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Abstract
Background: Tobacco smoking is associated with lung cancer and other respiratory diseases. However, little is
known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this
study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were
investigated.

Methods: Male C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12
weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays
were used to characterize global gene expression changes in whole lung. Microarray results were validated by
Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set
of genes by ELISA and Western blotting.

Results: Globally, seventy nine genes were significantly differentially expressed following the exposure to MTS.
These genes were associated with a number of biological processes including xenobiotic metabolism, redox
balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke
and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples
clustered alongside their respective controls. We observed simultaneous up-regulation of interleukin 6 (IL-6) and
its antagonist, suppressor of cytokine signalling (SOCS3) mRNA following 12 weeks of MTS exposure. Analysis by
ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream
targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma
extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in
contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS
exposure.

Conclusion: Global transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung.
These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of
smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide
further insight into the role of these pathways in lung injury and inflammation induced by MTS.
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Background
Tobacco smoking is responsible for 90% of all lung can-
cers [1,2] and remains the second largest preventable
cause of mortality and morbidity worldwide [3]. In addi-
tion to lung cancers, tobacco smoke is also linked to other
respiratory diseases including chronic obstructive pulmo-
nary disease (COPD) [4,5] and emphysema [6,7]. Despite
the overwhelming evidence linking tobacco smoke to var-
ious respiratory pathologies, the percentage of smokers
who develop any disease is relatively low [8].

The interaction between tobacco smoke and the pulmo-
nary system involves complex molecular pathways. Using
cells in culture, and animal and human models, it has
been shown that various biological pathways (e.g., oxida-
tive stress response, antioxidant activity, DNA repair, pro-
and anti-inflammation) are generally induced in response
to tobacco smoke. For example, increased levels of several
oxidative stress markers in lung tissue have been reported
in response to tobacco smoke including: 8-OHdG, 4-HNE
[9], inducible nitric oxide synthase mRNA and endothe-
lial nitric oxide synthase mRNA [10]. Exposure to cigarette
smoke also causes changes in the expression of heme oxy-
genase-1 (Hmox-1), c-myc, c-jun and c-fos [11,12], induc-
tion of phase-I xenobiotic metabolism genes [13],
increased expression and/or function of several protein-
ases including matrix metalloproteinases (MMP-1, -2, -9
and -14) [14-16] and enhanced NF-kB and AP-1 activity
[17]. NF-kB and AP-1 regulate many of the inflammatory
genes that are over-expressed in response to tobacco
smoke [18,19]. These studies have considerably increased
our understanding of the effects of smoking on health.
However, these studies do not provide information on
global changes in gene expression in target tissues.
Tobacco smoke is a complex mixture of thousands of
chemicals and exposure to it results in a highly complex
molecular response. Consequently, the exact mechanisms
by which smoking leads to disease in an individual, or the
alterations in expression of specific genes that determine
this susceptibility, are not entirely elucidated.

DNA microarray technology permits the simultaneous
monitoring of thousands of transcripts expressed in a
given cell or tissue type in a single experiment, and can be
used to gain insight into complex molecular responses.
Global transcriptional profiling has the potential to pre-
dict disease development and associated prognosis [20].
Several recent studies have used DNA microarray technol-
ogy to delineate the molecular gene expression profiles
that distinguish various subtypes and stages of lung cancer
(reviewed in [21]). Others have documented gene expres-
sion profiles in various disease states including emphy-
sema, COPD and cancers [22-25]. Many others have used
cells in culture and tissues from animals exposed acutely
or chronically to cigarette smoke to study the molecular

pathways that may be involved in disease. In general,
these studies report basic similarities in biological
responses to tobacco smoke including the upregulation of
antioxidants, and phase-I and phase-II xenobiotic metab-
olism genes. However, results generated from these stud-
ies reveal a large list of non-overlapping differentially
expressed genes; these discrepancies necessitate addi-
tional studies to resolve differences and precisely define
the mechanisms by which cigarette smoke exposure
impacts gene expression profiles in vitro and in vivo, and to
determine whether these changes reflect what is observed
in human disease.

In this study, we used high-density DNA microarrays to
examine global transcriptional changes in lung tissues
derived from mice exposed to mainstream tobacco smoke
(MTS) for 6 or 12 weeks, and following a period of smok-
ing cessation. We identified genes that have been reported
in other studies including cytochrome P450, family 1
(Cyp1a1), Heme oxygenase (decycling)1 (Hmox1) and
NAD(P)H dehydrogenase, quinine 1 (Nqo1). In addition,
we observed induction of cytokine interleukin 6 (IL-6)
mRNA and its antagonist, suppressor of cytokine signalling
(SOCS3), following 12 weeks of exposure to MTS. We also
demonstrate an increase in total protein levels of IL-6 and
its downstream targets basal cell-lymphoma extra large
(BCL-XL) and myeloid cell leukemia 1 (MCL-1).

Methods
Animal care and husbandry
Exposures were conducted as described previously
[26,27]. In brief, twenty mature (8–10 week old) male
C57BL/6 × CBA F1 hybrid mice (The Jackson Laboratory.
Bar Harbor, Maine) were exposed to MTS using a nose-
only smoke exposure system [28] adapted for mice [29].
Mice were housed in a 12-h light-dark cycle with food and
water ad libitum. Cages, food and bed were autoclaved.
Mice were placed in individual exposure chambers (9 × 3
× 3 cm3) and were exposed to two cigarettes daily (1R3 ref-
erence cigarettes; Tobacco and Health Research Institute,
University of Kentucky) at a rate of 0.08 litres per minute,
1 puff (20 ml) per 52 seconds, 5 days/week for a total of
6 or 12 weeks, including the 2 week lead-up period [27].
Control mice were placed in restrainers only. Animals
were anesthetised with isoflurane and euthanised by
exsanguation (3 hours after the last cigarette in the
exposed group). Animal procedures were carried out
under the guidelines of the Canadian Council on Animal
Care and Procedures approved by the McMaster Univer-
sity Animal Research Ethics Board.

