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Abstract

Background: A major challenge facing DNA copy number (CN) studies of tumors is that most banked
samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA
from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples
because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may
vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN
technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been
applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA.
Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited
to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor
samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses
CN in matched fresh frozen tumor tissue.

Results: Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology
in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available,
the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor
(genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.

Conclusion: MIP technology can be used to generate high quality CN and genotype data in FFPE as well
as fresh frozen samples.
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Background

DNA copy number (CN) studies hold great promise for
the discovery of clinical biomarkers to predict disease
course, recurrence risk, and response to therapy. A recent
meta-analysis has confirmed that the efficacy of highly
toxic anthracyclines in early breast cancer is limited to
women with HER2 (ERBB2) amplification or overexpres-
sion [1] and EGFR copy number holds promise in predict-
ing response to the expensive monoclonal cetuximab, in
contrast to the apparent failure of immunohistochemical
staining for EFGR [2]. While exciting results have been
found with genes already known to be involved in key
pathways, confirming early results and genome-wide test-
ing requires large numbers of well-characterized clinical
samples. A vast collection of stored FFPE samples already
exists; extrapolation from the Genome Austrian Tissue
Bank numbers suggests that ~500 million FFPE samples
may have been collected in North America and Europe
alone during the last quarter century [3]. Unfortunately
many genomic assays fail to produce high quality CN and
genotype data from FFPE samples [4-10], restricting the
application of these promising whole genome scanning
technologies to the limited number of fresh frozen sam-
ples.

The FFPE process was developed over a hundred years ago,
long before pathologists were concerned with the preser-
vation of DNA. Sample DNA is often damaged by expo-
sure to formaldehyde and a potentially extremely acidic
environment [11,12]. This degradation creates short DNA
fragments that are potentially unsuitable for existing high
density CN platforms. In addition, the chemical damage
and modifications that FFPE DNA may suffer from can
inhibit the enzyme-dependent chemistries necessary for a

Table I: FFPE Samples used in the study
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number of approaches [11]. This damage is reflected in
the high rate of sequencing artifacts and genotyping fail-
ures seen with FFPE extracted DNA [13,14]. Finally, often
only limited tumor DNA is available from FFPE samples
(particularly those from needle biopsies or small early
stage tumors) while some CN platforms require large
amounts of DNA. Few studies have compared CN results
in matched fresh frozen and FFPE samples and these stud-
ies have been small (with generally less than 20 fresh fro-
zen/FFPE pairs). Some have reported spurious copy
number changes in FFPE samples and generally FFPE sam-
ples fail more often than fresh frozen. When genotypes are
also measured, FFPE samples have substantially lower call
rates (suggesting a loss of performance) and genotype dis-
cordances between FFPE and fresh frozen samples raise
troubling questions about data reliability [5-10].

Molecular Inversion Probe (MIP) technology offers a
potential solution to the challenges of CN and genotype
assessment in FFPE-derived DNA samples. The small
intact target DNA sequence footprint required by MIP
probes (~40 bp) makes the MIP platform well suited to
working with degraded FFPE DNA. MIP has previously
been used to obtain high quality CN and genotype data
from cell lines and frozen tissues and requires less than
100 ng of input DNA [15]. In this study, we show the suc-
cessful application of the MIP technology in obtaining
high quality CN and genotype data from seven diverse sets
of FFPE samples (Table 1).

