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Abstract
Background: Identification of novel cancer-causing genes is one of the main goals in cancer
research. The rapid accumulation of genome-wide protein-protein interaction (PPI) data in humans
has provided a new basis for studying the topological features of cancer genes in cellular networks.
It is important to integrate multiple genomic data sources, including PPI networks, protein domains
and Gene Ontology (GO) annotations, to facilitate the identification of cancer genes.

Methods: Topological features of the PPI network, as well as protein domain compositions,
enrichment of gene ontology categories, sequence and evolutionary conservation features were
extracted and compared between cancer genes and other genes. The predictive power of various
classifiers for identification of cancer genes was evaluated by cross validation. Experimental
validation of a subset of the prediction results was conducted using siRNA knockdown and viability
assays in human colon cancer cell line DLD-1.

Results: Cross validation demonstrated advantageous performance of classifiers based on support
vector machines (SVMs) with the inclusion of the topological features from the PPI network,
protein domain compositions and GO annotations. We then applied the trained SVM classifier to
human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted
cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1.

Conclusion: Topological features of PPI networks, protein domain compositions and GO
annotations are good predictors of cancer genes. The SVM classifier integrates multiple features
and as such is useful for prioritizing candidate cancer genes for experimental validations.

Background
Cancer is a complex disease whose multi-step progression
involves alteration of many genes, including tumor sup-
pressor genes and oncogenes. Although multiple targeted
cancer therapeutic agents have been developed based on

several known cancer genes, it is expected that many can-
cer genes remain to be identified [1]. Identification of
novel genes likely to be involved in cancer is important for
understanding the disease mechanism and development
of cancer therapeutics. Recently, efforts in global genomic
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re-sequencing have been made to identify novel cancer
genes by detecting somatic mutations in tumor tissues [2-
4]. However, it is challenging to distinguish true cancer-
associated mutations from a large amount of "passenger"
variants detected in these studies that are likely to be irrel-
evant to cancer progression.

Most gene products interact in complex cellular networks.
It was proposed that direct and indirect interactions often
occur between protein pairs whose mutations are attribut-
able to similar disease phenotypes. This concept was uti-
lized to predict phenotypic effects of gene mutations
using protein complexes [5] and identify previously
unknown complexes likely to be associated with disease
[6,7]. Similar notion may be applied to cancer where
identifying protein interaction network of known cancer
genes may provide an efficient way to discover novel can-
cer genes. The rapid accumulation of genome-wide
human PPI data has provided a new basis for studying the
topological features of cancer genes. It was shown that the
network properties in human protein-protein interaction
(PPI) data, such as network connectivity, differ between
cancer causing genes [1] and other genes in the genome
[8]. An interactome-transcriptome analysis also reported
increased interaction connectivity of differentially
expressed genes in lung squamous cancer tissues [9].
These studies indicated a central role of cancer proteins
within the interactome. Recent studies also applied net-
work approaches to studying cancer signaling [10] and
identifying biomarkers of cancer progression in specific
cancer types [11,12]. However, the utility of PPI network
for identification of novel genes whose genetic alterations
are likely to be causally implicated in oncogenesis
remains to be demonstrated. In addition, efforts have
been made to use functional and sequence characteristics,
such as GO annotation and sequence conservation, to
predict cancer genes and cancer mutations [13,14]. How-
ever, a systematic analysis of all these features side-by-side
is needed to evaluate their merits, both individually and
in combination, in cancer gene prediction.

In this study, we took a machine learning approach to
investigate various network and functional properties of
known cancer genes to predict the likelihood of a gene to
be involved in cancer. Although Cancer Gene Census pro-
vides a catalogue of currently known cancer causing muta-
tions, many other cancer genes may be yet to be
discovered from the rest of the genome. To reduce the
false positives in classifying genes not involved in cancer,
we extended the comparison of various features in four
non-overlapping gene groups, i.e. "cancer genes" from the
Cancer Gene Census (bona fide cancer genes whose muta-
tions are causally implicated in cancers) [1], "COSMIC
genes" profiled for somatic mutations in cancer and
deposited into the Catalogue Of Somatic Mutations In

Cancer (COSMIC) database [15] (excluding those in the
cancer gene set), "OMIM genes" from the Online Mende-
lian Inheritance in Man (OMIM) database [16] (excluding
those in the cancer or COSMIC gene set), and other genes
in the genome (noted as "non-cancer genes"). Somatic
mutations were observed for a subset of "COSMIC genes"
in cancers and they are potentially related to oncogenesis
while "OMIM genes" contain known genes involved in
diseases other than known cancer genes. We trained vari-
ous classifiers using "cancer genes" and "non-cancer
genes", and evaluated the contribution of various features
and different classification methods using cross valida-
tion. We then applied the trained classifier with the best
cross validation performance to human genes to prioritize
human genes likely to be involved in cancer. To evaluate
the roles of predicted cancer genes in cancer cell growth
and proliferation, siRNA knock-down experiments and
cell viability assays were conducted in human colorectal
cancer cell line.

