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Abstract
Background: We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data 
(111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 
nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those 
proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to 
discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human 
pituitary adenoma proteomic data with the Ingenuity pathway analysis system.

Methods: The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical 
pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control 
nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. 
Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based 
bioinformatics analyses.

Results: For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid 
metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative 
stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were 
related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity 
pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK 
signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and 
reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-
cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular 
development, and no canonical toxicity pathways were identified.

Conclusions: This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle 
dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These 
pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma 
pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.

Background
Our long-term goals for this human pituitary study are to
clarify the molecular mechanisms that are involved in
pituitary adenoma pathogenesis and to discover tumor
biomarkers. Towards those ends, a series of pituitary ade-
noma proteomic expression data, which include 111 pro-
teins identified from a human pituitary non-functional
adenoma tissue [1], 56 differentially expressed proteins

(DEP's) from human pituitary nonfunctional adenoma
tissues and from prolactinoma tissues [2,3], nine nitrop-
roteins and three nitroprotein-protein complexes from a
human pituitary nonfunctional adenoma tissue [4], and
eight nitroproteins from a pituitary control tissue [5,6],
were analyzed. There is a pressing need to clarify the sig-
nificant signaling pathway networks that involve those
pituitary adenoma proteins, DEP's, and nitroproteins in
order to clarify and to better understand - on a molecular
level - pituitary adenoma pathogenesis. Knowledge of sig-
nificant signaling pathway networks will provide impor-
tant clues and clear directions for an in-depth
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investigation of pituitary adenomas, for the discovery of
tumor biomarkers, and for the development of efficacious
therapeutic agents.

Over the past decades, high-throughput "-omic" tech-
nologies (genomics, transcriptomics, and proteomics)
have been used in many fields, including biology and
human diseases. Relative to the traditional molecular
biology methods that had been used to study the role of a
single gene, single protein, or single small-molecule
model, those "-omic" data have driven the rapid develop-
ment of systems biology to study a multiple-factor model
of disease and to address the network of interaction and
regulatory events that contribute to a disease. Pathway
biology, as one important component of systems biology,
has been extensively developed. Omic data-based path-
way biology relies on an accurate and effective pathway
analysis system. The Ingenuity Pathway Analysis (IPA)
system is an extensively used (>1,300 peer-reviewed pub-
lications citing IPA; February 13, 2009) pathway analysis
system that includes a large-scale knowledge base (~2.2
million scientific findings and 235 canonical pathways;
February 13, 2009). IPA can identify statistically signifi-
cant signaling pathway networks by analyzing the -omic
data in those numerous canonical-pathway databases.

Proteomic data obtained from pituitary adenoma tis-
sues [1-6] were analyzed with IPA software to define
which well-characterized cell-signaling and metabolic
pathways could be the most relevant during pituitary ade-
noma pathogenesis. This present study used the IPA sys-
tem to reveal the significant signaling pathway networks
that involve pituitary adenoma proteins, DEP's, and
nitroproteins in an attempt to better understand the
molecular mechanisms that are involved in pituitary ade-
noma pathogenesis, to discover potential biomarkers, and
to develop efficacious therapeutic agents.

Results
Pathway networks derived from protein-mapping data
Among the 154 identifiers that represented the 111 pro-
teins that were identified from human pituitary adenoma
tissue, 147 identifiers were mapped to the corresponding
molecules (genes; proteins), except for 7 identifiers
(Additional file 1, Table S1). A total of 106 identifiers
were eligible to proceed into pathway analysis after 41
duplicate identifiers were removed from those 147
mapped identifiers. Each identifier was annotated with a
Swiss-Prot accession number, gene name, protein name,
subcellular location, biofunction, and potential targets of
drugs (Additional file 1, Table S1).

The IPA analysis of those 106 network-eligible identifi-
ers revealed 6 statistically significant pathway networks
(Table 1 and Figure 1). Each network summarized in
Table 1 includes all of the molecules (genes, proteins) that

correspond to the nodes in Figure 1, the proteomics-
identified molecules, and the statistical score.

Network 1 functions in cancer, cell-to-cell signaling and
interaction, and small-molecule biochemistry (Figure
1A), and includes 35 nodes (genes; proteins); 27 of the
proteins (77% of the total nodes) were identified with
mass spectrometry (MS). GH1 and ERK play key roles in
Network 1.

Network 2 functions in post-translational modifica-
tions, protein-folding, and hematological disease (Figure
1B), and includes 34 nodes (genes; proteins); 25 of the
proteins (74% of the total nodes) were identified with MS.
NF-kB, HSPA, and G-protein play key roles in Network 2.

Network 3 functions in organ morphology, reproduc-
tive-system development and function, and molecular
transport (Figure 1C), and include 35 nodes (genes; pro-
teins); 17 proteins (49% of the total nodes) were identified
with MS. MAPK, Pkc, Ras, PI3K, Akt, and Calmodulin
play key roles in Network 3.

Network 4 functions in lipid metabolism, molecular
transport, and small-molecule biochemistry (Figure 1D),
and includes 35 nodes (genes; proteins); 13 proteins (37%
of the total nodes) were identified with MS. HNF4A,
ERBB2, and FSH play key roles in Network 4.

Network 5 functions in cell death, hematological dis-
ease, and cellular development (Figure 1E), and includes
36 nodes (genes; proteins); 11 proteins (31% of the total
nodes) were identified with MS. TGFB1, Jnk, P38 MAPK,
and insulin play key roles in Network 5.

Network 6 functions in lipid metabolism, small-mole-
cule biochemistry, and carbohydrate metabolism (Figure
1F), and includes 35 nodes (genes; proteins); 11 proteins
(31% of the total nodes) were identified with MS. INS1,
MYC, and HNF1A play key roles in Network 6.