Methods

Samples

Informed consent was obtained from all subjects and
study protocols approved by the relevant institutional

Institution Tumor sample type Agerange of Blocks Number of FFPE Number of FFPE Other features
(years) tumors normals
MD Anderson set |  Breast cancer <3 8 9
MD Anderson set 2 Breast cancer 5-22 27 18
UCSF Liver metastases from 5-28 9 9 Matching frozen tumors
colorectal and normals available
Dana Farber Invasive breast cancer 5-6 6 13 Microdissected
CRUK Colorectal 05-5 17 16 Matching frozen tumors
available;
macrodissected
CHTN Bladder, colorectal, | -3 13 15 Matching frozen tumors
kidney, liver and normals available
Leader Kidney 3-4 13 12
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review boards. Sample information is provided in table 1.
The Dana Farber tumor samples underwent manual
microdissection to remove stromal components from
H&E stained FFPE sections. Other sites/sources of samples
were: the Cooperative Human Tissue Network (CHTN);
Cancer Research UK (CRUK); Leader, Inc. http://
www.bio-leader.com/; MD Anderson Cancer Center; and
University of California, San Francisco (UCSF). For the
UCSF samples only, CN data generated with a different
technology (BAC arrays) were available.

MIP assay and analysis

The basic MIP assay has been previously described [16-
19]. MIP probes are oligonucleotides in which the two
end sequences are complementary to two adjacent
genomic sequences; these two ends anneal to the genomic
DNA in an inverted fashion with a single base between
them (generally the site of a single nucleotide polymor-
phism; SNP). In CN analysis, genomic DNA is hybridized
to the MIP probe and the reaction split into two separate
tubes containing paired nucleotide mixes (triphosphates
of either Adenine + Thymine or Cytosine + Guanine) [15].
With the addition of polymerase and ligase, the MIP
probe circularizes in the presence of the nucleotide com-
plementary to the allele on the genome. For the assess-
ment of FFPE samples, we used 4X the amount of ligase
and polymerase as compared to the traditional protocol.
Genomic DNA is limiting in the reaction such that the
number of circularized probes proportionally reflects the
absolute amount of template DNA. After circularization,
unused probes and genomic DNA are efficiently removed
from the reaction by exonuclease leaving only circularized
probes. These probes are then amplified, labeled,
detected, and quantified by hybridization to tag microar-
rays; tags are designed to have low cross hybridization. An
important advantage of the MIP technology is the allele
discrimination is performed enzymatically and is highly
specific, allowing highly multiplexed assays (> 50,000
markers) with very precise quantitation of signals. The
probes used in this panel are listed in Additional file 1.

The MIP assay and CN determination have been described
previously [15]. Since the amount of tumor DNA is often
limiting we have implemented a change in the assay to
use 37 ng of DNA, half the amount that was used previ-
ously (75 ng). This input amount was selected after a set
of experiments using various starting amounts of DNA (2-
fold steps) and probe concentrations. Dropping the input
amount did not yield robust results with the current assay
conditions (data not shown). The other change is that an
optimal reference was chosen for each tumor. Reference
selection was guided by signals between tumor and refer-
ence samples; specifically we summed signal for the two
alleles of each marker and measured between sample
sum_signal correlations. We found that selecting a refer-
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ence set with high correlation led to better CN data in the
tumor. Often we found that the normal samples from a
study site had the highest correlation with tumor samples
and hence just used site-specific normals. If the site-spe-
cific normals did not show the highest correlation (as was
the case about half of the time), we selected the 3-10 nor-
mals with the highest correlation as the reference set (the
number of normals picked was based on correlation; if 5
normals had high correlation with the tumor and 6% nor-
mal had much lower correlation, we used just 5 normals).

ROC curves were generated for samples with known copy
number changes; specifically we looked at copy number
in normal male fresh frozen and FFPE samples. For X-
chromosome markers we expect CN = 1, so if the CN was
below the cut-off threshold and we inferred CN = 1, we
called it a true positive; if it was above and we inferred CN
= 2, we called it a false negative. For autosomal markers
we conservatively assumed all markers should have CN =
2 with no copy number variations, so if the CN was below
the cut-off threshold and we inferred CN = 1, we called it
a false positive; if it was above and we inferred CN = 2, we
called it a true negative. The curve is generated by varying
the cut-off threshold. In order to compare the 2p-RSE to
the ROC curves, we needed to summarize the ROC curve
data to a single value and chose the false positive rate at
50% sensitivity (FPRs,). In order to study this comparison
over a broad range, samples exhibiting a relative large
range of quality (i.e. large range of 2p-RSE values) were
sought. Since the reference set used is an important deter-
minant of the quality of the CN data, we purposely used
several reference sets for each sample to obtain a wide
range of quality in the CN data.

