse in
500 to 1264 days. The boundaries of the classes were cho-
sen according to various constrains: 1) the upper bound
(1264) reflects that the patients' follow up period after
blood withdrawal. 2) We wanted to divide the time rang
0–1264 to relatively similar ranges such that the number
of patients in each group will be similar (at least 20
patients). Thus, we decided on the second boundary
(500), a larger boundary would decrease the number of
patients in the second group while a smaller one would
result in a too small time range of the first group.

The distribution of subjects with CIS and Definite MS
across these three categories is [30:16:15] for definite MS
and [9: 5:14] for CIS for the three classes (less than 500
days: between 500 and 1264 days: more than 1264 days)
respectively. As can be seen, in both groups there are sub-
jects in each of the three categories.

In the case of the FTP, we used resolution of 50 days since
we wanted to divide the range related to the first group to
equally spaced sub-ranges (thus, for example, 30 or 90
days were inappropriate). It is important to note that the
concept used here could be used with different resolutions
and still give qualitatively similar results (for example
lower resolution of 100 days gave error-rate of less than
0.2, p < 0.0001).

Implementations of the predictors
The predictor has two major parts: 1) a Support Vector
Machine (SVM) classifier, that we named First Level Pre-
dictor (FLP), and 2) a multivariate linear regressor that we
named Fine Tuning Predictor (FTP). We used the Spider
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
implementation for the SVM multi-class classifier. We
used a multivariate linear regressor for the FTP (for
patients with time till next relapse < 500). This multivari-

ate linear predictor gave better results than SVM regressor
(the Partek implementation of SVM regressor gave error
rate that was much higher, around 0.8).

In the case of the FTP, the gene expression of each predic-
tive gene is multiplied by a weight (positive or negative
real number) and the results are summed. This sum is
used as a prediction for the number of days till the next
relapse. Thus, the expression level of each gene may have
a positive or a negative affect on the prediction. In the case
of the FLP, which is based on SVM classifier [31], the gen-
eral idea is similar but more complicated – each gene may
have a positive effect on the prediction in some cases and
negative effect in other cases.

The feature selection procedure for finding the most 
predictive genes
We used different sets of genes as input to our feature
selection procedure: a) genes that were differentially
expressed between the three different classes of time till
the next relapse, b) genes that were expressed with corre-
lation (p < 0.05) with the time till the next relapse, c) all
unique genes presented on the microarray.

Using a very large set of genes for constructing the predic-
tors elevates the risk of overfitting (e.g. see [32]). The solu-
tion for overfitting problem is the Leave 20% Out Cross
validation (L20OCV) procedure (a version of leave one
out cross validation [33,34]) that is described in this sub-
section.

A general flow diagram of the forward selection algorithm
for choosing the set of genes consisting each of the predic-
tors is described in Figure 1. The same feature selection
algorithm was used both for the FLP and for the FTP.

We started with a set of 22,215 gene-transcripts present on
each microarray. The expression levels of multiple probes
related to the same gene were averaged, resulting in a set
of 10,594 potential features (genes and annotated
sequences). At the initial stage, we computed a vector of
errors in 100 (80% training set, 20% test set) leave 20%
out iterations for each gene. We chose the gene with the
lowest mean error rate and all the genes whose mean error
rate that is not significantly higher than the error rate of
the first gene (p-value < 0.05 by t-test).

Table 2: The immunomodulatory treatments the analyzed patients underwent after blood sampling.

CIS Definite MS Non treated
patients

Interferon β-
1a Avonex

Interferon β-
1b Betaferon

Interferon β-
1a Rebif

Glatiramer
acetate

Copaxone

Intravenous
Immunoglobulins Iv-Ig

No of
Patients

32 62 61 5 2 10 10 6
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In the following stages, we expanded the initial sets while
getting significantly better predictors which were based on
2, 3 or more genes. In each step, we tried to expand each
predictor in the current set of best predictors by adding
more genes to the predictors, and while keeping all the
predictors whose error rates were not significantly worse
than the error rate of the best predictor. This was done by
an iterative cross validation procedure in which 20% of
the initial data set was left apart and the remaining 80%
were used as temporary training set in each of the itera-
tions. We performed 100 iterations for the cross valida-
tion procedure at each stage for selecting sets of potential
predictors. The output of the initial stage was a set of pre-
dictors with similar performances [i.e. according to the
100 leave 20% outs, none of them was significantly better
than the best predictor; namely, all the p-values were >
0.05].