Among those pituitary adenoma protein-mapping data,
a total of 37 statistically significant canonical pathways
were identified that involve the identified proteins (Figure
2). The top ten canonical pathways include acute-phase
response signaling, NRF2-medicated oxidative-stress
response, citrate cycle, methane metabolism, glutathione
metabolism, fatty-acid elongation in mitochondria, pyru-
vate metabolism, the protein ubiquitination pathway, gly-
colysis/gluconeogenesis, and propanoate metabolism.
Seven statistically significant toxicity pathways out of a
total of 20 were mined from those mapping proteomic
data, and include positive acute-phase response proteins,
oxidative stress-response mediated by Nrf2, negative
acute-phase response proteins, oxidative stress, TR/RXR
activation, cell-cycle G2/M transition, and aryl hydrocar-
bon receptor signaling (Figure 3). The identified proteins
in the linkage of each canonical pathway are labeled (Fig-
ure 4; Additional file 2, Figure S1).

Figure 4 shows the scheme of a representative canoni-
cal pathway - the NRF2-mediated oxidative stress
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response. The extracellular oxidative stress-related fac-
tors induce intracellular electophile ROS formation to
activate the NRF2 via MAPK-signaling pathways such as
the Ras/Raf-ERK, JNK, p38MAPK, and PI3K/AKT path-
ways. The activated NRF2 is translocated into the nucleus
to initiate antioxidative gene/protein expression such as
antioxidant proteins (SOD, GPX2, CAT, FTH1, FTL, etc.)
to reduce oxidative damage, chaperone/stress-response
proteins, and ubiquitination and proteasonal degradation
proteins to repair and remove damaged proteins. Also,
NRF2 involves the regulation of expression of detoxifying
proteins for cell survival. However, the dysregulation of
this NFR2 pathway will cause the formation of more reac-
tive metabolites, which in turn could promote tumori-
genesis. Some components in this pathway have been
identified with our proteomics study, and include FTL,
FTH1, CAT, SOD, AFAR, FKBP5, and ERP29. The
detailed components of the other canonical pathways

that are derived from the pituitary adenoma protein-
mapping data are shown in Additional file 2, Figures S1.1-
S1.36.

Pathway networks derived from comparative proteomics 
data
Among the 86 identifiers that represent the 56 DEP's that
were identified from human pituitary adenoma tissues,
75 identifiers were mapped to the corresponding mole-
cules (genes; proteins) except for 11 identifiers (Addi-
tional file 1, Table S2). The 75 identifiers are significant
because they derive from a comparison of adenomas and
controls. A total of 47 identifiers were eligible to proceed
into pathway analysis after 28 duplicate identifiers were
removed from those 75 mapped identifiers. Each identi-
fier was annotated with a Swiss-Prot accession number,
gene name, fold-change, protein name, subcellular loca-

Figure 1 Significant signaling pathway networks mined from pituitary adenoma protein-mapping dataset. Significant signaling pathway net-
works that are involved in human pituitary adenoma mapping proteins and that function in (A) cancer, cell-to-cell signaling and interaction, small 
molecule biochemistry (Network 1); (B) post-translational modifications, protein-folding, hematological disease (Network 2); (C) organ morphology, 
reproductive-system development and function, molecular transport (Network 3); (D) lipid metabolism, molecular transport, smallmolecule biochem-
istry (Network 4); (E) cell death, hematological disease, cellular development (Network 5); and (F) lipid metabolism, small-molecule biochemistry, car-
bohydrate metabolism (Network 6). An orange solid edge denotes a direct relationship between two nodes (molecules: proteins; genes). A black 
unsolid edge denotes an indirect relationship between two nodes (molecules: proteins; genes). A gray node denotes an identified protein in our study 
[1]. The various shapes of nodes denote the different functions (Additional file 1, Table S1). A duplicated shape means this node contains multiple 
components. A curved line means intracellular translocation; A curved arrow means extracellular translocation.
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Table 1: Signaling Pathway Networks that Involve Pituitary Adenoma Mapping Proteins.

Networks Nodes (genes; proteins) in Network Score Nodes Identified Nodes 
(Proteins)

Top Functions

1 AKR1B1, ANXA1, ANXA2, ANXA5, APCS, C3, CAT, 
Complement component 1, ECHS1, ENO1, ERK, 
F10, FGG, FTH1, FTL, FYN, GDI2, GH1, Glutathione 
transferase, GST, GSTM2, GSTO1, GSTP1, HADHB, 
Nfat, PCBP1 (includes EG:5093), PHB (includes 
EG:5245), PLC, PPIA, PRDX2, PRDX6, SERPINE1, 
Stat3-Stat3, T3-TR-RXR, UCHL1

58 35 27 Cancer, Cell-To-
Cell Signaling and 
Interaction, Small 
Molecule-
Biochemistry

2 ADCY, ATP5B, CALR, CAPNS1, CCNH, CRABP2, 
ERP29, FHL2, FKBP5, G-protein beta, GNAO1, 
GNB2, GNB3, HLA-A, HSF1, HSP, Hsp27, Hsp70, 
Hsp90, HSPA5, HSPA8, HSPB1, KRT19, MHC Class I, 
NFkB, NME2, P4HB, PAFAH1B2, PDIA3, Rbp, RBP1, 
SOD1, Tap, YWHAE, YWHAQ (includes EG:10971)

52 34 25 Post-Translational 
Modification, 
Protein Folding, 
Hematological 
Disease

3 14-3-3, Actin, Akt, ALB, APOA1, Calmodulin, 
Calpain, CBS, Dynamin, E2f, F Actin, GSN, 
HNRNPC, HPX, IMMT, Integrin, KRT9, LDL, 
MAP3K8, Mapk, NAPA, PI3K, PITPNA, Pkc(s), Pld, 
Proteasome, PSMC1, PSME1, PSME2, Ras, TF, Tgf 
beta, TPM3, TPM4, Tropomyosin

31 35 17 Organ 
Morphology, 
Reproductive 
System 
Development and 
Function, 
Molecular 
Transport

4 A1BG, ADSL, ARHGEF5, BLVRB, C22ORF28, 
C4ORF27, CREBL2, Cytochrome c, EIF6, ENO2, 
ERBB2, FGF7, FSH, HNF4A, IDH1, IDH3A, IL6, 
KLHDC3, LEP, MCCC1, MYL6, MYL9 (includes 
EG:10398), NDUFS3, NPNT, OFD1, PPARGC1A, 
RIOK1, SLC25A20, STK17A, SUCLA2, THSD1, 
TIMD2, TLN1, VAT1, YWHAB