Results

Metrics to evaluate CN performance: ROC and 2p-RSE
The algorithm for estimation of CN has been previously
described [20]. Briefly, a set of normal samples (assumed
copy number 2) is used as a reference to establish the rela-
tionship between signal and CN on a marker-by-marker
basis, with each allele of a marker assessed independently.
Signals from test samples can then be converted to CN
estimates using the signal/CN relationship observed in
the reference set. While in previous studies with fresh fro-
zen and cell line DNA, we found that the reference set
selection had little impact on final data quality, we noted
that for FFPE samples reference set selection markedly
affected data quality. Therefore to obtain "optimal" data
quality we developed a simple algorithm to "pick" the
best reference sets (see methods).

We have previously described the performance of the MIP
technology using receiver operating characteristic (ROC)
curves with true positive/false positive analysis in samples
with known CN changes (such as males with one copy of
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the X-chromosome) [15]. As ROC curves are useful only
for assessing results in samples with known CN changes,
we have developed a per sample data quality metric for
this study that could be assessed in tumor samples with
unknown CN changes.

The two-point relative standard error (2p-RSE) measures
the noise in CN data based on the fact that in almost all
cases we expect two adjacent markers to have the same
true CN; even in highly unstable tumors, the number of
expected amplification/deletion breakpoints should be
substantially less than the number of markers in our
panel, hence the variation in CN between two adjacent
markers is, in most cases, caused by noise. Hence, the
median relative standard error value (2p-RSE) among all

http://www.biomedcentral.com/1755-8794/2/8

pairs of adjacent markers in a sample reflects experimental
noise. The 2p-RSE is a per sample metric that can be
assessed in samples with unknown CN changes.

To validate 2p-RSE as a sample metric, we looked at its
correlation with ROC curves in samples with known CN.
Each ROC curve was simplified to a single metric (the
false positive rate at 50% sensitivity [FPRs,|, i.e. what per-
centage of positives is false when the sensitivity is suffi-
cient to detect 50% of true positives?). The FPR;; and 2p-
RSE were highly related; specifically their natural logs
have a linear relationship [figure 1; In(2p-RSE) = -0.25 +
0.32 * In(FPRs,)] with an 12 of 0.87. Based on these data,
we set a per sample passing threshold of 2p-RSE < 0.25,
which corresponds to a per marker (unsmoothed) FPRs

-2.54
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-h.54
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Figure |

Relationship between the natural log of the false positive rate at 50% sensitivity (Ln_FPR50) and the natural

log of the 2p-RSE (Ln_2p-RSE). Each point represents a single sample with copy number assessed using a particular refer-
ence set. Samples were assessed with multiple reference sets and hence may appear multiple times in the figure. In samples for
which we can asses both the false positive rate at 50% sensitivity (FPR50) and 2p-RSE, the two metrics show a close relation-

ship.
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of approximately 3%. We also set a "high quality" sample
threshold of 2p-RSE < 0.18, which corresponds to a per
marker FPRs, of approximately 1.5%. Of 93 FFPE tumor
samples with sufficient DNA, 82 (88%) passed, and of
these 62 (76%) met the high quality threshold (Table 2
and Additional file 2). All of the 39 fresh frozen tumor
samples passed the high quality threshold.

Figure 2 shows CN data for a cross-section of FFPE tumor
samples with different 2p-RSEs: one of the best samples
(A), a median "high quality" sample (B), a passed, non-
"high quality" sample (C), and the worst passed sample
(D).