The selected dose of 2 cigarettes daily for 8 weeks has been
shown to increase average serum cotinine levels to 150
ng/ml, which is consistent with the levels observed in reg-
ular active smokers (more than 100 ng/ml) [30].
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Bronchoalveolar Lavage
Mice were treated and sacrificed as described above. Bron-
choalveolar lavage (BAL) was performed as previously
described [31]. In brief, the lungs were dissected and the
trachea was cannulated with a polyethylene tube (Becton
Dickinson, Sparks, MD). The right lungs were lavaged
twice with PBS (0.25 ml followed by 0.2 ml).

Approximately 0.3 ml of the instilled fluid was consist-
ently recovered. Total cell counts were determined using a
hemocytometer. After centrifugation, cell pellets were
resuspended in PBS and smears were prepared by cytocen-
trifugation (Shandon Inc., Pittsburgh, PA) at 300 rpm for
2 min. Diff-Quik (Baxter, McGraw Park, IL) was used to
stain all smears. Differential counts of BAL cells were
determined from at least 500 leukocytes using standard
hemocytological procedures to classify the cells as neu-
trophils, eosinophils, lymphocytes, or macrophages/
monocytes.

Tissue processing
The right lobe of the lung was lavaged for bronchoalveolar
lavage fluid (BALF) and the left lobe of the lung was snap
frozen in liquid nitrogen and stored at -80°C. For molec-
ular analysis, the frozen left lung lobe was sliced ran-
domly into two (upper and lower) halves. The upper half
was used for RNA extraction. The lower half was further
processed for total protein extracts.

RNA extraction and purification
Total RNA was isolated using TRIzol reagent (Invitrogen)
and purified using RNeasy Mini Kit (Qiagen). All RNA
samples showed A260/280 ratios between 2.0 and 2.1.
RNA integrity was determined using an Agilent 2100 Bio-
analyzer (Agilent Technologies) and only high quality
RNA (28S/18S > 1.8) was used for further analysis.

Microarray hybridization
Individual total RNA samples (2.5 μg) from 40 mice (5
mice for each group, 4 treatment groups and 4 control
groups) and universal reference total RNA (Stratagene)
were used to synthesize double-stranded cDNA and cya-
nine labelled cRNA (experimental samples with Cyanine
5-CTP, and reference RNA with Cyanine 3-CTP; Perkin-
Elmer Life Sciences) according to the manufacturer's
instructions (Agilent Linear Amplification Kits, Agilent
Technologies). Cyanine-labelled cRNA targets were in
vitro transcribed using T7 RNA polymerase and purified
by RNeasy Mini Kit (Qiagen). Five micrograms of each
labelled cRNA was hybridized to Agilent 4121A oligonu-
cleotide microarrays (Agilent Technologies) at 60°C over-
night. Arrays were washed and scanned on a ScanArray
Express (Perkin-Elmer Life Sciences), and data were
acquired with ImaGene 5.5 (BioDiscovery).

Statistical analysis of microarray data
A blocked factorial design [32] was used to analyse lung
microarray data. The factors in the data included treat-
ment (control, exposed), duration of exposure (6 weeks,
12 weeks) and a break period (0 weeks, 6 weeks). The
design was blocked using the date of hybridization and
the date of exposure [33]. Five biological replicates per
condition were used for a total of 40 microarrays.

The background for each array was measured using the (-
)3xSLv1 probe. Spots with median signal intensities less
than the trimmed mean (trim = 5%) plus three trimmed
standard deviations of the (-)3xSLv1 probe were flagged.
The total number of flagged spots, the median signal
intensity and standard deviation for the (-)3xSLv1 probe
for each array were recorded. Other array level summary
statistics included the median signal to noise ratio (log2
scale) for each channel. This information was used to help
identify microarrays with poor data quality.

The data were normalized using a MAANOVA library [34]
in R [35]. Ratio intensity plots and heat maps for the raw
and normalized data were constructed using R [35].
Through inspection of the dendrogram one outlier was
identified. This microarray also had high background and
thus this sample was then removed from all subsequent
analyses.

Differentially expressed genes between the control and
treated groups within time points were determined using
the MAANOVA library [34] in R. The main effects in the
model included treatment, duration of exposure and
break period, as well all two-way and the three-way inter-
action. This model was applied to the log2 of the relative
intensities. The Fs statistic [36], a shrinkage estimator for
the gene-specific variance components, was used to test
main effects, interactions and pair-wise comparisons. The
p-values for all statistical tests were estimated by the per-
mutation method using residual shuffling, followed by
adjustment for multiple comparisons by using the false
discovery rate (FDR) approach [37].

The group means for the fold change calculation were
based on the least-square means. Least-square means are
a function of the ANOVA model parameters and are
adjusted for the other factors in the model such as date of
hybridization.

Validation of microarray results by real-time polymerase 
chain reaction (RT-PCR)
Primers were designed using Beacon design 2.0 (Premier
BioSoft International) and are available upon request.
Approximately 2.5 μg of total RNA per sample was reverse
transcribed and RT-PCR was performed in duplicate using
an iCycler IQ real-time detection system (Bio-Rad) as
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described in [38]. Threshold cycle values were averaged.
Gene expression levels were normalized to the ubiquitin
gene, which was stable on the DNA microarray. PCR effi-
ciency was examined using the standard curve for each
gene. Primer specificity was assured by the melting curve
for each gene. A student's t-test was used for statistical
evaluation.