22 35 13 Lipid Metabolism, 
Molecular 
Transport, Small-
Molecule 
Biochemistry

5 ACTR3, AKR7A2, BMP3, Ck2, DUSP8, EBAG9, 
EEF1A1, ELP3, ERAF, Histone h3, HSD17B10, 
Insulin, Jnk, KITLG (includes EG:4254), KLK11, 
MAGED2, MAS1, MDH2, OVOL1, P38 MAPK, PDGF 
BB, PGLS, PPM1L, PRKRIR, RNA polymerase II, 
SF3B2, SLC25A11, SLC25A12, STARD10, STK4, 
TGFB1, UGDH, VAPB, WASF3, WDR1

18 36 11 Cell Death, 
Hematological 
Disease, Cellular 
Development

6 3-hydroxybutyric acid, ABCC9, AK1, ANXA4, 
AQP9, BPGM, CA14, CA1 (includes EG:759), CCT3, 
EEF1G, EIF4EBP2, FADS2, FBXO8, FH, GNPAT, 
HNF1A, ILF2 (includes EG:3608), INS1, KCNJ8, 
KCNJ11, L-triiodothyronine, LDHB, MGST3, MYC, 
PAX4, PGAM1, PRDX3, SCD2, SLC37A4, SRI, SRM, 
TPI1, UMPS, VDAC2, XRCC6

18 35 11 Lipid Metabolism, 
Small-Molecule 
Biochemistry, 
Carbohydrate 
Metabolism

tion, biofunction, and potential targets of drugs (Addi-
tional file 1, Table S2).

The IPA analysis of those 47 network-eligible identifiers
revealed three statistically significant pathway networks
(Table 2 and Figure 5). Each network summarized in
Table 2 includes all of those molecules (genes; proteins)
that correspond to the nodes in Figure 5 the DEP's, and
the statistical score.

Network 7 functions in cancer, endocrine-system
development and function, and organ morphology (Fig-
ure 5A) and includes 35 nodes (genes; proteins); among

those 35 nodes, 22 DEPs (63% of the total nodes) were
identified with MS. GH1, ERK, P38 MAPK, PRL, Insulin,
Akt, Ras, and Jnk play key roles in Network 7.

Network 8 functions in lipid metabolism, molecular
transport, and small-molecule biochemistry (Figure 5B),
and include 35 nodes (genes; proteins); 11 DEP's (31% of
the total nodes) were identified with MS. TGFB1, TNF,
PPARG, and MYOD1 play key roles in Network 8.

Network 9 functions in tissue morphology, and hema-
tological-system development, function, and disease (Fig-
ure 5C), and include 35 nodes (genes; proteins); 10 DEP's
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(29% of the total nodes) were identified with MS. MAPK,
IFNG, NFkB, and EPO play key roles in Network 9.

Among those pituitary adenoma comparative pro-
teomic data, a total of nine statistically significant canon-
ical pathways out of 19 pathways were identified that
involve those DEP's (Figure 6). The top nine canonical
pathways include mitochondrial dysfunction, glutathi-
one metabolism, ERK/MAPK signaling, aryl hydrocar-
bon-receptor signaling, oxidative phosphorylation,
NRF2-mediated oxidative-stress response, pyruvate
metabolism, TR/RXR activation, and IGF-1 signaling. Six
statistically significant toxicity pathways out of a total of
16 were mined from those comparative proteomic data,
and include mitochondrial dysfunction, aryl hydrocar-
bon-receptor signaling, oxidative stress, negative acute-
phase response proteins, TR/RXR activation, and oxida-
tive-stress response mediated by Nrf2 (Figure 7). The
identified proteins in the linkage of each canonical path-
way are labeled (Figures 8 and 9; and Additional file 2,
Figure S2).

Figure 8 shows, as an example, the complicated mito-
chondrial dysfunctional pathway. The mitochondrial dys-
functional pathway was distributed within five regions of
a cell - cytoplasm, outer mitochondrial membrane, inter-
membrane space, inner mitochondrial membrane, and
mitochondrial matrix. The mitochondrial complexes I -
V locate in the inner mitochondrial membrane. Gene
mutations that cause mitochondrial dysfunction include
Complex I (NADH dehydrogenesase) (NDUFV1,
NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS6,
NDUFS7, NDUFS8, ND1, ND4, ND5, NDUFA1,
NDUFA8, NDUF13, NDUFAF1, and NDUFB9), Complex
II (succinate dehydrogenase) (SDHA, SDHB, SDHC, and
SDHD), Complex III (cytochrome bc 1) (UQCRB,
CYTB), Complex IV (cytochrome c oxidase) [COX3
(cyclooxygenase 3)], and other genes (APP, amyloid β,
presenin-1, and α-synuclein). Our comparative proteom-
ics data demonstrate that some components of mito-
chondrial complexes are significantly up-regulated in
pituitary adenomas relative to controls; for example,
ATP5B (ATP synthase, H+-transporting, mitochondrial
F1 complex, beta polypeptide; 5-fold), COX6B1 (cyto-
chrome c oxidase subunit Vib polypeptide 1; 9-fold), and
NDUFS8 (NADH dehydrogenase ubiquinone Fe-S pro-
tein 8; 5-fold). Moreover, GPX4 (glutathione peroxidase
4) was significantly down-regulated (26-fold) in pituitary
adenomas relative to controls. GPX4 plays important
roles in the cytochrome c - apoptosis pathway.