Methods
Datasets
PPI network was constructed as the union of all relation-
ships obtained from representative published datasets
[8,17,18]. Sequence features were obtained from NCBI
Entrez database [19]. The number of alternative tran-
scripts for each Entrez gene was obtained from the RefSeq
database. Non-synonymous mutation rate Ka and synon-
ymous mutation rate Ks of human-mouse and human-rat
orthologs were retrieved from NCBI HomoloGene data-
base ftp://ftp.ncbi.nih.gov/pub/HomoloGene/.

We constructed four non-overlapping gene groups, i.e.
"cancer genes" from the Cancer Gene Census [1], "COS-
MIC genes" from the Catalogue Of Somatic Mutations In
Cancer (COSMIC) database [15] excluding genes in the
cancer gene group, "OMIM genes" from the Online Men-
delian Inheritance in Man (OMIM) database [16] exclud-
ing genes in the cancer gene group or COSMIC gene
group, and rest of the genes (noted as "non-cancer
genes").

From human genome, 9218 Entrez genes were mapped to
all of the following datasets; PPI network, Refseq data-
base, HomoloGene human-mouse and human-rat
orthologs, GO annotations, and Pfam database. Among
these, 278 belong to cancer, 2191 belong to COSMIC,
1088 belong to OMIM, and 5661 belong to non-cancer
gene set, respectively.

Enrichment of Pfam and GO
The Pfam or GO log-odds scores [14] were developed to
represent the relative frequency of a Pfam protein domain
[20] or a GO term annotated in cancer and non-cancer
gene sets, respectively. For Pfam domain log-odds scores,
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boundary conditions were adopted to correct cases with
no presence of a particular domain in the cancer or other
gene groups (1.1). Only domains in the Pfam-A category
were included to compute the Pfam log-odds score. The
GO log-odds score were computed for each GO slim term.
GO slim is simplified version of the GO ontology contain-
ing a subset of the terms in the whole GO. GO slim was
used because it gives a broad overview of GO ontology
content with reduced details. We used "Generic GO slim"
annotations downloaded from the Gene Ontology web-
site http://www.geneontology.org/GO.slims.shtml. For
genes with multiple Pfam domains or GO terms, the log-
odds scores were summed to obtain a log-odds score for
each gene. For feature selection of GO terms and Pfam
domains for the classifiers, chi-square tests were con-
ducted using R http://www.r-project.org/ on the full set of
GO terms and Pfam-A domains, which were then ranked
by the p-values from chi-square tests. To remove redun-
dancy in feature selection of GO terms, GO terms with less
significant p-values than their parent terms were removed
such that GO terms at higher hierarchy of the onotology
and with more significant p-values were prioritized to be
included as features.

Training and evaluation of classifiers
SVM classifier was built using LIBSVM tools, a library for
Support Vector Machines http://www.csie.ntu.edu.tw/
~cjlin/libsvm. SVMs were trained on cancer genes and
non-cancer genes to estimate the probability of a gene to
be involved in cancer. We chose radial basis function
(RBF) as the kernel of SVM. We conducted cross-valida-
tion to select the parameter gamma for the radial basis
function kernel and the parameter c for the cost of training
error. Cost weights wi were set based on the ratio between
the number of negative examples and the number of pos-
itive examples in the training data. Naïve Bayes and logis-
tic regression classifiers were built using default
parameters from Weka tools http://
www.cs.waikato.ac.nz/ml/weka/.

The features used to train the classifiers include degree,
clustering coefficient and average length of shortest path
to a cancer gene from the PPI network, gene and protein
lengths from sequence features, Ka and Ka/Ks from evolu-
tionary features, presence or absence of annotation of
selected GO terms and Pfam domains (p < 0.01 from chi-
square tests of over- or under-representation in cancer
genes compared with non-cancer genes). Continuous fea-
tures whose distribution deviates significantly from the

normal distribution were log transformed, including PPI
degree, protein length, gene length, Ka and Ka/Ks.

Classifiers were trained and evaluated using cancer genes
as positive examples and non-cancer genes as negative
examples. 10-fold cross validation experiments were con-
ducted to evaluate the performance of the classifiers. The
dataset was randomly divided into ten subsets, each of
which has one tenth of the number of examples in the
original set and preserves the relative proportion between
positive and negative examples. A classifier was trained
and tested ten times where each time a different subset
was used for testing and the remaining nine subsets were
used for training. For SVM classifiers, we conducted 5-fold
cross-validation using the training data for each round to
select parameter pair c and gamma, and then a classifier
trained using the selected parameter pair was evaluated
using the test data (parameter pair was selected from c = 1,
4, 16, 64 and gamma = 0.001, 0.01, 0.1, 1). The area under
the ROC curve (AUC) was used to measure the perform-
ance of different classifiers. ROC curves and AUC values
were obtained using the LIBSVM and Weka tools. A classi-
fier with better performance than a random predictor has
an AUC between 0.5 and 1.