Preparation of tissue protein extracts and Western 
blotting
The lower half of the frozen left lobe was homogenized in
lysis buffer (5 M HEPES, pH 7.5, 5 M NaCl, 10% Glycerol,
1% Triton X-100, 2 M EGTA, 1 M MgCl2, 0.5 M NaF, 0.2
M sodium pyrophosphate, protease inhibitor cocktail tab-
lets (Roche Applied Science) and centrifuged. The super-
natant was quantified for protein content using a Bradford
protein assay reagent kit (Bio-Rad). Approximately 200 μg
of total protein was extracted from each individual mouse
(n = 5/treatment group) from one treatment group, and
subsequently pooled to make one sample. The protein
content of each pooled sample was quantified again using
a Bradford protein assay kit.

For Western blotting, 30 μg of individual (data not
shown) or pooled total protein was immunoblotted on
8–12% SDS-PAGE gels and analysed using antibodies
against SOCS3, BCL-XL, Stat3, Stat3 phospho, MCL-1,
Gp-130 and JAK-1 (Santa Cruz Biotechnologies). Signals
were detected using ECL Plus reagent (GE Health Sci-
ences). Membranes were erased and reprobed with anti-
actin antibody for normalizing purposes. Band intensities
were determined by averaging the densitometric readings
from three independent experiments. Protein levels were
normalized to the actin levels present in each sample.

Total IL-6 Immunoassay
The Quantikine Mouse IL-6 immunoassay (R&D systems)
was used to measure total IL-6 in lung tissue homoge-
nates. The assay was conducted according to the manufac-
turer's instructions. In brief, 50 μl of assay diluent and
known quantities of samples (15–30 μg total tissue
homogenates) and controls (0–500 pg/ml mouse IL-6
standard, supplied by the company) were loaded onto a
microplate pre-coated with mouse IL-6 specific antibody.
The plate was incubated at room temperature for 2 hours,
then unbound IL-6 was removed by washing five times
with wash buffer. An enzyme-linked polyclonal antibody
specific to mouse IL-6 was then added to each well and
incubated for 2 hours at room temperature. Plates were
washed as described above to remove any unbound
enzyme conjugate. One-hundred microliters of substrate
solution was added to each well and incubated in the dark
for 30 minutes at room temperature. The reaction was
quenched by adding 100 μl of stop solution to individual
wells. Optical Density for each well was determined at

450 nm using a microtiter plate spectrophotometer with
the correction wavelength set at 540 or 570 nm.

Results
General overview of expression profiles and validation of 
microarray results
Complete DNA microarray data are available at NCBI
http://www.ncbi.nlm.nih.gov/geo/, GSE12930. Approxi-
mately 70% of the 22,000 transcripts on the array were
expressed (where expressed is defined as at least 4 out of
5 samples with signal intensities above background in at
least one experimental condition). Differentially
expressed genes were identified using MAANOVA; values
were considered significantly different from control val-
ues when FDR adjusted p-values were less than 0.05.

Statistically significant differential gene expression was
identified for 79 genes between smoke-exposed groups
and matched controls at either 6 or 12 week time points
(Table-1; 52 up-regulated and 27 down-regulated com-
pared to sham controls). These genes belong to various
biological processes including xenobiotic metabolism,
oxidative stress, glutathione metabolism, inflammatory
pathways and others. Genes that are implicated in xenobi-
otic metabolism, such as Cyp1a1, (24-fold), cytochrome
P450, family 1, subfamily b, polypeptide 1 (Cyp1b1, 7-fold),
Nqo1, (3-fold) and aryl-hydrocarbon receptor repressor (Ahrr,
3-fold), showed the greatest increase in expression in
smoke-exposed groups (Table-1). Genes that showed
decreased expression in MTS exposed groups include
nuclear antigen SP-100 (Sp100),T-cell lymphoma invasion
and metastasis 1 (Tiam1) and solute carrier family 12, mem-
ber 1 (Slc12a1) (between 1.3–1.5-fold down-regulation
for all), associated with transcription, signal transduction
and transport functions respectively (Table-1). We also
observed time-dependent increases in the expression of
some genes including IL-6 and SOCS3, which were signif-
icantly induced only after 12 weeks of exposure to smoke.
Table-1 summarizes the genes, fold induction and related
functions. In addition, we noted that changes in gene
expression were transient and returned to basal levels
when MTS exposure was discontinued for all genes
(Table-1, columns 2 and 4).

Hierarchical cluster analysis was conducted on the average
expression for individual genes within each experimental
condition. Clustering was based on the expression pattern
of all genes on the array (22,000, Figure 1A) or using
genes that are statistically significantly differentially
expressing from select functional groups (Figure 1B). The
main branch of the tree split the samples collected imme-
diately following smoke exposure from the other groups
(Figure 1A). Lungs samples from mice exposed to smoke
and collected following a 6 week break period clustered
alongside controls. Pathway Studio (version-5, Ariadne
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Table 1: Mouse Lung: Significantly differentially expressing genes