Figure 9 shows the ERK/MAPK signaling pathway. The
extracellular signals are transducted into the cytoplasm
via the receptor tyrosine kinase (RTK) and the integrin
receptor to activate the Ras/Raf pathway. Ras is regulated
by PKC and SOS that is regulated by Src and FYN signals.
Raf includes three subfamilies A, B, and C. A-Raf is acti-

vated by the Ras signal. B-Raf is activated by Rap1, PKA,
and 14-3-3 signals. C-Raf is activated by Ras, PKA, and
14-3-3 signals. ERK1/2 are activated by Rafs-MEK1/2 sig-
nals. The activated ERK1/2's will perform their biological
roles in the cytoplasm such as phosphorylation of
cytoskeletal proteins, ion channels and receptors, and
regulation of apoptosis and translation; or will translocate
into the nucleus to regulate the transcription of multiple
genes such as Stat1/3, Myc, CREB, histone H3, etc. Com-
pared to human pituitary controls, in pituitary adenomas,
the FYN (FYN oncogene related to SRC, FGR, YES) was
up-regulated (4-fold), 14-3-3 protein down-regulated
(44-fold), HSPB1 (heat shock 27 kDa protein 1) down-
regulated (5-fold), and PPP2R2A (protein phosphatase 2
regulatory subunit B alpha isoform) down-regulated (8-
fold), within the ERK/MAPK signaling pathway system.
Also, the PKA regulatory subunit type I beta was nitrated
(Additional file 1, Table S3) to most probably interfere
with PKA functions; that nitration suggests that oxida-
tive/nitrative stress signals are also involved in the regula-
tion of the ERK/MAPK signaling system. The detailed
components of the other canonical pathways that are
derived from pituitary adenoma comparative proteomic
data are shown in the Additional file 2, Figures S2.1-S2.7.

Pathway networks derived from nitroproteomic data
A total of 12 identifiers that represent nine nitroproteins,
and three non-nitrated proteins, from a human pituitary
adenoma tissue were mapped to their corresponding
genes/proteins (Additional file 1, Table S3). A total of 10
identifiers were eligible to proceed into pathway analysis,
except for LILRA4 and ZNF432. Each identifier was
annotated with a Swiss-Prot accession number, gene
name, nitration status, protein name, subcellular loca-
tion, biofunction, and potential targets of drugs (Addi-
tional file 1, Table S3). Twelve identifiers that represent
nine nitroproteins from human pituitary control tissue
were also mapped to nine genes. Nine network-eligible
identifiers proceeded to pathway analysis (Additional file
1, Table S4). Nitration usually decreases the activity of a
protein.

The IPA analysis of those 10 network-eligible identifiers
from human pituitary adenoma tissue revealed one statis-
tically significant pathway network (Table 3 and Figure
10A). That network (Table 3) includes all molecules
(genes; proteins) that correspond to the nodes in Figure
10A, the MS-identified nitroproteins, and the statistical
score. Network 10 functions in cancer, cell cycle, and
reproductive-system disease (Figure 10A), and includes
35 nodes (genes; proteins); nine nitroproteins (26% of the
total nodes) were identified with MS. TNF, IL1B, and
beta-estradiol play key roles in Network 10. For those
nine network-eligible identifiers from human pituitary
control tissue, the IPA analysis revealed one statistically
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Figure 2 Significant canonical pathways that are involved with pituitary adenoma protein-mapping data.
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Figure 3 Significant toxicological events that are involved with pituitary adenoma protein-mapping data.
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Figure 4 NRF2-mediated oxidative-stress response pathway that is involved with pituitary adenoma protein-mapping data. A gray label de-
notes an identified protein. The various shapes of nodes denote the different functions. A duplicated shape means this node contains multiple com-
ponents. An arrow denotes the pathway direction. A line with a small circle denotes a biological result.
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significant pathway network (Network 11) that functions
in gene expression, cellular development, and connec-
tive-tissue development and function (Table 3 and Figure
10B). Network 11 includes 35 nodes (genes; proteins);
and nine nitroproteins (26% of the total nodes) were iden-
tified with MS. TGFB1, FOS, and beta-estradiol play key
roles in Network 11.

Among those pituitary adenoma qualitative nitropro-
teomic data, a total of 12 statistically significant canonical
pathways were identified that involve nitroproteins (Fig-
ure 11). The top canonical pathways include hepatic
cholestasis, p38 MAPK signaling, the protein-ubiquitina-
tion pathway, sonic-hedgehog signaling, cell-cycle G2/M
DNA damage-checkpoint regulation, GABA-receptor
signaling, Toll-like receptor signaling, amyloid process-
ing, the phototransduction pathway, sphingolipid metab-

olism, IL-10 signaling, hypoxia signaling, LXR/RXR
activation, and PXR/RXR activation. Three statistically
significant toxicity pathways were mined, and include
hepatic cholestasis, PXR/RXR activation, and LXR/RXR
activation (Figure 12). The identified nitroproteins in the
linkage of each canonical pathway are labeled (Figures 13;
and Additional file 2, Figure S3).

Figure 13 shows the representative p38 MAPK signal-
ing pathway. The extracellular inflammatory cytokine sig-
nals (such as TNF, TGF-β, and IL-1) are transducted into
the cytoplasm via a binding to their corresponding recep-
tors in the membrane to activate ASK1 and TAK1. p38
MAPK's include four subfamilies (α, β, γ, δ) that are acti-
vated by ASK1/MKK4, TAK1/MKK3/6, and MKP1/5 sig-
nals. The activated p38 MAPKs are translocated into the
nucleus to activate the transcription of multiple genes

Figure 5 Significant signaling pathway networks mined from pituitary adenoma comparative dataset. Significant signaling pathway net-
works that are involved in human pituitary adenoma differentially expressed proteins and that function in (A) cancer, endocrine-system development 
and function, organ morphology (Network 7); (B) lipid metabolism, molecular transport, smallmolecule biochemistry (Network 8); and (C) hematolog-
ical-system development and function, tissue morphology, hematological disease (Network 9). An orange solid edge denotes a direct relationship 
between two nodes (molecules: proteins; genes). A black unsolid edge denotes an indirect relationship between two nodes (molecules: proteins; 
genes). A red node denotes an up-regulated protein, and a green node denotes a down-regulated protein in our studies [2,3], with different color 
levels that reflect the fold-change of protein differential expression (Additional file 1, Table S2). The various shapes of nodes denote the different func-
tions (Additional file 1, Table S2). A duplicated shape means this node contains multiple components. A curved line means intracellular translocation; 
A curved arrow means extracellular translocation.
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Table 2: Signaling Pathway Networks that Involve Human Pituitary Adenoma Differentially Expressed Proteins (DEPs).