siRNA experiments
DLD-1 (ATCC CCL-221) cells were obtained from the
American Type Culture Collection and maintained in
High Glucose Dulbecco Modified Essential Media supple-
mented with 10% Fetal bovine sera and 2 mM L-
Glutamine. Gene targeting siRNA duplexes (Dharmacon
siGENOME), siGENONE Non-Targeting siRNA #2 (Dhar-
macon D-001210-02) and siGENOME Non-Targeting
siRNA Pool #1 siRNAs were transfected into cells using
Lipofectamine 2000 (InVitrogen #11668). siRNA
duplexes were transfected at concentrations of 25-30 nM
(duplexes) or 100-120 nM (pools), respectively. Lipid-
siRNA complexes were formed in OptiMEM Media (Gibco
#31985) to which cells were added in antibiotic-free
media. Four days following transfection, cell viability was
measured with the addition of CellTiter-Glo (Promega
#G7570) and luminescence was measured according to
manufacturer's instructions using a Perkin Elmer EnVi-
sion luminometer.

Cell viability data analysis
A viability score is defined as the ratio of CellTiter-Glo rea-
dout between transfection of a testing siRNA and that of
negative controls (non-targeting siRNAs). A viability score
less than 1 indicates decreased cell viability with siRNA
targeting a given gene. Viability scores for two replicated
transfections using the same siRNA were averaged and sta-
tistical significance of reduced viability was evaluated by t
tests for each siRNA oligo. As there are four siRNAs target-
ing a given gene, we require at least two of the siRNAs

log
_

_ _
_

_

count cancer
n cancer n noncancer

count noncancer
n n

+

+( )
1

1
ooncancer

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(1.1)
Page 3 of 14
(page number not for citation purposes)

http://www.geneontology.org/GO.slims.shtml
http://www.r-project.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


BMC Medical Genomics 2009, 2:61 http://www.biomedcentral.com/1755-8794/2/61
have p-value less than 0.05 and the decrease in cell viabil-
ity is at least 15% to claim that the gene is essential for cell
viability.

Results
Protein-protein interaction network and gene sets
A comprehensive human PPI network was built via inte-
grating multiple publicly available data sources, including
a collection of validated direct interactions [17], computa-
tionally predicted interactions based on homology map-
ping [8], and experimentally proposed interactions from
large-scale human mass-spectrometry experiments [18].
Validated interactions were derived from the Biomolecu-
lar Interaction Network Database (BIND) [21], the
Human Protein Reference Database (HPRD) [22], Reac-
tome [23], and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [24]. All proteins were mapped to Ent-
rez [19] genes and the combined human PPI network con-
sists of 13,802 genes (genes and their protein products are
used interchangeably below) and 140,600 interactions.
331 out of 368 (89.9%) genes from Cancer Gene Census,
2769 out of 3,001 (92.3%) genes from COSMIC (exclud-
ing genes also in Cancer Gene Census), 1786 out of 1976
(90.4%) genes from OMIM (excluding genes also in Can-
cer Gene Census or COSMIC) and 8916 out of 18,744
(47.6%) remaining genes in the human genome were
included in the PPI network.

To investigate various PPI network, functional and
sequence features of cancer genes and other genes, we
selected 9218 well-annotated genes that were included in
the PPI network and were assigned with GO terms [25]
and Pfam domains [20]. They also have mouse or rat
orthologs defined by HomoloGene [26]. We classified
these genes into four mutually exclusive sets, including
278 "cancer genes" from Cancer Gene Census, 2191
"COSMIC genes" from the COSMIC database (excluding
those also in Cancer Gene Census), 1088 "OMIM genes"
from the OMIM database (excluding those also in Cancer
Gene Census or COSMIC), and the rest 5661 "non-cancer
genes".

Topological features in PPI network
Three topological features of the PPI network were com-
puted for each gene: the network connectivity, the cluster-
ing coefficient [27], and the average shortest path length
towards a cancer gene. Comparisons of these network top-
ological features among cancer, COSMIC, OMIM, and
non-cancer genes show that COSMIC genes are similar to
cancer genes. Pair-wise comparisons of cancer genes vs.
non-cancer genes and cancer genes vs. OMIM genes show
significant difference in all three topological features (Fig-
ure 1; see additional file 1: Supplementary Table S1). The
network degree measures the number of interaction part-
ners for a given gene. The network degree distributions are