At the final stage, to discriminate between the predictors
that have similar performances as the best predictor, we
performed 10,000 cross validation iterations and selected
the predictor(s) that was/were significantly better than the
others.

Note that qualitatively similar results were gained when
we learned the predictors based on 85 of the patients and
afterward test them on a different group of 9 patients (the

rest of the patients). In this case, the mean error rate of the
FLPs was less than 0.11 on the training set and 0.13 on the
test set (all p-values < 0.001). In the case of the FTPs, the
mean error rates on the training set and test set were 0.44
and 0.66 respectively (all p-values < 0.001).

Evaluating the Performance of the Predictors on 
Subgroups of Patients
For evaluating the performances of the predictors on sub-
groups of the patients (e.g. MS vs. CIS, or non-treated vs.
patients under the various treatments), we performed
1000 Leave 20% Out Cross Validation (L20OCV) proce-
dures where in each L20OCV step we randomly chose
subsets of 80% of each of the patient subgroups for train-
ing the predictors (all these subsets were unified to one
subset), and tested the predictors on the rest of the sam-
ples (in the cases where the dataset was very small, at least
one patient was chosen for the training set and for the test
set). The predictors were based on the sets of genes that
were found by the procedure that was described in the
previous subsection, but in each iteration a different train-
ing set for inferring the weights of the different genes in
the predictor was used; and in each iteration the predic-
tors were implemented on different test set. The final error
rate of each subgroup is the average error rate across all the
1000 L20OCV procedures for patients from the subgroup.

General flow diagram of the procedure for finding the predictors (FLPs or the FTPs, we used k = 100 and k' = 10,000)Figure 1
General flow diagram of the procedure for finding the predictors (FLPs or the FTPs, we used k = 100 and k' = 
10,000).

The initial predictor includes 0
genes.

Have adding the last gene yielded
a significant improvement of the

performances?

NO

Yes

Expand the Mi best predictors
of i genes with N/Mi most

predictive genes

Choose the Mi+1 predictors with
i+1 genes that are not

significantly worse than the best
predictor with i+1 genes

Evaluate each predictor by
averaging the error of K

L20OCV of the data to 20%
training and 80% test set.

Evaluate each predictor in the
set of the most predictive

predictors by averaging the
error of K'>>K L20OCV of the
data to 20%  training and 80%

test set.

Plot the set of predictors that
are not significantly worse than

the best predictori stages

Legend:
N - the total no of genes
Mi- the no of best predictors in stage i
K - no of L20OCV at the initial stages
K' - no of L20OCV at the final stage
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Another Set of Patients for Additional Validation
For further evaluation of the FLP performances, we col-
lected an additional dataset of 10 patients (3 from the first
group, 2 from the second group, and 5 from the third
group). The gene expression of each of the patients was
normalized separately with the original dataset of 94
patients. Then, the FLPs were implemented on the nor-
malized expression levels. The demographical and clinical
characteristics of these patients are presented in Table 3.

The Role of Clinical and Demographical Variables in the 
Predictors' Performance
We examined if clinical parameters are helpful for predict-
ing the time to next relapse by 1) evaluating the perform-
ance of a FLP and FTP predictors that are based only on
these parameters, and 2) examining if these variables can
improve the performances of our predictors. To this end,
we checked the following clinical parameters: age, MS
stage (CIS or Definite), gender, annual relapse rate, EDSS
at time of blood sampling, disease duration, age at onset,
EDSS change in the last relapse.