Description *Fold change

Xenobiotic Metabolism 1 2 3 4
Cytochrome P450, family 1(Cyp1a1) 24.20 -1.02 26.93 -1.11
Cytochrome P450, family 1(Cyp1b1) 7.26 1.05 7.79 1.05
Aryl-hydrocarbon receptor repressor (Ahrr) 2.46 -1.04 3.92 1.13
NAD(P)H dehydrogenase, quinone 1 (Nqo1) 2.64 1.06 3.70 -1.00
Redox Balance
Carbonyl reductase 3 (Cbr3) 3.42 1.11 3.54 -1.03
homolog (S. cerevisiae) (Srxn1) 1.93 1.04 3.23 -1.06
Alcohol dehydrogenase 7 (class IV)(Adh7) 2.15 -1.02 3.22 1.08
Aldehyde dehydrogenase family 3, subfamily A1 (Aldh3a1) 3.08 1.09 3.08 1.07
Aldo-keto reductase family 1 2.03 1.03 2.34 1.09
Thioredoxin reductase 1 (Txnrd1) 2.06 1.03 2.32 1.05
Aldehyde oxidase 1 (Aox1) 1.24 1.08 2.23 1.16
Glutathione metabolism
Glutamate-cysteine ligase, catalytic subunit (Gclc) 2.40 1.00 4.06 1.30
Glutamate-cysteine ligase, modifier subunit (Gclm) 1.87 1.00 2.14 -1.04
Glutathione reductase 1 (Gsr) 1.31 1.06 1.34 -1.00
Glutathione S-transferase, theta 2 (Gstt2) -1.38 1.08 -1.05 1.12
Oxidative stress, Inflammatory pathways
Heme oxygenase (decycling) 1 (Hmox1) 2.32 -1.09 4.41 -1.08
Interleukin 6 (Il6) 1.06 1.38 2.48 1.12
Prostaglandin-endoperoxide synthase 2 (Ptgs2) 1.87 1.47 2.91 1.13
Suppressor of cytokine signaling 3 (Socs3) 1.41 1.16 1.70 1.05
Lectin, galactose binding, soluble 3 (Lgals3) 1.55 -1.09 1.53 -1.11
Tumor necrosis factor, alpha-induced protein 2 (Tnfaip2) 1.53 1.16 1.30 -1.05
Paraoxonase 3 (Pon3) 1.31 1.01 1.43 1.14
Molecular chaperones
Heat shock protein 1A (Hspa1a) 2.37 -1.22 2.69 -1.46
Heat shock 70 kDa protein 4 like (Hspa4l) 1.52 -1.01 1.79 -1.03
Development
keratin complex 1, acidic, gene 19 (Krt1-19) 1.60 1.05 1.68 -1.02
ADP-ribosylation factor related protein 2 (Arfrp2) -1.60 -1.02 -1.40 -1.08
Procollagen, type V, alpha 1 (Col5a1) -1.24 1.07 -1.38 -1.01
Signal transduction pathways
Mitogen-activated protein kinase kinase kinase 6 (Map3k6) 1.44 -1.12 1.79 -1.17
PH domain and leucine rich repeat protein phosphatase 1.64 -1.03 1.12 -1.04
Breast cancer anti-estrogen resistance 3 (Bcar3) 1.30 -1.10 1.56 -1.02
Inosine triphosphatase (nucleoside triphosphate pyrophosphatase) (Itpa) 1.22 1.08 1.06 1.01
Cytoplasmic tyrosine kinase, Dscr28C related (Drosophila) (Tec) -1.25 -1.03 1.04 1.08
Serine/threonine kinase 4 (Stk4) 1.47 1.01 -1.04 -1.17
Immediate early response 3 (Ier3) 1.42 1.03 1.47 -1.23
Sphingosine kinase 1 (Sphk1) 1.23 -1.24 1.51 -1.26
Platelet derived growth factor receptor, beta polypeptide (Pdgfrb) -1.42 1.02 -1.50 1.07
Transport
Chloride channel 2 (Clcn2) -1.39 1.05 -1.07 1.06
Solute carrier family 12, member 1 (Slc12a1) -1.57 1.02 -1.04 1.26
Transcription
Nuclear antigen Sp100 (Sp100) -1.55 1.11 -1.32 1.00
Chromatin accessibility complex 1 (Chrac1) 1.47 1.07 1.03 -1.11
X-box binding protein 1 (Xbp1) 1.36 -1.14 1.18 -1.10
TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated 1.29 1.07 1.30 1.04
Transcription factor E2a (Tcfe2a) -1.29 -1.02 -1.35 -1.08
Structure
LIM-domain containing, protein kinase (Limk1) 1.49 1.06 1.30 -1.14
DIX domain containing 1 (Dixdc1) -1.31 1.20 -1.41 1.16
Ankyrin 3, epithelial (Ank3), transcript variant 1 -1.14 1.09 -1.27 1.10
Oncogene, tumour suppressor
B-cell leukemia/lymphoma 3 (Bcl3) 1.73 1.00 2.13 -1.15
T-cell lymphoma invasion and metastasis 1 (Tiam1) -1.19 1.13 -1.45 1.10
Kruppel-like factor 9 (Klf9) 1.02 -1.47 1.01 -1.32
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Genomics Inc.) was used to identify specific biological
pathways associated with the differentially expressed
genes. One single network was generated using the direct
interaction algorithm for the differentially expressed
genes in the MTS exposure group. This network included
two core modules (Figure 2) relating to the xenobiotic
response pathway, and inflammation, cell survival and
proliferation pathways.

Real time RT-PCR was performed to validate the expres-
sion levels of select differentially expressed genes identi-
fied by microarray analyses on the same RNA samples
used for microarray analysis (Figure 3). Results confirmed
the up-regulation of Cyp1A1, Cyp1B1, Nqo1, thioredoxin
reductase 1 (Txnrd1), Hmox1, IL-6, SOCS3 and prostaglan-
din-endoperoxide synthase 2 (Ptgs2) in 6 and 12 weeks MTS
exposed samples. In concordance with the microarray
results, changes were mostly reversed following smoking
cessation. Gene expression changes for Cyp genes, IL-6
and SOCS3 were also confirmed by RT-PCR in lung tissues
of the same strain of female mice exposed to MTS using an
identical exposure system and experimental design (data
not shown).

BALF inflammatory profile
To assess the inflammatory response to tobacco smoke
exposure in mouse lungs, inflammatory cell counts were
performed on the BALF. Total BALF cell count (Figure 4A)
and total number of mononuclear cells (Figure 4B) each
increased by approximately 1.5 fold at 6 weeks, and
increased by 2 and 3 fold respectively following 12 weeks
of cigarette smoke exposure. There was also a subtle
increase in the total amount of protein at 12 weeks (Figure
4C). However, no changes were observed in total number
of neutrophils (data not shown).