significantly different among the four gene groups (one-
way ANOVA F-test p-value 1e-11, Kruskal-Wallis rank sum
test p-value 0.0001). Cancer genes show the highest
degree of interaction (median = 23), followed by COS-
MIC genes (median = 18), OMIM genes (median = 14)
and non-cancer genes (median = 8) (Figure 1A). The clus-
tering coefficient measures the network neighborhood
interconnectivity for a given gene, and serves as an indica-
tor of the network density in a gene's neighborhood com-
munity [27]. Cancer and COSMIC genes show higher
clustering coefficient than OMIM and non-cancer genes
(Figure 1B). This indicates that cancer proteins appear in
a more densely connected network community than
OMIM and non-cancer genes. The average shortest path
length towards all cancer genes was selected to represent
how close a gene is to cancer genes in the PPI network. As
cancer progression is considered to be the result of dereg-
ulation of inter-related pathways, a gene will be more
likely to be involved in cancer progression if it is close to
known cancer genes in the PPI network. In fact, four gene
groups exhibit distinctive distribution of the average
shortest path length with cancer gene being the shortest,
followed by COSMIC genes, OMIM genes and non-cancer
genes (Figure 1C). The shorter average path length for
COSMIC genes towards known cancer genes compared
with OMIM and non-cancer genes may indicate that COS-
MIC genes are more likely to be involved in cancer related
cellular pathways. The results demonstrated that all these
network properties can contribute to identifying cancer
genes and it is feasible to construct a classifier to combine
these features to identify cancer genes. The similarity
between COSMIC genes with cancer genes indicates that
many COSMIC genes are likely to be putative cancer genes
and should be distinguished from the non-cancer gene
set. In addition, PPI network properties may be able to
help distinguish these putative cancer genes from non-
cancer genes. It is worth noting that although both "cancer
genes" and "OMIM genes" are considered well studied,
"cancer genes" have distinct PPI network features from
other disease genes.

Enrichment of protein domains and GO categories
We investigated the difference in the enrichment of vari-
ous protein domains from the Pfam Database [20] and
GO annotations [25] between cancer genes and non-can-
cer genes. Chi-square tests were conducted for each Pfam
domain and GO term regarding the number of cancer
genes assigned with the annotation compared to non-can-
cer genes. Significantly over-represented 'molecular func-
tion' terms in cancer genes include protein tyrosine kinase
activity, DNA binding, and transcription regulator activ-
ity. 'biological process' terms significantly over-repre-
sented in cancer genes include negative regulation of cell
cycle, response to DNA damage stimulus, and protein
amino acid phosphorylation (Table 1). Most under-repre-
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Probability density distributions of PPI network topological featuresFigure 1
Probability density distributions of PPI network topological features. A) log(degree) B) clustering coefficient C) 
log(average path length towards cancer genes).
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sented GO terms in cancer genes are ion transport and
transporter activity. In agreement with GO term analysis,
Pfam domain analysis shows that protein tyrosine kinase
domain is most significantly enriched in cancer genes, fol-
lowed by kinase domain, ets domain, paired box domain,
DEAD box helicase and DNA mismatch repair domain
(Table 2).

We then compared the patterns of Pfam and GO annota-
tions among cancer, COSMIC, OMIM and non-cancer
gene groups. We calculated the log-odds ratio for each
Pfam domain and GO slim term measuring the differen-
tial frequency of being assigned to cancer genes vs. non-
cancer genes. GO slim was used because it gives a broad
overview of GO ontology content with reduced details. A

Table 1: Top 5 significantly over-represented GO terms of 'molecular function' and 'biological process' in cancer genes vs. non-cancer 
genes

GO_ID # cancer genes # non-cancer genes chi-square p-value Name Name space

45786 35 243 260.6 1.30E-58 negative regulation of cell cycle biological_process

6974 34 244 259.4 2.30E-58 response to DNA damage stimulus biological_process

50794 181 97 238.8 7.20E-54 regulation of cellular process biological_process

9719 35 243 235.2 4.29E-53 response to endogenous stimulus biological_process

6468 42 236 232.8 1.49E-52 protein amino acid phosphorylation biological_process

4713 25 253 280.7 5.37E-63 protein-tyrosine kinase activity molecular_function

3677 122 156 195.7 1.82E-44 DNA binding molecular_function

4672 38 240 193.8 4.78E-44 protein kinase activity molecular_function

30528 95 183 173.0 1.60E-39 Transcription regulator activity molecular_function

16733 39 239 154.8 1.54E-35 phosphotransferase activity, alcohol group 
as acceptor

molecular_function

Table 2: Top 10 significantly over-represented Pfam domains in cancer genes vs. non-cancer genes

ID # cancer genes # non-cancer genes Chi-square p-value Name Description

PF07714 25 21 245.2 2.88E-55 Pkinase_Tyr Protein tyrosine kinase

PF00069 31 54 188.2 8.03E-43 Pkinase Protein kinase domain

PF00178 7 0 122.1 2.17E-28 Ets Ets-domain

PF00292 4 0 61.5 4.36E-15 PAX 'Paired box' domain

PF00270 7 10 43.0 5.42E-11 DEAD DEAD/DEAH box helicase

PF01119 3 0 41.6 1.11E-10 DNA_mis_repair DNA mismatch repair protein, C-terminal 
domain