Empirical p-values for the predictors
We computed empirically p-values for the best FLP and
FTP by performing random permutation of the labels,
learning best predictors for each such permutation, and
computing the fraction of cases (out of 1000 permuta-
tions) that a predictor for permutated labels gave better
error rate than the original predictor. All the 1000 random
predictors were much worse than the original one (p-
value < 0.001). For example, the average error rates of the
random FLP were 0.67 and the average error rates of the
random FTP were 0.8.

The Role of Relapse Severity in the Predictors' 
Performance
We examined if the performances of the predictors
depend on the severity of the relapse (measured as the
change in EDSS in the last relapse). To this end, we
divided the patients to 8 groups according to their change
in EDSS in the last relapse (the range was 0.5 – 6.5). We
computed the error rate of the predictors for each of these
groups (as was performed for the treatment groups).

Biological functional analysis
Gene functional annotation was performed using func-
tional classification tools such as David Bioinformatics

Resources http://david.abcc.ncifcrf.gov/home.jsp and
Ingenuity Pathways Analysis web-software http://
www.ingenuity.com. Information about the most predic-
tive genes was extracted from NCBI http://
www.ncbi.nlm.nih.gov/sites/entrez?db=gene.

Results
To learn about the three groups of patients, we performed
Principal Component Analysis (PCA) and clustering anal-
ysis of the patients based on 1359 MIGs (Additional file
2). The patients with time until next relapse < 500 days
exhibit a relatively coherent clustering where 29/40 of the
patients appear in the same cluster. The clustering results
of the other groups were much worse as they were parti-
tioned among many clusters with up to 5 patients in the
same cluster. This result demonstrates that it is much
more complicated to cluster sub-groups of patients that
will experience their next relapse in more than 500 days.
Thus, an additional, finer predictor only for the first group
(time until next relapse < 500) was justified.

We named the three groups classifier First Level Predictor
(FLP). The FLP classified the time till next relapse of a
patient to one of the following groups: <500 days,
between 500 and 1264 days, and >1264 days. The finer
predictor, for the patients with time till next relapse < 500
days was named Fine Tuning Predictor (FTP).

Based on expression of all 10,594 genes, we performed a
Leave 20% Out Cross Validation (L20OCV) procedure to
evaluate FLP that simultaneously discriminated between
patients that experienced acute relapse in one of the three
periods mentioned above during clinical follow up (as
was described in the Methods section). The cases where
the FLP does not classify patients to their correct groups
are defined as errors. The output L20OCV was a group of
predictors that are based on the gene expression of sets of
1 to 10 genes with error rate range between 0.37 (for sin-
gle gene) to 0.079 (for 10 genes), see Figure 2A. There are
a few dozen predictors that gave similar results. For exam-
ple, Additional file 3 includes 36 FLP with error rate < 0.1.

To differentiate a smaller set of statistically significant pre-
dictors from those with similar predictive ability we per-
formed 10000 additional L20OCV iterations which
enabled us to choose three best FLP (each is based on 10
genes; see Table 4).

Table 3: Clinical and demographical characteristic of the additional validation set of patients (4 CIS and 6 Definite MS).

Age (Years) Disease Duration (Years) Annua Relapse Rate EDSS F/M Yes/No Future IMD Treatment

CIS 24 ± 5.01 0.34 ± 0.09 6.1 ± 2.05 2.58 ± 0.15 0/6 6/0

Definite MS 36 ± 7.61 5.3 ± 2.39 1 ± 0.51 5.3 ± 2.39 2/2 3/1
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Error probabilities of the FLP and the FTPFigure 2
Error probabilities of the FLP and the FTP. A. The improvement in the error probability of the best FLP as function of 
the number of predicting genes. Each improvement was significantly better (p-value < 0.05) than the previous one (see Meth-
ods). B. The error rate distribution of the best FLP on the test sets. C. The improvement in the error probability of the best 
FTP. Each improvement was significantly better (p-value < 0.05) than the previous one (see Methods). D. The error rate distri-
bution of the best FTP on the test sets.
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Table 4: The performances (error rate) of the predictors in different subgroups of patients.