Networks Nodes (genes; proteins) in Network Score Nodes Identified Nodes 
(DEPs)

Top Functions

7 AKR1B1, Akt, ATP5B, CAPZB, Caspase, CRYM, 
Cytochrome c, DBI, ERK, F10, FYN, GDI1, GH1, 
GLO1, GPX4, GSTM2, HSP90B1, HSPB1, 
HSPB8, Igfbp, IGFBP6, Insulin, Jnk, P38 MAPK, 
PDGF BB, PI3K, Pka, PLC, PPID, PPP2R2A, PRL, 
Ras, TGM2, VIM, YWHAQ (includes EG:10971)

53 35 22 Cancer, Endocrine 
System 
Development and 
Function, Organ 
Morphology

8 ACOT2, ACSL1, ADRB3, AKR1B1, ANGPTL4, 
COL6A2, COX2, COX6B1, Cytochrome c 
oxidase, DBI, DLK1, DNAJB6, EDN2, ERP29, F2, 
GCLC, IDH1, IL4R, L-triiodothyronine, LIPE, 
MMP19, MYCL1, MYLPF, MYOD1, OGN, 
PPARG, PRDX3, prostaglandin E2, RXRB, 
SERPINB8, SKI, SLC2A1, TAGLN3, TGFB1, TNF

22 35 11 Lipid Metabolism, 
Molecular 
Transport, Small 
Molecule 
Biochemistry

9 ALB, APOA1, CALB1, CD59, CNTF, CXCR4, 
CYP2E1, DDIT3, EPO, FGG, G alpha, GH2, 
GNAO1, GNAS, GPNMB, GPSM1, HBA2, HBB 
(includes EG:3043), HBD, Histone h3, IFNG, 
IGFBP2, IGLC1, KLF3, KRT16, Mapk, NFkB, 
NUPR1, PIK3R1, PIM3, SCGN, SH2B1, SOCS3, 
TAC1, TPH2

19 35 10 Hematological 
System 
Development and 
Function, Tissue 
Morphology, 
Hematological 
Disease

such as CREB, c-Myc, Stat1, histone H3, Elk-1, etc., and
to regulate apoptosis. Our pituitary adenoma nitropro-
teomic study has discovered the IL1-IL1R-IRAK2 com-
plex in a human pituitary adenoma tissue; IL-1 was
nitrated, and IRAK2 (interleukin-1 receptor-interacting
protein 2) was identified to associate with IL1R.

Additional file 2, Figure S3.4 shows the cell-cycle G2/
M DNA damage checkpoint-regulation pathway. p53 and
cdc25 B/C play important roles in this oxidative damage-
induced pathway. The 14-3-3 proteins (down-regulated
44-fold in pituitary adenomas compared to controls;
Additional file 1, Table S2) are the important regulators
in this pathway - they couple with Cdc25 B/C to partici-
pate in the nuclear export of Cdc25, and couple with
Cdc2 and Cyclin B to participate in the cytoplasmic
sequestration of cdc2 and cyclin B. The detailed compo-
nents of the other canonical pathways that are derived
from the pituitary adenoma nitroproteomic data are
shown in Additional file 2, Figures S3.1-S3.10.

Among those control pituitary adenoma qualitative
nitroproteomic data, a total of 12 statistically significant
canonical pathways were identified that involve nitropro-
teins (Figure 14), and include clatrin-mediated endocyto-
sis, caveolar-mediated endocytosis, VEGF signaling,
regulation of actin-based motility by Rho, Fcy receptor-
mediated phagocytosis in macrophages and monocytes,
tight-junction signaling, NRF2-mediated oxidative-stress
response, leukocyte extravasation signaling, integrin sig-
naling, actin-cytoskeleton signaling, and calcium signal-
ing. No statistically significant toxicity pathways were
mined. The identified nitroproteins in the linkage of each

canonical pathway are labeled (Additional file 2, Figure
S4). The detailed components of the other canonical
pathways that are derived from pituitary control nitrop-
roteomic data are shown in Additional file 2, Figures
S4.1-S4.12.

Discussion
The present study, for the first time, used bioinformatics
pathway analysis to reveal the significant signaling path-
ways and networks that are associated with pituitary ade-
nomas; three types of proteomic data were used -
pituitary adenoma protein-mapping [1], comparative
proteomic [2,3], and nitroproteomic [4-6]. Protein-map-
ping data were obtained with a 2DGE-arrayed pituitary
adenoma proteome, followed by MS characterization of
the proteins. The protein-mapping data-derived path-
ways and networks could reflect each potential pathway
network that exists in a human pituitary adenoma pro-
teome, and that associates with its pathophysiology.
Those pathway networks are the baseline for the discov-
ery of adenoma-related pathway networks. Comparative
proteomic data were obtained from 2DGE-arrayed ade-
noma and control proteome images, followed by MS
characterization of DEP's. Those DEP data-derived path-
way networks will reflect significant adenoma-related
pathway networks. Nitroproteomic data include those
endogenous proteins that were nitrated at a tyrosine resi-
due. Tyrosine nitration, a chemically stable marker of oxi-
dative stress, alters protein function, and is extensively
associated with tumor inflammation and neurodegenera-
tive disease. The nitroproteomic data-derived pathway
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networks will directly reflect the pathways of oxidative
damage that contribute to the formation of a pituitary
adenoma. Among the complicated pathway networks
described above, several signaling pathways and net-

works were found to be significantly associated with a
pituitary adenoma, and include mitochondria dysfunc-
tion, oxidative stress, cell-cycle dysregulation, and the

Figure 6 Significant canonical pathways that are involved with pituitary adenoma comparative-proteomic data.
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MAPK-signaling system. Those four systems will be
described below.