PF02518 5 4 41.5 1.18E-10 HATPase_c Histidine kinase-, DNA gyrase B-, and 
HSP90-like ATPase

PF00017 9 20 39.6 3.08E-10 SH2 SH2 domain

PF00855 5 5 36.5 1.53E-09 PWWP PWWP domain

PF00046 17 90 28.2 1.11E-07 Homeobox Homeobox domain
Page 6 of 14
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gene-based log-odds score was subsequently derived as
the sum of log-odds ratios for each Pfam domain and GO
term assigned to a given gene [14]. Overall, the probabil-
ity density distributions of log-odds scores calculated
using Pfam domain annotation is similar to that calcu-
lated using GO slim term annotation for each given gene
set. The probability density distributions of log-odds
scores are remarkably different between cancer genes and
non-cancer genes for both GO and Pfam annotations (Fig-
ure 2). Notably, COSMIC genes show a bi-mode distribu-
tion where the first mode residing in similar position with
the non-cancer genes while the second mode residing in
similar position with the cancer genes. The bi-mode distri-
bution suggests that a subset of COSMIC genes show sim-
ilar domain composition and GO annotations as the
cancer gene, while the rest show similarity to the non-can-
cer genes. Overall, COSMIC genes have larger log-odds
score than non-cancer genes and OMIM genes, and OMIM
genes are similar to non-cancer genes.

Sequence features
We studied four sequence related features including pro-
tein length, gene length, the number of exons and the
number of alternative transcripts (Table 3). Cancer genes
have greater protein length than each of the other gene
groups (t test p-value < 0.001). The median protein length
for cancer genes is 591 aa, compared with the median pro-
tein length of 487 aa in COSMIC genes, 498 aa in OMIM
disease genes and 433 aa in non-cancer genes. With
respect to total gene length (including the length of

introns and un-translated regions), the median gene
length is 51 kb for cancer genes, 31 kb for COSMIC genes,
27.5 kb for OMIM genes and 21.7 kb for non-cancer
genes; the median gene length of cancer genes are over
two times longer than that of non-cancer genes (t test p-
value < 0.01). OMIM genes are also longer than non-can-
cer genes (t test p-value < 0.01); it was previous shown
that disease genes on average are longer than house-keep-
ing genes and other genes in the genome [28]. Interest-
ingly, genes involved in cancer, a complex disease, are on
average longer than other disease genes that do not over-
lap with cancer or COSMIC genes. Assuming a constant
mutation rate per nucleotide, longer genes are more sus-
ceptible to mutation that may lead to either disruption or
activation of gene function.

With regards to other sequence features we examined, the
probability density distributions did not show clear sepa-
ration between cancer and non-cancer genes regarding the
average number of alternative transcripts (data not
shown); no significant difference was observed in the
number of exons among the four gene groups (ANOVA F
test p-value 0.096).

Evolutionary conservation
The non-synonymous mutation rate (Ka) and the ratio of
non-synonymous mutation rate (Ka) over synonymous
rate (Ks) [29] between human-mouse and human-rat
orthologs were compared among cancer, COSMIC,
OMIM and non-cancer genes (Figure 3; see additional file

Probability density distributions of log-odds scores of Pfam and GO enrichment in cancer genesFigure 2
Probability density distributions of log-odds scores of Pfam and GO enrichment in cancer genes. A) Pfam B) GO.
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1: Supplementary Table S2). Ka measures how fast a given
protein evolves, while the ratio between Ka and Ks is an
important metric for selection pressure; smaller Ka/Ks
value indicates that the gene is more conserved and may
play an essential cellular function. Notably, cancer genes
show significantly smaller Ka and Ka/Ks compared to
non-cancer genes and OMIM genes (p-value < 0.001),
indicating cancer genes evolve relatively slowly and are
more conserved between human and rodent species.
COSMIC genes have more similar Ka and Ka/Ks values to
cancer genes rather than non-cancers.

Construction of classifiers
As distinctive patterns were observed between cancer and
non-cancer genes from the analyses of PPI networks,

annotations of GO and Pfam, sequence and conservation
features, we sought to design a classifier to combine the
predictive power of each type of feature for identification
of cancer genes. Specifically, we considered PPI network
features including degree, clustering coefficient and the
length of the shortest path to a cancer gene, sequence fea-
tures including gene and protein lengths, and conserva-
tion features including Ka and Ka/Ks ratio. For GO and
Pfam features, we selected 79 GO terms and 61 Pfam
domains significantly differentially represented in caner
genes compared to non-cancer genes by chi-square test (p
< 0.01). For a given gene, presence and absence of assign-
ment of each GO term or Pfam domain was encoded as '1'
or '0' respectively.

Table 3: Summary statistics of sequence features.