Activation of IL-6/signal transducer and activator of 
transcription (Stat) pathway
IL-6 has been implicated in the promotion of inflamma-
tion, cell proliferation and differentiation [39]. Since our
microarray data showed induction of IL-6 mRNA in
response to cigarette smoke, we examined IL-6 protein
levels in lung tissue extracts and BALF by ELISA. In align-
ment with the microarray results (Table-1), there was no
increase in total IL-6 antigen in samples collected follow-
ing 6 weeks exposure to MTS (Figure 5). However, at 12
weeks, total IL-6 antigen levels increased 4-fold compared

Others
Growth arrest and DNA-damage-inducible 45 gamma (Gadd45g) 1.21 -1.01 1.95 -1.18
Enoyl Coenzyme A hydratase domain containing 3 (Echdc3) -1.50 1.13 -1.12 1.13
Cathepsin D (Ctsd) 1.54 -1.05 1.46 1.03
Angiomotin like 2 (Amotl2) 1.47 1.15 -1.02 -1.02
Glucose-6-phosphate dehydrogenase X-linked (G6pdx) 1.42 -1.00 1.20 -1.05
TG interacting factor (Tgif) -1.06 1.07 1.33 -1.01
Nucleolar protein 5A (Nol5a) 1.31 1.02 1.03 -1.10
Protein-O-mannosyltransferase 1 (Pomt1) -1.24 1.02 -1.03 1.05
Chitinase 3-like 3 (Chi3l3) 3.19 -1.12 2.91 1.25
Leukotriene C4 synthase (Ltc4s) 1.81 -1.06 1.19 1.10
ATPase, H+ transporting, V0 subunit D, isoform 2 (Atp6v0d2) 1.76 -1.15 1.58 -1.13
Cold inducible RNA binding protein (Cirbp) -1.48 1.14 -1.58 1.06
Unknown and RIKENS
Lung-inducible neuralized-related C3HC4 RING domain protein (Lincr) 1.45 1.08 1.22 -1.04
Selenocysteine lyase (Scly) -1.29 1.14 -1.26 1.00
RIKEN cDNA B230118H07 gene -1.07 1.08 -1.29 1.12
RIKEN cDNA 1110019L22 gene 1.13 1.02 -1.22 -1.27
Zinc finger CCCH type, antiviral 1 (Zc3hav1) -1.33 -1.06 -1.18 -1.02
RIKEN cDNA 9830165K03 -1.40 1.12 -1.18 1.02
RIKEN cDNA 2310007H09 gene -1.38 1.11 -1.07 1.11
mRNA for mKIAA1201 protein -1.31 1.09 -1.36 1.00
Oolfactory receptor 1286 (Olfr1286) -1.87 1.17 1.06 -1.04
Procollagen, type III, alpha 1 (Col3a1) -1.59 -1.05 -1.77 1.17
RIKEN cDNA 1190002H23 gene -1.25 -1.14 1.73 -1.06
4 days neonate male adipose cDNA, RIKEN 1.23 -1.54 1.15 -1.70
Roundabout homolog 2 (Drosophila) (Robo2) -1.66 1.04 -1.18 1.22
Adult male urinary bladder cDNA, RIKEN 1.11 1.12 -1.04 -1.64

RIKEN cDNA 1700012B18 gene 1.33 -1.23 2.25 -1.21
Btg3 associated nuclear protein (Banp) -1.36 -1.48 1.16 1.06
RIKEN cDNA 9130213B05 gene 1.39 1.00 1.52 -1.01
E74-like factor 3 (Elf3) 1.51 1.03 1.47 1.06

* 1. 6 weeks smoke, 2. 6 weeks smoke followed by 6 weeks break, 3. 12 weeks smoke
4. 12 weeks smoke followed by 6 weeks break

Table 1: Mouse Lung: Significantly differentially expressing genes (Continued)
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to matched controls. In contrast, IL-6 was below detection
levels in BALF (data not shown, not enough repeats).

Activation of the Janus family of tyrosine kinase (JAK)/
Stat pathway is critical for IL-6 signalling. IL-6-induced
activation of Stat3 is believed to contribute to cell prolif-
eration and anti apoptotic activities by inducing BCL-XL
and MCL-1 expression. To explore the potential repercus-
sions of increased expression of IL-6 at 12 weeks following
MTS exposure, we examined the levels of protein expres-
sion of some downstream targets of IL-6 by Western blot-
ting. While there was no significant change in the total
amount of Stat3 protein, an increase in phosphorylated
Stat3 (2-fold) was observed as early as 6 weeks. This
increase was sustained at 12 weeks. The increase in phos-
phorylated Stat3 was accompanied by a concomitant
increase in total levels of BCL-XL and MCL-1 protein at 12

weeks only. We then investigated total levels of JAK-1 and
Gp-130 proteins and their phosphorylation status in lung
tissue extracts. However, we found no change in total lev-
els of either protein (Figure 6). In addition, we did not see
any differences in levels of phosphorylation of JAK-1 or
Gp-130 among the treatment groups (data not shown).

Lastly, we analysed SOCS3 protein levels. There was no
change in total SOCS3 antigen levels following 6 weeks
exposure to MTS. However, levels of SOCS3 protein were
reduced slightly following 12 weeks exposure relative to
shams. Despite an increase in SOCS3 mRNA at 12 weeks,
total SOCS3 protein levels decreased, suggesting the
involvement of post transcriptional regulators of SOCS3.
It has been reported that the inhibitory activity of SOCS3
on IL-6 is antagonized by its phosphorylation. However,
we were unable to detect any phosphorylated SOCS3

Hierarchical cluster analysis of samples grouped into the 4 control and 4 treatment groupsFigure 1
Hierarchical cluster analysis of samples grouped into the 4 control and 4 treatment groups. A. Cluster analysis of 
all genes present on the chip. B. Heat maps represent select genes (statistically differentially expressing, Table-1) from signal 
transduction, redox balance, oxidative stress and xenobotic metabolism processes. Red bars represent high expression levels, 
blue represent low expression levels and yellow bars are similar to the normalized median gene expression values.
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(data not shown), suggesting that other inhibitory mech-
anisms could be involved.