Evaluation of 7 FFPE sample collections

Genotyping

The MIP technology generates marker genotype informa-
tion as well as CN. Genotypes can be useful in detecting
sample tracking errors, assessing data quality, identifying
copy-neutral loss-of-heterozygosity (LOH), and recogniz-
ing allelic bias in copy number changes. Genotyping of
tumors is complicated by CN changes and normal tissue
contamination, but to a first approximation, tumors can
be genotyped as homozygous for either allele or hetero-
Zygous.

Table 2: CN Performance of different FFPE and fresh frozen sets

http://www.biomedcentral.com/1755-8794/2/8

To detect sample tracking errors, we compared genotypes
between all samples. Genotype concordance were either
high (> 94%, presumably for samples derived from the
same individual) or low (< 82%, presumably for samples
derived from different individuals). Genotype concord-
ances pointed to three sample tracking errors ("matched"
sample with concordances below 82%) and in all three
cases we could determine which sample was mistracked.

Ability to genotype and genotype concordance both
reflect data quality. To pass genotyping, we required that
a sample have a call rate above 85% although most passed
samples had far higher call rates (average 98.5%, median
99.4%). Of 168 FFPE samples (93 tumors and 75 nor-
mals), 96.4% passed genotyping and all 61 fresh frozen
samples (39 tumors and 22 normals) passed genotyping.
We found that the average call rate was only slightly lower
in FFPE tumors than fresh frozen tumors (97.5% versus
98.7%). Consistent with previous reports, we found
higher call rates in normal samples (98.9% FFPE and
99.8% fresh frozen) than tumors [6]. Genotype call rate
was inversely correlated with 2p-RSE (r2 = 0.54).

Two normal samples from the same individual should
have exactly the same genotypes and differences indicate
data errors. When we compared 20 normal pairs (FFPE
versus fresh frozen), the average genotype concordance

Institution (type)

# with sufficient DNA  # passed (% of all)  # high quality (% of passed) = median 2p-RSE of passed

CHTN (FFPE) 13 13 (100%) Il (85%) 0.139
CHTN (FF) 12 12 (100%) 12 (100%) 0.102
CRUK (FFPE) 17 16 (94%) 12 (75%) 0.163
CRUK (FF) 17 17 (100%) 17 (100%) 0.142
Dana Farber (FFPE) 6 6 (100%) I (17%) 0.201
Leader (FFPE) 13 7 (54%) 4 (57%) 0.155
MD Anderson setl (FFPE) 8 8 (100%) 7 (88%) 0.163
MD Anderson set2 (FFPE) 27 23 (85%) 18 (78%) 0.167
UCSF (FFPE) 9 9 (100%) 9 (100%) 0.115
UCSF (FF) 10 10 (100%) 10 (100%) 0.116
All FFPE 93 82 (88%) 62 (76%) 0.16
All FF* 39 39 (100%) 39 (100%) 0.129
* Fresh frozen
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Figure 2

Copy number data for 4 samples of varying 2p-RSEs. In each panel, markers are arranged along the chromosomes and
colored by chromosome. Chromosomes are typically labeled; some of the smaller chromosomes are unlabeled due to space
constraints. The X axis represents chromosomes in genomic order of markers; the Y axis is the absolute copy number meas-
urement. (A) shows one of the best samples with 2p-RSE = 0.109. (B) shows an average "high quality" sample with 2p-RSE =
0.147. (C) shows a sample that just fails to meet the high quality threshold with 2p-RSE = 0.184. (D) shows the worst passed
sample with 2p-RSE = 0.247.
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was 99.99% (range 99.93-100%). We expect slightly
lower concordance in comparisons between tumor FFPE
and fresh frozen samples as these samples are drawn from
different portions of a tumor and genetic heterogeneity
may lead to real differences; in 37 tumor pairs the average
concordance was 99.90% (range 99.48-99.99%).