Predictor CIS Definite 
MS

Non
treated

Interferon
beta 1a
Avonex

Interferon
beta 1b

Betaferon

Interferon
beta 1a

Rebif

Glatiramer
acetate

Copaxone

Intravenous
Immunoglobulines

Iv-Ig

Average 
error r ate

FLP1 0.10 0.08 0.087 0.01 0.01 0.09 0.18 0.175 0.079
FLP2 0.10 0.08 0.085 0.02 0.03 0.05 0.215 0.18 0.0791

FLP3 0.088 0.071 0.082 0.01 0.02 0.105 0.165 0.17 0.0792

FTP1 0.21 0.355 0.332 -- -- 0.42 0.54 0.34 0.345

FTP2 0.29 0.38 0.366 -- -- 0.345 0.51 0.3 0.349

3FTP 0.27 0.37 0.366 -- -- 0.245 0.535 0.41 0.349

FTP4 0.31 0.38 0.352 -- -- 0.235 0.53 0.37 0.349

FLP1 – FLP3 denote FLPs and FTP1 – FTP4 denote FTPs; see Table 5 for the genes in each predictor) on each sub-group (when applicable), and the 
average error-rate (last column). The average error rate is the error rate when considering the entire dataset.
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The improvement in the error rate of the FLP as a function
of the number of genes that were used by the predictor is
demonstrated in Figure 2A. Genes were added iteratively
to the FLP until there was no significant improvement in
the performances of the predictor (a flow diagram appears
in Figure 1).

The error rate distribution of the best FLP is depicted in
Figure 2B. As can be seen, for 50% of patients the predic-
tor gave absolutely correct classifications (i.e. it correctly
classified all the patients to one of three groups), in 20%
of the cases the error rate was 0.05, and only 30% of
patients were predicted with error rate more than 0.05.
The 10 genes involved in each of the 3 best FLPs are pre-
sented in Table 5. The functional annotations of those
genes appear in Additional file 4.

The probabilities of the different types of classification
errors of the best FLP are depicted in Figure 3. For exam-
ple, as can be seen in Figure 3, a patient that belongs to
group 1 (relapse in less than 500 days) has a probability
of 0.03 of being misclassified by the FLP and to be
included in group 2 (relapse in 500 – 1264 days), and a
probability of 0.023 to be misclassified and to be included
in group 3 (relapse in more than 1264 days). In compari-
son, a random assignment to one of these groups gave an
error rate of 0.67.

The performances of the predictor were significant (p <
0.001; details about the p-value calculation appear in the
Methods section).

When we implemented the feature selection procedure
using only MIG genes the performances of the result FLP

were not improved (see Supplementary Note 1 in Addi-
tional file 5).

To visualize boundaries of the FLP decision regions we
performed a plot of the expression levels of the 2 most
predictive genes (FLJ10201 and PDCD2) of the best FLP
and the boundaries of the decision regions of the predic-
tor (Figure 4). As can be seen, the boundaries of these
regions are non-linear (see Additional file 6 for graphs of
other pairs of predictive genes), and resemble the results
that were reported in [26]. Finally, the error rate of the
best FLPs on an additional independent dataset of 12
patients was 0.3 (p-value < 0.001; see Methods); further
supporting the viability of the FLPs.

Next, we designed a more accurate predictor that was
named Fine Tuning Predictor (FTP). It predicts the time
until the next relapse only for patients that experience
acute relapse during a period of 500 days. As a FTP we
used a multivariate regressor (see Methods) that can pre-
dict the time until the next relapse with a resolution of a
few days. In the case of the FTP, we defined a prediction
error as a prediction that is more/less than 50 days (± 50)
from the real date of relapse onset. We found 240 gene
sets that gave error rate < 0.36. Our feature selection pro-
cedure combined with 10000 permutations of Leave One
20% Cross Validation (L20OCV) procedure found four
FTP s; each FTP was based on 9 genes. The minimal error-
rate of each FTP was 0.35 (p-value < 0.001); and was sig-
nificantly better than the other gene sets. The error rate of
the FTP after random permutations of the labels was 0.8;
this is 2.3 folds higher than the error rate of the inferred
FTP (see Methods for description about the p-value). The
error rates of best 9-genes-FTPs are demonstrated in
Table 4.