Features cancer genes non-cancer genes COSMIC genes OMIM genes P-valuec

Protein sequence length (aa) 761 ± 25a

(591)b
557 ± 22

(433)
634 ± 26

(487)
713 ± 30

(498)
1e-11

Genomic sequence length (bp) 84163 ± 330
(51082)

54319 ± 317
(21676)

66471 ± 322
(30953)

63604 ± 330
(27515)

4.42e-11

Number of exons 10.24 ± 2.66 10.01 ± 2.98 10.49 ± 3.24 10.39 ± 2.97 0.096

Number of alternative splicing events 1.82 ± 1.23 1.36 ± 0.97 1.50 ± 0.99 1.54 ± 1.07 1e-11

a mean and standard deviation
b median
c from ANOVA F-test

Probability density distributions of Ka and Ka/Ks (log-transformed)Figure 3
Probability density distributions of Ka and Ka/Ks (log-transformed). A) Ka B) Ka/Ks.
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Several machine-learning algorithms were investigated in
building a classifier to predict novel cancer genes, includ-
ing naïve Bayes, logistic regression and support vector
machines (SVM), all of which have been widely used for
pattern classification and regression problems. Naïve
Bayes is a simple probabilistic classifier based on Bayes
rules and has a strong assumption that the features are
independent to each other. Logistic regression is a model
used for prediction of the probability of occurrence of an
event by fitting data to a logistic curve. SVMs map input
examples to a higher dimensional feature space using a
kernel function, and identify a separating hyperplane that
maximizes the margin or distance from the hyperplane to
the nearest positive and negative examples [30]. Classifi-
ers based on SVM, naïve Bayes and logistic regression
methods were trained with the "cancer gene" group as
positive examples and the "non-cancer gene" group as
negative examples. We built the classifier using different
types of features both individually and in combination
and evaluated the predictive power of each classifier by
10-fold cross validation experiments (Table 4). The per-
formance is measured by Receiver Operating Characteris-
tic (ROC) curves [31], which plot the true positive rates
against false positive rate at various thresholds (Figure 4).
The area under ROC curve (AUC) provides the metric of
overall performance of the classifier. Among SVMs using

different types of features individually, GO annotation
gives the best performance with AUC of 0.830, followed
by PPI (AUC 0.767) and Pfam (AUC 0.706) features.
Combining PPI features with GO and Pfam features gives
an AUC of 0.886 and increases the performance by 6.7%
- 25.5% compared to their individual performances. In
contrast, sequence and conservation features have rela-
tively weak predictive power (AUC less than 0.6). Differ-
ent classification methods have similar performance
when the number of features is small, i.e. when using each
type of features alone. The classifier of SVMs combining
PPI, GO, Pfam, sequence and conservation features gives
the best performance (AUC 0.896) of all method-feature
selections being evaluated. Adding PPI features in build-
ing the SVM classifier resulted 4.2% increase in AUC com-
pared to the SVM using all the other features. The ROC
curve shows that the specificity (1 - false positive rate) is
80% when the sensitivity (true positive rate) is 82% (Fig-
ure 4).

Application of the SVM classifier
We applied the SVM classifier that was trained using can-
cer and non-cancer gene groups to COSMIC and OMIM
gene groups, which were held out from the training set, to
estimate their probabilities of being involved in cancer
(Figure 5). Among the COSMIC gene set, somatic muta-

Table 4: Area under ROC (AUC) for feature selections and classifiers

Feature selection SVM Naïve Bayes Logistic regression

PPI 0.767 0.758 0.773

GO 0.830 0.824 0.806

Pfam 0.706 0.697 0.703

Sequence (gene + protein length) 0.592 0.619 0.618

Conservation (Ka + Ka/Ks) 0.580 0.571 0.591

GO + Pfam 0.848 0.826 0.826

GO + Pfam + Sequence 0.858 0.829 0.831

GO + Pfam + Conservation 0.850 0.826 0.828

GO + Pfam + Sequence + Conservation 0.860 0.829 0.837

PPI + GO + Pfam 0.884 0.843 0.858

PPI + GO + Pfam + Sequence 0.892 0.846 0.859

PPI + GO + Pfam + Conservation 0.886 0.843 0.859

PPI + GO + Pfam + Sequence + Conservation 0.896 0.846 0.861
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tions were found from at least one sample in 805 genes
(noted as "COSMIC_mut") whereas no mutations were
found in 1386 genes (noted as "COSMIC_other") based
on the COSMIC database. Overall COSMIC_mut genes
have higher probability scores than COSMIC_other genes
(t test p-value 4.3e-18) and OMIM genes (t test p-value 2e-
41); COSMIC_other genes have higher probability scores
than OMIM genes (t test p-value 6.5e-13). Specifically,
102 out of 805 COSMIC_mut genes, 72 out of 1386
COSMIC_other genes, and 25 out of 1088 OMIM genes

have a probability score no less than 0.5 (see additional
file 1: Supplementary Table S3).