Simple genotype concordance between normal and
tumor tissues can be depressed by CN changes in the
tumor. Hence we instead assessed incompatible geno-
types in the tumor; if the normal tissue is homozygous for
allele A, any tumor genotype that has allele B (AB or BB)
is incompatible with the normal genotype. (Theoretically
rare somatic mutations at the site of a SNP could create
incompatibility, but we conservatively assumed that all
incompatibilities were the result of genotyping errors.)
Comparison of genotypes in matched tumor and normal
pairs found high compatibility; compatibility in 89 pairs
was above 98.43%, with the exception of one sample that
had 96.85% compatibility. CN analysis indicated that in
this case the tumor and normal sample had been switched
("tumor" was all CN = 2, while "normal" had multiple CN
changes). Correcting for this sample switch raised com-
patibility to 99.85%. Further CN analysis of samples indi-
cated another sample tracking error in which both
"normal" and "tumor" samples appeared to be derived
from tumor tissue. We found 5 sample tracking errors in

http://www.biomedcentral.com/1755-8794/2/8

229 samples; sample tracking errors are expected when
large numbers of samples are manually handled [21,22].

As can be seen in Table 3, the percentage of incompatible
genotypes in the 88 passed, matching normal-tumor pairs
(after excluding the pairs mentioned above) was low in all
the collections, but tended to be higher in FFPE pairs than
fresh frozen pairs (average 0.1% versus 0.01%). This dif-
ference appears to be largely due to FFPE samples with
low genotyping call rates, which tended to correlate with
increased genotyping inconsistencies (Additional file 2).

Allelic ratios

Separately measuring copy number for each allele allows
us to determine the allele ratio (AR); AR = CN_allelel/
CN_allele2, where allele2 is the allele with the larger CN
(a caveat described in Wang at al. [15] causes the allele
ratio to occasionally be greater than 1). In a simple dip-
loid sample with no copy number changes, the allele ratio
should either be 0 (homozygous) or near 1 (hetero-
zygous). The allele ratio can be helpful in identifying LOH
events (including CN-neutral events), and through these
estimating the level of stromal tissue contamination in a
sample. LOH events in the absence of stromal contamina-
tion should mimic homozygosity. Figures 3A and 3B
show the CN and AR for a sample with multiple CN
changes. In figure 3B homozygous markers have an allele
ratio that clusters very tightly around zero, but there are

Table 3: Genotype Performance of different passed FFPE and fresh frozen sample sets

Institution (type) Median call rate (%) # pairs”

Median rate genotype inconsistencies

Range genotype inconsistencies

CHTN (FF) 99.6 12 7.10E-05 2E-5 — 6E-4
CHTN (FFPE) 98.6 I | .60E-04 2E-5 - 3E-3
CRUK (FFPE) 99.2 14 |.10E-04 2E-5 - 2E-4
Dana Farber (FFPE) 93.9 6 2.80E-03 3E-4 - 8E-3
Leader (FFPE) 98.5 9 2.40E-04 6E-5— |E-3
MD Anderson set| (FFPE) 97.5 6 4.90E-04 6E-5 — 9E-4
MD Anderson set2 (FFPE) 97.8 13 2.70E-04 4E-5 - 2E-2
UCSF (FF) 98.9 10 2.00E-05 2E-5 - 2E-4
UCSF (FFPE) 99.2 7 7.10E-05 2E-5 - |E-4
All FFPE 98.4 66 2.70E-04 2E-5 - 2E-2
All FF* 99.4 22 4.00E-05 2E-5 — 6E-4
A The number of pairs with available data allowing the Mendelian inconsistency calculation

* Fresh frozen
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Figure 3

Copy number (A) and allele ratio (B) data from the same tumor illustrating how the information can be used
in concert to infer stromal contamination. In each panel, markers are arranged along the chromosomes and colored by
chromosome. Chromosomes are typically labeled; some of the smaller chromosomes are unlabeled due to space constraints.

no regions in which all markers appear to be homozygous
with AR = 0 (i.e. there are no regions that show complete
LOH).