Mitochondria dysfunction
Mitochondria are dynamic intracellular organelles that
are essential for cellular life, death, and differentiation,
and play a central role in oxidative metabolism and apop-
tosis. Mitochondrial dysfunctions underlie a broad spec-
trum of human diseases [7,8] that include cancer [9,10],
neurodegenerative diseases [11], cardiovascular diseases
[12], diabetes mellitus [13], and inflammatory diseases
[14,15]. Notable differences in the structure and function
of mitochondria appear between cancer and normal cells,
and include differences in mtDNA sequence, molecular
composition, and metabolic activity [9,10]. Mitochondria
involve multiple metabolic functions that include oxida-

tive phosphorylation - an energy-generating process that
couples the oxidation of respiratory substances to the
synthesis of ATP, oxidative decarboxylation of pyruvate,
the tricarboxylic acid cycle, fatty-acid oxidation, glycoly-
sis, intracellular homeostasis of inorganic ions such as
calcium and phosphate, and intracellular apoptosis [10].
Mitochondrial dysfunction in cancer includes an
increased gluconeogenesis, reduced pyruvate oxidation
and increased lactic acid production, increased glutamin-
olytic activity, and reduced fatty-acid oxidation. The
activity of certain mitochondrial enzymes that are inte-
gral to the process of oxidative phosphorylation is
decreased in cancer compared to normal cells; those
enzymes include ATPase, cytochrome c oxidase, and ade-
nine nucleotide translocase. The additional alterations of

Figure 7 Significant toxicological events that are involved with pituitary adenoma comparative-proteomic data. Green bar = downregulat-
ed, red bar = upregulated, grey bar = no change, white bar = no overlap with dataset.
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gene expression between cancer and normal cells include
the anti-apoptotic oncogenes that encode Bcl-2 and Bcl-
XL, and genes that encode the peripheral benzodiazepin
receptor (PBR), the PBR-associated protein Prax-1, and
mitochondrial creatine kinase. The expression of BAX, a
pro-apoptotic, inner mitochondrial membrane protein, is
also reduced in some cancer cell-lines. The metabolic
imbalances and the enhanced resistance to mitochondrial
apoptosis are the prominent features of cancer cells, and
tumors rely heavily on glycolysis to meet their metabolic
demands [16]. Mitochondrial dysfunctions have been
proposed as a cause of cancer, and the citrate inhibition
of glycosis has been proposed as a cancer treatment [17].
Mitochondria play crucial roles in this cancer-cell biol-
ogy. Mitochrondrial dysfunction is a biomarker for the
early detection of cancer, and is a therapeutic target for
cancer.

Pituitary adenoma protein-mapping data clearly reveal
the mitochondria-related signaling pathways that include
fatty-acid elongation in mitochondria, glycolysis/gluco-
neogenesis, and oxidative stress that function in human
pituitary adenoma cells (Figures 2 and 3). The DEP data
also clearly reveal the significant signaling pathways that
include mitochondrial dysfunction, oxidative phosphory-

lation, and oxidative-stress response in a human pituitary
adenoma (Figures 6 and 7). Figure 8 shows the canonical
pathway of mitochondrial dysfunctions.

Mitochondrial dysfunction could be confirmed with a
mitochondrial morphological change in a human pitu-
itary tumor. Studies found an increased number of mito-
chondria, and ultrastructurally abnormal mitochondria
were present in pituitary oncocytomas [18]. Large mito-
chondria and mitochondrial swelling were present in a
pituitary adenoma with hyperprolactinemia; those find-
ings could be attributable to the prolonged intake of ste-
roids and/or ischemia [19]. Characteristic vesicular
mitochondria are present in adrenocortical-pituitary
hybrid tumor cells that cause Cushing's syndrome [20].
Moreover, melatonin as an apoptotic inducer of tumor
cells significantly inhibited prolactinoma cell prolifera-
tion, increased prolactinoma cell apoptosis, induced
mRNA expression of Bax and cytochrome c protein
expression, and, conversely, inhibited the mRNA expres-
sion of Bcl-2 and the mitochondrial membrane potential.
Those data suggest that melatonin inhibits proliferation
and induces apoptosis of a rat pituitary prolactin-secret-
ing tumor via a perturbation of mitochondria physiology
[21]. The ultrastructure of cells shows giant mitochondria

Figure 8 Mitochondrial dysfunctional pathway that is involved with pituitary adenoma comparative-proteomic data. Red label = upregulat-
ed, green label = down regulated. The various shapes of nodes denote the different functions. A duplicated shape means this node contains multiple 
components. An arrow denotes the pathway direction. A line with a small circle denotes a biological result.
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and an increased number of mitochondria comparable to
oncocytic adenomas in human pituitary adenomas that
secrete growth hormone and prolactin, and electron

microscopy shows many, in part densely arranged, mito-
chondria in human non-functioning pituitary adenomas
[22]. Anti-mitochondrial staining shows intense and

Figure 9 ERK/MAPK signaling pathway that is involved with pituitary adenoma comparative-proteomic data. Red label = upregulated, green 
label = downregulated. The various shapes of nodes denote the different functions. A duplicated shape means this node contains multiple compo-
nents. An arrow denotes the pathway direction. A line with a small circle denotes a biological result.
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granular mitochondria, and electron microscopy shows
swollen mitochondria in the cytoplasm with featured
lamellar cristae in the spindle-cell oncocytoma of the
adenohypophysis [23].

Evidence demonstrates that dysfunctional mitochon-
dria, not oxygen insufficiency, cause cancer cells to pro-
duce inordinate amounts of lactic acid that impact on the
treatment of cancer [24]. Studies demonstrate that can-
cer-cell mitochondria are pro-apoptotic targets for the
marine antitumor drug lamellarin D [25]. Mitochondria
are emerging as biomarkers for the early detection of, and
for novel therapeutic targets in, cancer [17,26-29]. There-
fore, mitochondrial dysfunction is not only a significant
signal in a human pituitary adenoma, but also provides
biomarkers for early detection, and targets for novel ther-
apeutic agents to treat a pituitary adenoma.