siRNA experiments
RNAi-based phenotypic screening has demonstrated its
utility in identifying cancer genes and putative drug tar-
gets [32-34]. As genes that are essential for cancer cell pro-
liferation and survival represent attractive drug target
candidates, we examined a subset of predicted cancer
genes using small interference RNA (siRNA) knockdown
and cell viability assays. Although our predictions do not
distinguish between oncogenes and tumor suppressor
genes, we are interested in identifying novel oncogenes in
this experiment for potential new therapeutics. As COS-
MIC, OMIM and non-cancer gene sets may contain novel
oncogenes that have not been characterized as cancer
genes in the Cancer Gene Census, we focused on COS-
MIC, OMIM and non-cancer genes and examined whether
their siRNA knockdown would lead to decreased viability
of the cell. The phenotype of decreased viability when a
gene is knocked down indicates that the gene is essential
for cancer cell proliferation and may potentially become a
novel drug target. A total of 332 from these three gene sets
overlap with the duplex siRNA library for druggable genes
(Dharmacon Inc.) and were included in a large siRNA
screen conducted at our institution for druggable genes
that affect the viability of human colon cancer cell line
DLD-1 (unpublished). Among these, 16 genes are likely
to be cancer genes having probability scores greater than
0.5 from the classifier (noted as predicted cancer genes)
and the rest 316 genes are less likely to be involved in can-
cer (noted as predicted non-cancer genes). A viability
score is defined as the ratio of cell viability after the trans-
fection of the testing siRNA over the negative control siR-
NAs (non-targeting siRNAs). A viability score significantly
less than 1 indicates that siRNA knockdown of the target
gene significantly decreased cell viability. We conducted
one-sample t tests of the viability scores from two repli-
cated experiments for each of the four different siRNA oli-
gos targeting the same gene. To identify genes whose
siRNA knockdown leads to decreased viability in a cell
line, we require that at least two of the four siRNAs target-
ing this gene produced significantly reduced viability (p <
0.05) and the decrease in cell viability is at least 15%. As
a result, 6 out of the 16 (37.5%) predicted cancer genes vs.
40 out of the 316 (12.7%) predicted non-cancer genes
were selected. Fisher's exact test showed a significant
enrichment of genes essential for cell viability in predicted
cancer genes vs. non-cancer genes (odds ratio 4.11 and p-
value 0.014).

Figure 6 shows the viability scores of the six candidate
cancer genes whose siRNA knockdown resulted in
decreased cell viability in DLD-1, including ASH2L, BMX,
BMPR1B, BTK, CSNK2A2 and MDC1. Among the 24 siR-

ROC curve of SVM classifierFigure 4
ROC curve of SVM classifier.

Probability scores predicted by SVM classifier for COSMIC and OMIM genesFigure 5
Probability scores predicted by SVM classifier for 
COSMIC and OMIM genes.
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NAs from these six genes, 13 caused significant reduction
of cell viability in DLD-1 (p < 0.05, noted by '*' in Figure
6). BMX, BMPR1B, BTK, and MDC1 belong to the
COSMIC_mut gene set, and CSNK2A2 belongs to the
COSMIC_other gene set, while ASH2L belongs to the
non-cancer gene set. BMX, a non-receptor tyrosine kinase,
is involved in cell adhesion, migration, and survival in
tumor necrosis factor (TNF)-induced angiogenesis [35]. It
was shown to interact with Pim-1 kinase and be required
for ligand-independent activation of androgen receptor in
prostate cancer [36]. BTK, Bruton tyrosine kinase, is asso-
ciated with agammaglobulinemia, an X-linked immuno-
deficiency that involves a failure in normal development
of B lymphocytes, via missense mutations [37]. MDC1,
mediator of DNA damage checkpoint 1, mediates trans-
duction of the DNA damage signal and controls damage-
induced cell-cycle arrest checkpoints [38]. CSNK2A2,
alpha subunit of casein kinase 2 (CK2), is a ubiquitous
and pleiotropic Ser/Thr protein kinase involved in cell
growth and transformation. Deregulated expression of
this kinase was observed in tumors of the prostate, kidney,
colon and squamous cell carcinoma of the head and neck.
Recent evidence points to CK2 as an important regulator
of apoptosis pathways, suggesting that CK2 might be an
important target for cancer therapy [39]. ASH2L (absent,
small, or homeotic discs 2-like) is the human homolog of
a Drosophila gene that was found to be involved in the
segmentation of the embryo [40]. Interestingly, human

ASH2L was found to interact with oncoprotein MLL and
MYC [41,42]. Although ASH2L was originally included in
the "non-cancer" gene set, a positive prediction from our
cancer gene classifier and observed phenotypes from
siRNA experiments indicate that ASH2L might be a novel
cancer gene. In fact, a very recent study showed that
ASH2L has transforming activity in rat embryo fibroblast
and cooperates with activated Ha-RAS, suggesting ASH2L
is a novel oncogene [43]. This analysis suggests that our
classifier can potentially prioritize "hits" generated from
large-scale functional genomic assays and propose novel
candidates for further investigations. We anticipate appli-
cation of our cancer gene predictions to future whole
genome RNAi screens in a larger collection of cancer cell
lines can potentially reveal novel therapeutic targets.