Table 5: The genes that were selected for the best FLPs (FLP1 – FLP3) and best FTPs (FTP1 – FTP4).

Predictor Predictor 
name

Error 
Rate

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10

FLP FLP1 0.079 FLJ10201 PDCD2 IL24 MEFV CA2 SLM1 CLCN4 SMARCA1 TRIM22 TGFB2

FLP2 0.0791 FLJ10201 PDCD2 IL24 MEFV CA2 SLM1 CLCN4 SMARCA1 TRIM22 SPN

FLP3 0.0792 FLJ10201 PDCD2 IL24 MEFV CA2 SLM1 CLCN4 SMARCA1 TRIM22 TP73L

FTP FTP1 0.345 KIAA1043 LOC51145 PPFIA1 MGC8685 DNCH2 PCOLCE2 FPRL1 G3BP RHBG ---

FTP2 0.349 KIAA1043 LOC51145 PPFIA1 MGC8685 DNCH2 TAF4B FPRL1 PCOLCE2 FLJ21802

FTP3 0.349 KIAA1043 LOC51145 PPFIA1 MGC8685 DNCH2 PCOLCE2 FPRL1 FLJ21802 TAF4B

FTP4 0.349 KIAA1043 LOC51145 PPFIA1 MGC8685 DNCH2 PCOLCE2 FPRL1 TAF4B FLJ21802

Full description of the genes and their gene bank ID appears in Additional file 4. The expression levels of the genes appear in Additional file 1. MEFV 
is an abbreviation of Homo sapiens familial Mediterranean fever locus region, mRNA sequence.
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As in the case of the FLP, we performed a similar analysis
of the improvement in the error rate of the best FTP (see
Table 4) as function of the number of predictive genes
(from 1 to 9; Figure 2C). Every time a gene was added to
the FTP, the performances of the FTP were significantly
improved (see Methods).

The plot of best FTP performances vs. observed time to
next relapse during 500 days of follow up appears in Fig-
ure 5. As can be seen, the two values are very correlative

(Spearman correlation 0.82, p-value = 10-10). The analysis
of error rate distribution of the best FTP appears in Figure
2D. In this case, the error rate has normal distribution
with mean error rate of 0.35; for example, 20% of the
patients have error rate < 0.2 (Figure 2D).

When we implemented the feature selection procedure
only on genes whose expression is correlative with time
until next relapse the FTP results were not improved (see
Supplementary Note 2 in Additional file 5).

To further evaluate the performances of the predictors, we
divided the patients in two ways. First, the dataset was
divided to CIS and definite MS patients (32 and 62
patients respectively); second, the dataset was divided
into 6 groups according to their future treatment after their
blood was withdrawn (Non-treated, Interferon β-1a
(Avonex), Interferon β-1b (Betaferon), Interferon β-1a
(Rebif), Glatiramer Acetate (Copaxone) and Intravenous
Immunoglobulins (Iv-Ig) with 61, 5, 2, 10, 10, and 6
patients respectively (see Table 2). The performances of
the best predictors in different subgroups of patients were
evaluated as was described in the Methods section.

Table 4 depicts the performances of each of the best pre-
dictors (FLPs and FTPs) on each of these groups. The error
rates remain significant for each of these groups. The FLP
error rates were 0.1 and 0.08 (p-value < 0.001) for the CIS
and MS groups respectively; the FTP error rates were 0.21
and 0.355 (p value < 0.001), for the CIS and MS groups
respectively.