Oxidative stress
Oxidative stress is produced when the balance is dis-
turbed between an upload of free radical/reactive oxy-
gen/nitrogen species (ROS/RNS) from in vivo formation
and from in vitro environmental carcinogens, and the
capability of endogenous antioxidant defense mecha-
nisms to remove those reactive species [30,31]. Oxidative
stress can cause injury to several important cellular com-
ponents such as proteins, DNA, and membrane lipids. An
increased formation of ROS/RNS can promote the devel-

opment of tumorigenesis, and the 'normal' rates of ROS/
RNS generation might account for the increased risk of
cancer development [32]. The mitochondrial oxidative
respiratory chain and the oxidative phosphorylation sys-
tem are the central components that produce endoge-
nous ROS such as superoxide radicals (O2.-). In a
pathogenesis, large amounts of nitric oxide (NO), the
most important RNS component, are generated from the
inducible nitric oxide synthase (iNOS) system. The
superoxide radicals can rapidly react with nitric oxide to
produce the more toxic peroxynitrite anion (ONOO-), or
the highly reactive hydroxyl radical (OH.), to attack pro-
teins, DNA, and membrane lipids. Many studies have
indicated the presence of NOS in the human and rat pitu-
itary [33-37], and the increased activities of NOS and its
mRNA have been found in pituitary adenomas relative to
controls [37,38]. NO is involved in the hypothalamic-
pituitary-adrenocortical axis [39]. NO plays an important
role to activate the release of luteinizing hormone-releas-
ing hormone (LHRH) and follicle-stimulating hormone-
releasing hormone (FSHRH) from the hypothalamus, and
of LH and FSH from the pituitary [40-42]; to stimulate or
inhibit the secretion of PRL [43]; to regulate the secretion
of growth hormone (GH) in the normal human pituitary
and in acromegaly [44,45]; and to modulate GH secretion
in a dose-dependent manner in GH adenomatous cells
from human pituitary adenomas [46].

Figure 10 Significant signaling pathway networks mined from nitroproteomic dataset. Significant signaling pathway networks that are in-
volved in human pituitary adenoma nitroproteomic data. (A) Network 10 is derived from adenoma nitroproteomic data and function in cancer, cell 
cycle, reproductive-system disease. A gray node denotes an identified nitroprotein or protein that interact with nitroproteins in our study [4]. (B) Net-
work 11 is derived from control nitroproteomic data and function in gene expression, cellular development, connective tissue development and func-
tion. A gray node denotes an identified nitroprotein in our studies [5,6]. An orange solid edge denotes a direct relationship between two nodes 
(molecules: proteins; genes). An orange unsolid edge denotes an indirect relationship between two nodes (molecules: proteins; genes). The various 
shapes of nodes denote the different functions (Additional file 1, Tables S3 and S4). A curved line means intracellular translocation; a curved arrow 
means extracellular translocation.
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Our nitroproteomics study [4] discovered nine
tyrosine-nitrated proteins in human pituitary adenoma
tissues, and that each tyrosine nitration site is located
within an important protein domain to alter protein func-
tions. However, with the formation of ROS and RNS, the
in vivo antioxidative mechanism is also initiated against
ROS/RNS [47]. The anti-oxidative system includes enzy-
matic [superoxide dismutase (CuZnSOD, MnSOD), cata-
lase, glutathione peroxidase] and non-enzymatic
[Vitamin C, Vitamin E, carotenoids, thiol antioxidants
(glutathione, thioredoxin, and lipoic acid), flavonoids,
selenium, and others] antioxidants, as well as the antioxi-
dant interactions with various regulatory factors such as
NF-κB, AP-1, and Nrf2 [47]. Copper- and zinc-containing
superoxide dismutase (CuZnSOD) in most parts of cells
and manganese-containing superoxide dismutase
(MnSOD) in the mitochondrial matrix can effectively
scavenge the superoxide radicals to generate H2O2 [48-
50], which is removed by peroxiredoxins (thioredoxin-
dependent peroxidase enzymes) and GPX's (glutathione
peroxidases) [51,52]. The decrease or deficiency of the
activities of those antioxidative enzymes could contribute
to tumorigenesis [52,53]. Studies show that the content of
CuZnMOD is markedly higher in normal cells than in
pituitary adenoma cells [54]. Pivotal to the antioxidant
response is the transcription factor Nrf2 (nuclear factor-
E2-related factor-2) that is mainly located in the cyto-
plasm under basal conditions [55]. Under oxidative stress
derived from the accumulation of ROS [56,57] and RNS
[58,59], Nrf2 can quickly translocate into the nucleus and
elicit an antioxidant response. Nrf2 signaling is regulated
by multiple components [55,60]. At least four compo-
nents in combination [Nrf2, Keap1 (Kelch-like ECH-
associated protein 1), a group of small musculoaponeu-

rotic fibrosarcoma (Maf) proteins, and a cis-acting
enhancer called antioxidant response element (ARE) or
electrophile responsive element (EpRE)] are essential for
the antioxidant response. The Nrf2 signaling pathway not
only regulates the expression of antioxidative genes, but
also regulates the anti-inflammatory response, the molec-
ular chaperone/stress-response system, and the ubiq-
uitin/proteasome system [61]. Any decrease in the
capability of this antioxidant protective system could
increase the susceptibility to oxidative stress, tumor
inflammation, carcinogen toxicity, and tumorigenesis.

Our pathway analysis of pituitary adenoma protein-
mapping data and DEP's has clearly revealed the oxida-
tive stress and Nrf2-mediated oxidative stress-response
pathway (Figures 2, 3, 6, and 7) in pituitary adenomas.
Figure 4 presents the canonical pathway of the Nrf2-
mediated oxidative-stress response. Therefore, the oxida-
tive stress-antioxidative stress-response system is not
only a significant signaling pathway of pituitary adenoma
formation, but also those components in this pathway
could be the novel targets to develop effective therapeutic
agents that could be used for human pituitary adenomas
[61,62].

Cell-cycle dysregulation
The basic biological characteristics of tumor cells are the
unrestricted proliferation and growth compared to nor-
mal cells; the latter are in a state of balance between
restricted proliferation and apoptosis. This proliferation
process is controlled by the cell cycle. The cell cycle
includes four phases (G0) G1 T S T G2 T M T G1 (G0)
that will make the cell grow, replicate their genome, and
divide; this cycle is regulated by a cyclically operating bio-
chemical system that includes cyclins, cyclin-dependent

Table 3: Signaling Pathway Networks that Involve Nitroproteomic Data From Pituitary Adenoma and Control.