Discussion
Our study represents a first attempt to examine the predic-
tive power of PPI network properties, in combination
with an extensive set of structural and functional features,
for identification of cancer genes. Compared to OMIM
disease genes and non-cancer genes, cancer genes have
more interaction partners, higher network density in their
neighborhood, and are more closely related to other can-
cer genes in the PPI network. These observations agree
with the notions that cancer genes play a central role in
the cellular network and exert functions in an inter-
dependant modular fashion. One common concern

Cell viability scores of candidate cancer genes in DLD-1Figure 6
Cell viability scores of candidate cancer genes in DLD-1. Four siRNA oligos targeting the same gene are labeled as 'A', 
'B', 'C' and 'D' for each gene. Each bar shows the mean and standard deviation of the viability scores of two replicated experi-
ments for each siRNA. siRNAs showing significantly decreased viability (p < 0.05) are labeled with '*'.
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regarding analysis of PPI network is that the observed
higher connectivity of certain group of genes could be a
result of a bias in the PPI network, as it could be argued
that these genes received more detailed investigations by
the research community. To address this concern, it was
previously argued that higher number of known interac-
tion partners for cancer genes is likely to be a consequence
of higher frequency of promiscuous domains (which
interact with a variety of different domains) in caner genes
rather than obvious bias in the PPI network [8]. Based on
a probability density function from the Pfam domain
population [8], many of the top Pfam domains enriched
in cancer genes vs. non-cancers in our study showed sig-
nificantly higher-than-expected interaction promiscuity
in term of the number of different domains they interact
with, such as protein kinase domain, Ets domain and
Homeobox domain (Table 2). In addition, there is signif-
icant difference in connectivity and clustering coefficient
between cancer and OMIM genes (Figure 1; see additional
file 1: Supplementary Table S1) even though cancer genes
and OMIM genes both represent heavily studied gene sets.
~90% of both cancer genes from Cancer Gene Census and
disease genes from OMIM database were included in the
PPI network. Furthermore, the analyses were conducted
using the subset of well-annotated genes from human
genome that were assigned with GO terms and Pfam
domains. As a result, the less well-studied genes were fil-
tered out from the non-cancer gene group.

Our study showed that cancer genes have distinctive func-
tional, sequence and evolutionary characteristics from
COSMIC, OMIM and non-cancer genes. COSMIC genes
and OMIM genes in turn have distinctive features between
each other and from non-cancer genes. It should be noted
that the OMIM gene set in our study is specific to the con-
text of comparison with cancer genes as we excluded from
the OMIM gene set those common between the OMIM
database and Cancer Census Genes or COSMIC database.
COSMIC genes showed relatively more similarities with
cancer genes in many properties, and in fact many COS-
MIC genes were found to be involved in cancer although
they are not included in the Cancer Gene Census database
[15]. Therefore, it is beneficial to separate COSMIC and
OMIM gene groups from non-cancer genes in training a
classifier to predict cancer genes.

SVM classifiers on average perform slightly better than
Naïve Bayes and logistic regression. Naïve Bayes performs
the worst in our study probably due to the fact that our
feature vectors are not orthogonal to each other, which
violated the basic assumption of Naïve Bayes models. The
theoretical advantage of SVMs is that they simultaneously
minimize the empirical classification error and maximize
the geometric margin; the idea of maximizing the margin
mitigates the problem of over-fitting the training data,

which is of particular importance when dealing with large
number of features.

PPI topological features alone have relatively strong pre-
dictive power for identification of cancer genes. Similar to
PPI features, GO and Pfam annotations are strong predic-
tors compared to sequence and conservation features.
Combining all these features maximize the predictive
power (Table 4). With the accumulation of more and
more protein-protein interaction datasets, our approach
of integrating PPI topological features will potentially
become more powerful in the future.

The SVM classifier provides a probability score to priori-
tize candidate cancer genes, which can be followed up by
experimental studies, such as siRNA knock down and cell
viability assays. Preliminary siRNA studies on predicted
cancer genes showed promising leads for further investi-
gations. Interestingly, COSMIC genes with somatic muta-
tions in cancer samples have higher scores than other
genes in the COSMIC database (Figure 5). As COSMIC
genes were held out from the training set and no mutation
information was included in the training features, this
observation indicates our approach aligns with the large-
scale systematic re-sequencing efforts and can serve as a
useful complementary approach for identifying cancer
genes.

Conclusion
Topological features of PPI networks, protein domain
compositions and GO annotations are good predictors of
cancer genes. The SVM classifier integrates multiple fea-
tures and as such is useful for prioritizing candidate cancer
genes for experimental validations. Preliminary siRNA
studies on predicted cancer genes showed promising leads
for further investigations. The integrative approach using
PPI networks is a useful complement to large-scale sys-
tematic re-sequencing and other genomic discovery
projects for identifying novel cancer genes.
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