Discussion
Tobacco smoke is a complex mixture of gases, suspended
particulate material and condensed organic compounds.
Exposure to MTS results in a very complex physiological
response involving numerous genes and signalling path-
ways. Global gene expression analysis using high density
microarrays provides the unique advantage of studying
multi-phasic responses of lungs to cigarette smoke.
Changes in gene expression are presumed to occur in the
early stages of disease development and may therefore be
useful for predicting and understanding eventual disease
outcome.

We carried out global transcriptional profiling of lung
samples from adult male mice exposed sub-chronically to
MTS and sacrificed 3 hours following the final cigarette
exposure or subsequent to 6 weeks of smoking cessation.
Our results revealed statistically significant changes in
gene expression for 79 genes. Of these, 52 genes (69%)
represented increased expression following either 6 or 12
weeks of MTS exposure (Table-1). Cluster analysis of all
genes on the array, and of differentially expressed genes
only, revealed that the primary factor influencing tran-
scription profile was exposure to MTS. Inside the two
main branches, all samples clustered tightly within their

respective groups. Exposed lung samples collected follow-
ing the cessation period clustered on the same main
branch as the control groups, and alongside (but on dif-
ferent branches from) their respective controls (Figure
1A). No genes were statistically significantly differentially
expressed in the groups of mice exposed to smoke fol-
lowed by a 6 week break, compared with time-matched
shams. Therefore, a break of 6 weeks generally led to a
return of gene expression to basal levels, providing biolog-
ical evidence to support the benefits of smoking cessation
on pulmonary health. Similar results showing reversal of
changes in gene expression following smoking cessation
have been documented in rat lungs [40].

Several genes identified in this study (Table-1) have also
been described by others. These include genes involved in
the metabolism of polycyclic aromatic hydrocarbons
present in the smoke, oxidative stress, redox regulation
and inflammation [25,41-45], suggesting commonality in
responses to tobacco smoke regardless of study design and
species. However, the magnitude and timing of expression
of select genes within these pathways differs between
studies. Our results revealed well-orchestrated multi-
phase responses in lungs to tobacco smoke. For example,
we found: (a) early and sustained (Cyp genes, 6 and 12
weeks) up-regulation of genes involved in the xenobiotic
metabolism pathway; (b) increases in the expression of
genes that are implicated in oxidative stress (Hmox-1,

Gene networks derived from direct interactions mined in PathWay Studio using the list of significantly differentially expressed genes in the treated groupsFigure 2
Gene networks derived from direct interactions mined in PathWay Studio using the list of significantly differ-
entially expressed genes in the treated groups. The arrow heads indicate positive regulation. --| indicates negative regu-
lation.
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Txrnd1) over time; and (c) up-regulation of genes impli-
cated in inflammation processes (IL-6, SOCS3) at the later
time point exclusively. Paradoxically, both cytokine IL-6
and its antagonist, SOCS3, were up-regulated simultane-
ously at 12 weeks (Table-1), which has not been reported
by previous studies.

Elevated IL-6 concentrations have been associated with
infection and inflammation in a variety of disease condi-
tions [46-48]. IL-6 plays an important role in chronic dis-
eases by inducing acute phase proteins, producing
autoantibodies, and regulating local inflammatory events
and associated systemic symptoms [49-51]. IL-6 is there-
fore targeted for therapeutic management of infectious
and inflammatory diseases [52,53]. In a classical IL-6 sig-
nalling pathway, cytokine IL-6 secreted by monocytes or
macrophages binds to its cell surface receptor IL-6Rα. A
homodimer of signal transducer Gp-130 is then recruited
to the IL-6-IL-6Rα complex and JAK-1 is activated. Once
activated, JAK-1 in turn activates transcription factor Stat3
by phosphorylation. Phosphorylated Stat3 is dimerized

and translocated to the nucleus where it induces transcrip-
tion of a series of genes that include Bcl2, BCL-XL, Junb
and MCL-1, all of which promote growth and inhibit
apoptosis [54,55]. Therefore, our findings of transcrip-
tional upregulation of IL-6 in mouse lung following 12
weeks of MTS exposure, along with concomitant increases
in IL-6 antigen, phosphorylated Stat3, MCL-1 and BCL-XL
protein levels, support the classic IL-6 signalling pathway.
In this model, IL-6 plays a protective role via promotion
of proliferation and inhibition of apoptosis. Our results
are substantiated by other similar studies in the literature.
For example, the IL-6/STAT3 pathway mediates survival of
human bronchial epithelial cells following cigarette
smoke condensate -induced DNA damage [56]. Over-
expression of the activated form of STAT3 in alveolar type
II epithelial cells leads to pulmonary inflammation and
tumorigenesis in STAT3 transgenic mice [57]. Increased
mRNA expression of STAT3 and a few of its downstream
targets have previously been observed in lung tissues of
smokers suffering from COPD [58].

Validation of microarray results. Data are presented as fold change relative to sham controls. (n = 5 mice/group, ± SEM)Figure 3
Validation of microarray results. Data are presented as fold change relative to sham controls. (n = 5 mice/
group, ± SEM). Gray bars: 6 weeks smoke. White bars: 6 weeks smoke + 6 weeks break. Bars with hatched lines: 12 weeks 
smoke. Bars with diagonal lines: 12 weeks smoke + 6 weeks break. * indicates significant results.
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In an alternate signalling pathway, called trans-signalling,
free serum IL-6 can bind to soluble IL-6Rα and the result-
ing complex can signal any cell (many of which are unre-
sponsive to IL-6 alone) that expresses Gp-130 at its
surface. IL-6 trans-signalling is responsible for most of the
harmful effects of IL-6 related to inflammation. In many
chronic inflammatory diseases, including chronic inflam-
matory bowel disease, peritonitis, rheumatoid arthritis,

asthma, as well as colon cancer, IL-6 trans-signalling pro-
motes transition from acute to chronic inflammation and
thereby aids in the maintenance of a disease state [59].