Most biopsy samples contain normal, stromal tissue and
in the presence of this type of contamination we do not
expect to find regions of complete LOH; if malignant cells
in the tumor have undergone a deletion, the presence of
stromal contamination will generate ARs above 0 but
below 1. Formulas for determining the relationship
between the true and apparent CN and AR given y% con-
tamination with normal DNA are shown in Additional
file 3. The data suggest that ~45% of the "usable" DNA in
the figure 3 sample comes from CN = 2 cells, the majority
of which are likely to be normal cells. Assuming such a
level of contamination, we would expect copy loss LOH
events (e.g., chromosomes 15 and 18, and parts of chro-
mosomes 8, 10, 17, 19 and 20) to have a CN value around

1.45 and AR values around 0.45, which are close to the
values seen. For amplification events where the tumor has
2 copies of one chromosome and 1 copy of the other (e.g.,
chromosomes 13 and part of chromosomes 20), we
expect CN values to be around 2.55 and AR values around
0.65, again similar to the values seen. Finally, for amplifi-
cation events where the tumor has four copies of one
chromosome and one copy of the other (e.g., the gter of
chromosome 8), we expect a CN value around 3.65 and
AR value around 0.38. Chromosome 8 (in bright pink) is
particularly interesting in that it appears to have a true CN
of 1 from pter to ~34 Mb, then a region of CN = 3 from
~34 Mb to ~43 Mb, and finally a region of CN = 5 (where
one copy of the chromosome was amplified to four cop-
ies) from ~43 Mb to qter. Inferring true CN may be even
more complex if the tumor shows increased ploidy or
genetic heterogeneity.
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CN assessment

Of 93 FFPE tumor samples with sufficient DNA, 82 (88%)
passed our 2p-RSE threshold, and of these 62 (76%) met
the high quality threshold (Table 2). (As normal samples
are typically used as references, meaningful 2p-RSEs were
not measured in these samples.) For three of the collec-
tions, fresh frozen samples from the same individuals
were also available for testing. For the UCSF collection,
the median 2p-RSE for the fresh frozen and the FFPE
tumor samples was essentially identical and for the CHTN
and CRUK collections, the FFPE performance as measured
by the median 2p-RSE of the FFPE samples was slightly
worse than that of the fresh frozen samples (Table 2 and
Additional file 2).

CN profiles for FFPE and frozen tissue from the same
tumor were generally very similar: see example in figures

http://www.biomedcentral.com/1755-8794/2/8

4A and 4B (full CN and AR results are provided in Addi-

tional files 4 and 5 and in GEO [http://
www.ncbi.nlm.nih.gov/geo; GSE14353, GSE14740-

GSE14745]; a translation table for probes is in Additional
file 1 and for samples in Additional file 2). For some
tumors, there were differences in CN between samples,
suggestive of genetic heterogeneity. Figure 4 shows one
CN change between an FFPE tumor and a matched fresh
frozen sample. The FFPE sample (A) shows a CN reduc-
tion for chromosome 6, whereas the fresh frozen sample
(B) appears to be near CN = 2. Detailed examination
found that in the fresh frozen sample the average CN for
chromosome 6 is only 1.9 rather than 2, and the allele
ratio (data not shown) indicates a partial loss-of-heterozy-
gosity in the frozen sample. We suspect that differences
are due to tumor heterogeneity: the FFPE sample has
undergone a complete loss of one copy of chromosome 6

A

Copy Number

8 9 10 11 12 1314 15161718 20 X

Copy Number

8 9 10 11 12 13 14 15161718 20 X

Figure 4

CN in FFPE (A) and fresh frozen (B) samples from the same tumor. In each panel, markers are arranged along the
chromosomes and colored by chromosome. Chromosomes are typically labeled; some of the smaller chromosomes are unla-

beled due to space constraints.
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and the frozen sample is a heterogeneous mix of cells with
and without the loss.