The different types of errors of the best FLP (FLP1)Figure 3
The different types of errors of the best FLP (FLP1). 
The number on an arrow from state x to state y is the prob-
ability that the predictor miss-classify a patient whose true 
state is x and will put it in state y. This is an extension of the 
widely used two states sensitivity and specificity measures.
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In the analysis of the different treatments, the FLP error
rate ranged between 0.087 (non-treated) to 0.18 (Copax-
one); the FTP error rate ranged between 0.235 (Rebif) and
0.53 (Copaxone), see Table 4. The probabilities of the dif-
ferent types of classification errors for each treatment
group appear in Additional file 1. In all sub-groups the
best predictor exhibited significant performances (p-value
< 0.001); this fact suggests that the signal of the next
relapse is usually strong enough to be detected by our pre-
dictor even when the patients undergo various Immu-
nomodulatory Drugs (IMD) treatments after blood
withdrawal.

For additional validation of the FLP, we collected an addi-
tional independent dataset of 10 untreated RRMS patients
(see more details about this dataset in the Methods sec-
tion and Table 3). The total error rate of the FLP on these
patients was 0.25. This result further supports the viability
of our approach.

Clinical and demographical confounders did not improve
the performance of the best gene expression based FLP
and FTP (see Methods for the exact list of Clinical and
demographical confounders we checked). FLP and FTP
predictors that were based on combination of these con-
founders and that were found by our approach had much
higher error rates than the predictors that were based only
on gene expression (FLP error rate > 0.63, FTP error rate >
0.74; for all the predictors that were based on the above
mentioned confounders). We also did not get a significant
correlation between the error rate of a predictor and the
severity of relapse (as was measured by the change in
EDSS), Spearman correlation -0.29, p-value = 0.5, for FTP;
Spearman correlation -0.6, p-value = 0.12, for FLP, see
Methods for more details).

Discussion
In this work, we demonstrated that gene expression in
PBMC can be used for predicting the time of the upcom-
ing relapse in MS. Using different prediction strategies to
determine an appropriated gene set for accurate relapse
prediction we found that the classifier that was based on
all microarray genes had the best prediction. We describe
a FLP, which is based on the expression levels of ten genes,
which can predict the time till next relapse in a resolution
of 500 days during 3.5 years of disease progression. An
additional FTP, which is based on different set of nine
genes, can be used for a prediction of a higher resolution
(e.g. a resolution of 50 days).

At first glance, the error rate (about 0.35) of the FTP seems
relatively high. However it is important to remember that
the definition of error in this case was very tight (more
than 50 days from the real value). As mentioned, this error
rate was very significant (p-value < 0.001) and surpris-

ingly good. For comparison, our simulation showed that
a random FTP (i.e. the best FTP after a random shuffling
the input labels) gave an error rate that was close to 0.8 –
2.3 fold higher than our error rate.

This study includes 94 patients for evaluating the predic-
tors. It is clear that a larger dataset will give better perform-
ances. In order to estimate the potential improvement in
the error rate when using larger datasets we performed the
following analysis: we computed the error rate of the FLP
and the FTP as function of the dataset size (% of the orig-
inal dataset; see Additional file 8). The figure shows that
the error rates decrease for larger datasets. This fact sug-
gests that with the accumulation of more gene expression
measurements we can design better predictors. Specifi-
cally, enlargement of the dataset to 200 patients (instead
of 94) will give a classification error of about 0.05 and a
regression error of about 0.2 (Additional file 8).

Another interesting conclusion from this work is that
there are multiple predictors (FLPs and FTPs) that have
similar performances. The predictors that were described
in this work were significantly better than the other pre-
dictors; however, there were a few dozen predictors that
gave similar results. For example, Additional file 3
includes 36 FLP with error rate < 0.1, and 240 FTP with
error rate < 0.36. This means that the best predictors
appear in this work can be replaced by other predictors
with a relatively small influence on the error rate.