In many local acute inflammatory stages, early leukocyte
recruitment is characterized by accumulation of neu-
trophils, marking the initiation of inflammation. At later
stages of the inflammation process, these neutrophils are

Inflammatory profile in the bronchoalveolar lavage (BAL) fluid. Sham (gray bars) and MTS exposed (bars with hatched lines)Figure 4
Inflammatory profile in the bronchoalveolar lavage (BAL) fluid. Sham (gray bars) and MTS exposed (bars with 
hatched lines). BAL was performed at the indicated time points and total BAL cells (A), mononuclear cells (B) and total 
amount of protein (C) was analysed. Error bars represent SEM, n = 5/group. 1: 6 weeks smoke. 2: 6 weeks smoke + 6 weeks 
break. 3: 12 weeks smoke. 4: 12 weeks smoke + 6 weeks break.
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replaced by a more sustained population of mononuclear
cells. It has been suggested that the switch in the leukocyte
recruitment pattern determines clearance of inflamma-
tion and restoration of tissue homeostasis [60]. IL-6 regu-
lates this transition during acute inflammatory processes
and therefore plays a role in the resolution of acute
inflammation [61,62]. However, in chronic conditions,
altered IL-6 expression or function may lead to loss of this
delicate balance and subsequent disease progression.

Tobacco smoke has been shown to have a suppressive
effect on inflammatory mediators such as IL-6 in some
models. In BALF and alveolar macrophages derived from
rats exposed acutely to tobacco smoke, degradation of IL-
6 and decrease in its activity was observed [63,64]. In con-
trast, IL-6 levels in human blood were unaffected by
tobacco smoke exposure [65] suggesting that the acute
effects of MTS on IL-6 is local or that other cells in blood
may mediate the IL-6 levels.

Induction of IL-6 at 12 weeks in our model suggests that
continued exposure of these mice to MTS may induce
other pathways that initiate inflammatory processes.
Alternatively, increased expression of molecules such as
Txnrd1 and Hmox-1, both of which are up-regulated in
response to MTS in our model (Table-1, Figure 3) may
counteract inflammatory signals. In C57BL6/J mice, intra
peritoneal injection of recombinant human Txnrd1 or in
human Txnrd1 transgenic mice resulted in a reduction in
cigarette smoke-induced lung inflammation and emphy-
sema [43]. Hmox-1 is known to protect against inflamma-
tion. In a study where mice were exposed to cigarette
smoke in presence of Hmox-1 inducers, Hmox-1 induc-
tion prevented B-cell infiltrates, similar to the lymphoid
follicles found in COPD patients [66], and is thus sug-
gested to play a role in COPD development. COPD is a

disease driven by chronic inflammation. We have previ-
ously demonstrated down-regulation of plasminogen
activator inhibitor-1 (PAI-1), following 6 weeks of expo-
sure to MTS in heart tissue derived from the same mice
[26], further supporting our observations on the lack of
inflammation in mice exposed to MTS. PAI-1 is an acute
phase response gene, which also plays a role in the inflam-
mation process.

Chronic exposure to cigarette smoke leads to lung inflam-
mation and decreased lung function, and is one of the
major risk factors for developing COPD. The lack of
inflammation observed in our model could be attributed
to the non-chronic nature of the exposure protocol used
in the present study. Similar suppression of inflammation
in response to smoke has been observed previously. In a
comparative study, Meng et al. [67] exposed mice to
smoke, lipopolysaccharide (LPS), or a combination of
smoke plus LPS, using a nose-only inhalation exposure
system. Lung tissues were analyzed using Affymetrix
GeneChip microarrays. The authors found up-regulation
of a small number of genes involved in inflammation in
the smoke-exposed group compared to a more robust
response in the LPS group. In addition, the number of
neutrophils in BALF was also reduced in smoke-exposed
mice. However, pulmonary macrophages and levels of IL-
6 were elevated in response to smoke [67]. In another
study, Stevenson et al. reported time-dependent changes
in the expression of genes involved in stress response and
inflammation [68]. These results were further supported
by histological alterations and changes in cytokine
response. Despite the very prominent inflammatory
changes observed in this model, there was no increase in
IL-6 level in either BALF or lung homogenates [68]. These
results suggest that more acute and chronic exposures are
needed to address the role of IL-6 in smoke-induced lung
and systemic inflammation.

Several studies have reported that the pro- and anti-
inflammatory activities of IL-6 can be modulated by other
effectors, including members of the SOCS family. SOCS3
is an IL-6 responsive gene and is a specific inhibitor of the
IL-6/Stat3 signalling pathway [69]. Under physiological
conditions, the IL-6/JAK/Stat3 pathway induces expres-
sion of SOCS3, which then binds tyrosine 759 of mem-
brane protein Gp-130, inhibits activation of JAK-1, and
hence blocks IL-6 signalling in a classic feed-back loop
[69]. In macrophages, SOCS3 has been shown to regulate
the contradictory pro- and anti-inflammatory actions of
IL-6. Mutations in the SOCS3 binding site of Gp-130, or
complete lack of SOCS3 in macrophages, results in sup-
pression of LPS-induced TNF production by IL-6 [69].
Specific deletion of SOCS3 in macrophages and neu-
trophils results in resistance to acute inflammation
induced by LPS. These results clearly demonstrate the role

Total immunoreactive IL-6 in lung tissue extractsFigure 5
Total immunoreactive IL-6 in lung tissue extracts. 
Data represent fold change relative to sham controls (n = 5, 
± SEM). 1: 6 weeks smoke. 2: 12 weeks smoke.
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of SOCS3 in the inflammatory process and suggest that
the absence of SOCS3 may contribute to anti-inflamma-
tory activities of IL-6. However, inhibition of SOCS3 is
also implicated in tumor progression and malignancy. In
human cholangiocarcinoma, sustained IL-6/Stat3 signal-
ling, enhanced Mcl-1 expression and resistance to apopto-
sis, is attributed to epigenetic silencing of SOCS3 by
promoter hypermethylation [70]. SOCS3 is also silenced
by hypermethylation in a human lung cancer cell line
[71].