When we further evaluated differences between two sam-
ples from the same tumor, the samples appeared to share
a similar underlying pattern of CN changes with one of
the samples sometimes harboring additional changes
(i.e., one of the two samples appeared to match a pre-
sumed "ancestral" state as is seen for the chromosome 6
changes in the sample in figure 4) (data not shown).

Eight of the fresh frozen samples used in this study were
previously tested with BAC arrays [23]. The large segments
of gain/loss from the BAC data were similar to those
obtained with MIP from the corresponding FFPE samples
[an example is shown in figures 5A (MIP) and 5B (BAC)].
(This sample is also shown in figure 4 and, as discussed
previously, the tumor appears to be genetically heteroge-
neous for chromosome 6. The region of the tumor used to
generate the FFPE block and then tested with MIP has CN
= 1 for chromosome 6. The region of the tumor that was
fresh frozen has a copy number near 2; using both BAC
and MIP chromosome 6 has a slightly lower copy number
than other apparent CN = 2 regions, suggesting a mixture
of CN =1 and CN = 2 cells, with CN = 2 cells predominat-
ing.) Some of the finer aberrations found by MIP were not
seen by the lower resolution BACs [figures 5C (MIP) and
5D (BAC)].

We also briefly looked at CN patterns to identify common
amplifications or deletions in these tumors. Because our
samples are from such diverse types of tumors (the study
was designed to test reliability of the technology with
diverse samples), we lack the power to systematically
identify CN patterns. We note, however, that the most
common amplifications gains of 8q and 20q (both seen
in ~30 FFPE samples) and the most common loss was of
8p, seen in 15 FFPE samples. These three changes are all
commonly reported in tumors [24-26].

Discussion

We previously demonstrated the ability of MIP technol-
ogy to generate high quality allelic CN data from cell lines
and frozen samples [15]. We have now applied this tech-
nology to archival tumor material and developed an ana-
lytical framework to obtain high quality CN and genotype
data for DNA extracted from FFPE samples. We have
developed a new data quality metric, the median 2p-RSE,
which correlates closely with ROC curve data (a well
established method of assessing quality), but unlike ROC
curves, can be assessed in all samples, not just those with
known CN changes. By comparing 2p-RSE results in
matched fresh frozen and FFPE samples, we find that CN
performance is only modestly reduced in the FFPE sam-
ples.

http://www.biomedcentral.com/1755-8794/2/8

One of the challenges in studying FFPE samples is the vari-
ety of processing techniques used by different institutions
over time, which may significantly impact sample and
thus data quality. We tested MIP CN quantitation in sam-
ples sets that originated from seven different sites includ-
ing five in the US, and one each in the UK and China
(Table 1). They represented many different tissue types
(bladder, breast, colorectal, kidney, liver, and liver metas-
tases of colorectal tumors), collection methods, storage
times (blocks ranged in age from five months to over 20
years) and processing methods (Dana Farber samples
were H&E stained with subsequent microdissection).

Only a handful of previous studies have looked at CN in
matched FFPE and frozen samples (and generally in less
than 20 samples) and while some see much worse per-
formance in FFPE samples, others find the same general
patterns of amplifications and gains in matched samples
and hence claim similar performance in FFPE and frozen
samples [5-7,9,10,27]. But finding the same general pat-
tern does not prove equal performance in FFPE and frozen
tissues. We believe that genotype results suggest that other
allelic CN technologies may have substantially worse per-
formance in FFPE than frozen samples.

For any CN technology based on a genotyping platform
(essentially all allelic CN technologies), one might expect
genotyping performance to correlate with CN perform-
ance. Consistent with this, in our study CN performance
correlates with genotype call rate (12 = 0.54). Using geno-
type call rate as a surrogate metric for CN quality, we find
only a slight performance decrease in FFPE versus fresh
frozen tumors (98.7% vs. 97.5%). In contrast, other stud-
ies see substantial drops in call rates (from 93-95% in
fresh frozen to 75-91% in FFPE) [5,6,9,27]. (The
extremely high genotype concordance we see for samples
from the same individual rules out the possibility that our
call rates are artificially inflated by adding poor markers.)