Finding a good predictor for the time to next relapse and
finding a molecular explanation for relapses are different
tasks with a possible overlap. There are a few explanations
why the connection between the predictive genes and
relapse associated mechanism is not necessarily immedi-
ate: First, the predictors were designed to include rela-
tively small number of genes while the actual mechanisms
may include dozens of signaling pathways. Second, our
study was based on changes in gene transcription levels; it
is possible that major parts of the relapse associated regu-
latory mechanisms are post transcriptional. In such cases,
the most relevant genes are useless in terms of improving
the predictions and the feature selection procedure finds
genes that are less relevant but that exhibit significant
change in their mRNA levels (e.g. genes that are regulated/
regulate the genes that are directly related to relapse).

However, many of the FLP genes are linked to MS. This is
an additional support of their predictive ability. For exam-
ple, the gene TGFB2 is a one of the master genes in MS; it
is closely related to a rapid recovery from relapses that is
mediated by Th2/Th3 lymphocytes. Th2/Th3 lymphocytes
produce anti-inflammatory cytokines (like IL10) [35].
TGFB inhibits IL12 mediated inflammatory response, and
it virtually decreases T cells proliferation and IFNgamma
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production [36]. TGFB prevents induction of pro-inflam-
matory gene-program by inhibiting the expression of 25%
of the TNFalpha/IFNgamma induced genes [35]. The target
genes that TGFB inhibits are various genes that are
involved in MS pathogenesis processes (e.g. chemotaxis,
adhesion and cell migration).

The gene for Familial Mediterranean Fever (MEFV) is
expressed in early leukocyte development and is regulated
in response to inflammatory mediators. Stimulation of
cells with the proinflammatory agents interferon (IFN)
gamma, tumor necrosis factor, and lipopolysaccharide
induced MEFV expression, whereas the anti inflammatory
cytokines (IL4, IL-10) and especially TFGB inhibited such
expression [37].

The CA2 gene (carbonic anhydrase II) supports the trans-
port of bicarbonate ions, sodium ions, and water from
blood to the CSF; and in the myelin sheath CA2 supports
compaction of myelin by stimulating co-transport of ions
between the myelin membranes. The double mutant mice
deficient by CA2 and myelin displayed tremors and sei-
zures [38]. Interestingly, the onset of seizures was delayed
significantly in the double mutants, and the lifespan
increased by several months, this fact corroborates with
CA2's activity as predictor of acute onset in MS.

Another important group of genes that are part of the best
FLP is related to the interferon regulation mechanism.
This group includes RNA binding and signal transduction
SLM1 gene, that is associated with Interferon Receptor 1
Binding Protein 4 (IR1B4) [39] and TRIM22, an important
member of interferon related genes, that is involved in
transduction of IFN activity [40].

The IL24 gene is a member of anti-inflammatory IL10
family cytokines involved in immune response. The over-
expression of IL24 stimulates pro-apoptotic CADD family
genes and activation of apoptosis. On the other hand,
IL24 can increase secretion of IFNG in human PBMC. The
IFNG by himself is able to repress TGFB mRNA expression
as demonstrated in CD18 positive cells [41] and in
human lymphocytes it increases mRNA expression of
MEFV [42]. Additionally IFNG involved in regulation of
the protein NFKBIB (corresponding to the gene PDCD2)
that is associated with programmed death of lymphocytes
[43-45]. Based on the above relations we reconstructed a
unified regulatory network for most of the predictive
genes that appear in the FLP (see Figure 6).

The best FTP includes 2 inflammatory related genes
(FPRL1 and PPFIA1). FPRL1 functions as a receptor com-
ponent of inflammatory response [45], activation of
FPRL1 results in leukocytes activation. FPRL1 involved in
direct monocytes/microglia migration as was demon-

strated in activated brain prion plaques and brain lesions
in Alzheimer disease [46]. PPFIA1 receptor gene is
involved in cell motility, cells spreading, migration and
adhesion. Up regulation of human PPFIA1 (LIPRIN) gene
in peripheral blood is associated with psoriatic arthritis
[47]. Another interesting gene is G3BP that encodes a
downstream effector protein of the Ras signaling pathway
[48]. Interestingly, as in the case of best FLP, the genes
FPRL1 and G3BP are regulated by TGFB [49,50]. This
result suggests that a single pathway can explain both the
FLP and the FTP genes.