In the present study, despite the dramatic increase in
mRNA expression of SOCS3 following 12 weeks of MTS
exposure, SOCS3 protein levels decreased in total lung

extracts, suggesting post-transcriptional regulation of
SOCS3 expression. Although we could not confirm the
phosphorylation of SOCS3 in our model, SOCS3 phos-
phorylation has been shown to decrease the half life of the
protein [72]. This, in turn, may lead to sustained IL-6 sig-
nalling and malignant transformation of cells. In our
study, we observed gradual increases in MCL-1 and BCL-
XL protein levels, both of which are implicated in cancer
progression.

One of the main limitations of the present study is that
the microarray experiments were conducted using total
RNA from whole lung tissues rather than on individual
pulmonary cell types. Consequently, the observed

(A) Quantification of Western blot for select proteins in lung tissue extractsFigure 6
(A) Quantification of Western blot for select proteins in lung tissue extracts. Data are presented as fold change rel-
ative to sham controls (n = 5 mice/group, ± SEM). Gray bars: 6 weeks smoke. White bars: 6 weeks smoke + 6 weeks break. 
Bars with hatched lines: 12 weeks smoke. Bars with diagonal lines: 12 weeks smoke + 6 weeks break. (B) Gel photo of West-
ern blots for each protein quantified.

Stat3 pStat3 BCL-XL MCL1 JAK-1 GP-130 SOCS3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

A
ve

ra
ge

 f
ol

d 
ch

an
ge

 o
ve

r 
co

nt
ro

l

Stat3

pStat3

BCL-XL

MCL1

JAK-1

GP-130

SOCS3

Actin

Actin

Actin

Actin

Actin

Actin

Actin

6 
w

k 
sm

ok
e

6 
w

k 
sh

am

6 
w

k 
sm

ok
e 

pl
us

 b
re

ak

6 
w

k 
sm

ok
e 

pl
us

 b
re

ak
 s

ha
m

12
 w

k 
sm

ok
e

12
 w

k 
sh

am

12
 w

k 
sm

ok
e 

pl
us

 b
re

ak

12
 w

k 
sm

ok
e 

pl
us

 b
re

ak
 s

ha
m

A B
Page 12 of 15
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:56 http://www.biomedcentral.com/1755-8794/2/56
changes in gene expression may reflect changing cell num-
bers in the lung at the time of sampling. Analysing a single
cell type by laser capture microdissection is ideal and may
result in a more homogenous response, however, it is also
important to understand tissue level effects and how they
are related to molecular changes in target cell population
[73]. A number of studies have described gene expression
changes in various cell types exposed to tobacco smoke,
but very few have examined whole lung response. Integra-
tion of gene expression profiles with reports examining
multiple end points at the molecular, cellular, tissue and
physiological levels (i.e., systems biology approaches) are
needed to better understand the toxicity in the context of
the whole organism [73]. We have also used subchronic
levels of MTS exposure that are non-toxic. Our goal was to
capture the early changes in gene expression that may
potentially be used to predict health outcome of the expo-
sure. More studies incorporating acute, subchronic and
chronic doses with multiple time points are needed to val-
idate our findings.

In summary, our results showing IL-6 signalling, coupled
with a decrease in SOCS3 protein and no change in total
BAL neutrophils, suggest an absence of inflammation in
the mouse lungs following 12 weeks of exposure to MTS.
We propose that an increase in pro-proliferation and anti-
apoptotic molecules, and a decrease in inflammatory and
pro-apoptotic proteins such as SOCS3, have succeeded in
protecting cells against inflammation during the
subchronic exposure used in our study. However, in the
event of continued chronic smoking, this balance may be
lost, resulting in uncontrolled growth, malignany and
cancer development. Alternatively, continued smoking
and sustained IL-6 expression may activate other path-
ways that could ultimately initiate inflammation and con-
tribute to the development of inflammatory lung diseases
such as COPD. In general, data presented in this study
agree with those described for human smokers. For exam-
ple, Spira et al. compared cellular material derived from
bronchoscopies of chronic smokers, never smokers and
former smokers, and showed similar expression changes
in xenobiotic metabolism genes [25]. In airway epithe-
lium of smokers with no history of lung disease, in small
airway epithelial cells from phenotypically normal smok-
ers and in bronchepithelium of current smokers, genes
related to response to xenobiotics and antioxidant genes
(e.g., glutathione metabolism and redox balance) were
altered [74-76]. Despite the obvious discrepancies
between animal and human models, the observed simi-
larities raise hope that animal models provide insight into
molecular pathways underlying the effects of tobacco
smoke leading to lung disorders.

Conclusion
We used global gene expression profiling to provide
insight into molecular response to a toxicant exposure.
Based on our findings, we hypothesize that protection
from, or the development of, a disease in response to any
toxicant depends on a delicate balance between divergent
pathways (inflammatory and anti-inflammatory). Preva-
lence of one pathway over the other could contribute to
the health outcome of an exposure. Characterization of
gene expression profiles following tobacco smoke expo-
sure in different models is necessary to identify these
divergent pathways and will enhance our understanding
of the complexities involved in tobacco smoke-induced
molecular pathogenesis.
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