The extremely high concordance we find between normal
fresh frozen and FFPE samples (99.99%) and tumor fresh
frozen and FFPE samples (99.90%) also argues that FFPE
samples have little extra variability in our assay. Other
studies measure much lower concordance between tumor
fresh frozen and FFPE samples (92-98%) and one study
comparing normal fresh frozen and FFPE samples also
found lower concordance (99.4%) [6,8,9,27]. Finally, the
low rate of incompatible genotypes we find between nor-
mal and tumor samples (0.01% for fresh frozen, 0.1% for
FFPE) suggest that MIP performance is only slightly worse
in FFPE samples than fresh frozen. We found no data on
genotype incompatibility in other studies.

It should be possible to use the 2p-RSE (or a similar met-

ric) to compare samples within each of these previous
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Figure 5

Comparison of MIP and BAC CN results from the same tumor as shown in figure 4. Markers are arranged along
the chromosomes and colored by chromosome. Chromosomes are typically labeled; some of the smaller chromosomes are
unlabeled due to space constraints. (A) shows the MIP data for the FFPE sample in figure 4B after smoothing (simple 3 marker
median) and (B) shows the BAC data. (The two panels are on different X-axis scales because of differences in marker densities.
However the panels use the same chromosome color coding scheme to facilitate comparisons. Differences in chromosome 6
are like those seen in figure 4 and, as we discuss in the text, likely due to tumor heterogeneity.) The next two panels show
chromosome 17 MIP (C) and BAC (D) data. (These two panels share the same scale on the x-axis.) Some of the fine structure
seen in the MIP data is missing in the BAC data, potentially due to resolution differences or genetic heterogeneity: an example

is circled.
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studies to determine the relative performance of FFPE and
frozen samples within each study. We note that the 2p-
RSE is not suited to comparing CN data generated using
different platforms, protocols, or algorithms (i.e. across
these studies). For example, by changing the protocol to
saturate all the features, or altering the algorithm to make
all calls very close to CN = 2, the 2p-RSE can be greatly
artificially reduced but the data has clearly not been
improved.

The 2p-RSE can also be to used guide subsequent smooth-
ing of CN data. While this manuscript focuses on uns-
moothed use of MIP CN data, smoothing of data over
adjacent markers can improve false positive (FP) and neg-
ative (FN) rates at the cost of reduced resolution along the
genome. The 2p-RSE may be used to determine the degree
of smoothing required to obtain specific FP and FN rates.

The MIP platform generates allele-specific CN which pro-
vide several advantages over total CN. First, genotypes can
be determined and used for sample tracking and data
quality assessment. Second, the allele ratio can be helpful
in assessing levels of stromal contamination and deriva-
tion of true CN in the malignant cells of a tumor (copy
number in the tumor is a joint assessment of malignant
cells and contaminating normal stromal cells) [28,29].
The allele ratio can also detect copy-neutral LOH events
and assess if amplifications involve one or both alleles.
Finally, in a collection of samples, it may be possible to
detect an allele bias in amplifications or deletions [30].
For example, if a tumor suppressor gene had two common
alleles in a population and one of these alleles showed
reduced activity, tumors from heterozygous individuals
may have preferentially lost the more active allele.

Conclusion

We have shown that we can obtain high quality copy
number and genotype data using the MIP technology in
FFPE samples. The ability to obtain high quality allele CN
data from limited amounts of degraded FFPE-derived
DNA should greatly facilitate the discovery of genomic
aberrations as potential diagnostic, prognostic and predic-
tive biomarkers and may point to novel drug targets.
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