To summarize, most of the predictive genes seem very rel-
evant to the pathophysiology of MS. We have constructed
a schematic regulatory network which unifies many of
these genes to a single regulatory network (Figure 6). One
important goal for further research is to better understand
how these genes are involved in the biological mecha-
nisms that lead to a clinical relapse.

We also found a few predictive genes whose their biolog-
ical roles are unknown (see Additional file 4). We thus
think that the potential connection of these genes to MS is
a natural target for a further study.

As relapses have different level of severity [e.g. it can be
measured by the increase in EDSS] one may think that in
the cases of a more severe next relapse the performances
of the predictors will be better. Analysis of the predictor
error probability for the FLP and FTP as a function of the
change in EDSS levels showed a negative relation (as
expected – i.e. larger changes in EDSS are easier to detect).
However, this correlation was not significant. Thus, a final
answer to this question should be deferred till a larger
gene expression dataset will be accumulated.

Regulatory network of the genes that are part of the best FLP and FTP; the network is based on the literature (see the Discussion section)Figure 6
Regulatory network of the genes that are part of the 
best FLP and FTP; the network is based on the litera-
ture (see the Discussion section).
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We used a heterogeneous dataset for inferring the predic-
tors. The dataset included both CIS and Definite MS
patients, and patients that underwent different immu-
nomodulatory treatments after their blood was sampled.
A survival analysis showed that the disease stage (CIS or
Definite MS) had a statistical significant influence on the
probability to experience next acute relapse (Additional
file 9, Supplementary Note 3 in Additional file 5). Further,
statistical analysis of the gene expression of these two
groups of patients showed that there are dozens of genes
that are differentially expressed in these groups (data not
shown).

However, our predictor was insensitive to the disease stage
and successfully dealt with this issue. The error rates for
the two groups were significantly low (less than 0.1 for the
FLP and less than 0.37 for the FTP). This fact may suggest
that, in the case of the small sets of predictive genes, the
changes in PBMC gene expression before the second
relapse (CIS patients) or before any other relapse (Defi-
nite MS patients) are similar.

Our dataset includes patients that underwent various
treatments after we sampled their gene expression. We
believe that these patients are the major source of error for
our predictors. On the other hand, we decided to include
them in the analysis since they improved its statistical sig-
nificance. We demonstrated that our predictor gave signif-
icantly good results, also when considering each of these
datasets separately. This was unexpected since it is known
that in general drugs change the relapse frequency. The
explanation of this result is simple: Most of the treatments
delay the next relapse by about 30% [51-55], and this fact
increases the prediction error primarily for patients whose
real time to next relapse is close to the boundaries of their
classification group (e.g. close to 500 or close to 1264).
Since the number of such patients is relatively low the
error rate remains significantly low (see details in Supple-
mentary Note 4 in Additional file 5).

Conclusion
We conclude that gene expression in PBMC can be used to
accurately predict the time until the next acute relapse. In
this work, we described a few sets of predictive genes that
can be used for this purpose and demonstrated that other
combinations may also yield significant results. It is pos-
sible that different technology for measuring the gene
expression will yield different sets of the most predictive
genes. Thus, our next goal is to find sets of predictive genes
that give significant results when their gene expression is
measured by cheaper, small-scale, technologies such as
kinetic RT-PCR.

In this work, as information about clinically silent lesions
was not available for most of the patients, we focused only

on clinically definite MS relapses. In the future, when such
information will be available, it can be used for improving
the performances of our predictor. In addition, based on
such data it will be feasible to study the possibility to pre-
dict radiological MRI lesions (that are possibly clinically
silent) from gene expression in PBMC.

Finally, it is possible that the techniques described here
will be valuable not only in future MS research but also in
other autoimmune disease with relapsing-remitting
nature.
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