Networks Nodes (genes; proteins) in Network Score Nodes Identified Nodes 
(Nitroproteins)

Top Functions

10 (Adenoma) ARHGAP5, beta-estradiol, FAM105B, GNL1, 
GRIP2, H2-Q4, Histone h3, IFI203, IL17B, 
IL17C, IL1B, IL1F5, IL1F6, IRAK2, IRG1, 
MAPK11 PREDICTED, MHC CLASS I D2D 
ANTIGEN, MMD, NFRKB, PCDH7, Pka, PLD3, 
PRKAR1B, PSMA2, RAB32, RHOA, RHPN2, 
SCUBE2, TM4SF1, TNF, TPD52L2, TWIST2, 
UBB, UBC, ZNF267

24 35 9 Cancer, Cell Cycle, 
Reproductive 
System Disease

11 (Control) ACTA2 (includes EG:59), ACTC1, ACTG2, 
Actin, BCL2, beta-estradiol, BMF, CAP2, 
ELK1, EPS8L2, ESPN, F Actin, FCAR, FEZ2, 
FOS, GAK, GZMC, KLK11, KRT81 (includes 
EG:3887), LIMA1, MBOAT5, MSMB, PAQR3, 
PDZK1IP1, PRKG2, PRPS1, PSMA2, PTPRK, 
RAB31, RPN2, SELENBP1, SNAP91, STC1, 
TGFB1, TMOD3

26 35 9 Gene Expression, 
Cellular 
Development, 
Connective Tissue 
Development and 
Function
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kinases (CDK), and their inhibitors (CDKI) [63]. The
CDKI families mainly include the INK family (INK4a/
p16, INK4b/p15, INK4c/p18, and INK4d/p19) and the
WAF/KIP family (WAF1/p21, KIP1/p27, and KIP2/p57).
The progression through a cell cycle is mainly regulated
by the fluctuations in the concentration of cyclins and

CDKI that is achieved through the programmed degrada-
tion of these proteins by the proteolysis within the ubiq-
uitin-proteasome system [64]. Cyclin D1 is expressed at
the G0/G1 transition, and is involved in the regulation of
progression through G1 into the S phase. Cyclin E expres-
sion occurs at the beginning of G1, maximizes at the G1/

Figure 11 Significant canonical pathways that are involved with pituitary adenoma nitroproteins.
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S transition, is degraded at the beginning of the S phase,
and is involved in DNA replication. Cyclins D and E, in
combination with CDKs/CDKI, regulate the G1 and S
phases to prepare for cell division. Cyclin A accumulates
in late G1, maximizes during the S phase, and is degraded
in the M phase. Cylin B is necessary for the transition
from G2 to mitosis. Studies have demonstrated that the
ectopic expression of cyclin D and the overexpresion of
Cyclins A, B, and E occur in a pituitary adenoma to regu-
late different phases of the cell cycle, and to accelerate the
progression of the cell-cycle [63]. The overexpressed
pituitary tumor-transforming gene (PTTG), as an early
change in pituitary tumorigenesis, is also dependent on
the cell cycle; PTTG expression is low at the G1/S border,
gradually increases during the S phase, peaks at the G2/
M, and is attenuated as the cells enter G1 [65]. The details
on cell-cycle dysregulation in a human pituitary adenoma
have been reviewed [64,66-68].

The pathway analysis of our pituitary adenoma nitrop-
roteomic data clearly revealed the cell-cycle G2/M DNA
damage checkpoint-regulation pathway in human pitu-
itary adenomas (Figure 11). Additional file 2, Figure S3.4
shows the canonical pathway of the cell-cycle G2/M DNA
damage checkpoint regulation. DEP data clearly demon-
strate that the important cell-cycle regulator 14-3-3 pro-
tein was down-regulated (44-fold) in pituitary adenomas

compared to controls (Additional file 1, Table S2). More-
over, our nitroproteomic data demonstrate that a nitrated
proteasome could interfere with the functions of the
ubiquitin-proteasome system in the regulation of the cell
cycle. Thus, oxidative/nitrative stress is also involved in
the cell-cycle dyregulation in human pituitary adenomas.
Furthermore, those components that regulate the cell
cycle could be the novel targets for the development of an
effective pituitary adenoma therapy; for example, the pro-
teasome inhibitors can induce apoptosis in growth hor-
mone-and prolactin-secreting rat pituitary tumor cells
through a blocking of the cell cycle at the G2/M transi-
tion [69].

MAPK signaling abnormality
Mitogen-activated protein kinase (MAPK) signaling
pathways play prominent roles in the between- and
within-cell communications in normal cells and cancer
cells [70]. Those pathways link the extracelluar signals
(stimuli such as growth hormone, growth factor, mito-
gens, cytokines, stress, etc.) to the functional cellular pro-
cesses such as growth, profliferation, migration, and
apoptosis. The basic MAPK pathway is stimulus (mito-
gens, growth factors, cytokines, stress, etc.) T G-protein
(Ras, Rac, Cdc42, Rho) T MAPKKK (Raf, Tpl2, MEKK,
MLK, TAK, ASK, TAO) T MAPKK (MEK) T MAPK

Figure 12 Significant toxicological events that are involved with pituitary adenoma nitroproteins. Red bar = nitrated proteins, green bar = 
unnitrated proteins, grey bar = no change, white bar = no overlap with dataset.
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(ERK, JNK, P38) to generate responses (proliferation, dif-
ferentiation, apoptosis, and migration). ERKs (extracellu-
lar signal-regulated kinases), JNKs (c-Jun N-terminal
kinases), and p38-MAPKs are the three main subfamilies
of MAPKs. ERK 1/2 are activated by MEK1/2, which are
activated by Raf, Ras, and growth factors or mitogens; Raf

activity, as the main effector of Ras, is suppressed by
cyclic AMP-dependent kinase (PKA) in a normal cell
[71]. JNKs are activated by MEK4/7, and p38-MAPKs are
activated by MEK3/4/6. The upstream signal of MEK3/4/
6/7 is from Rac, Rho, cdc42, cytokines, or stresses. ERKs
function in the control of cell division. JNKs are critical

Figure 13 p38 MAPK signaling pathway that is involved with pituitary adenoma nitroproteins. A gray label denotes an identified protein. The 
various shapes of nodes denote the different functions. A duplicated shape means this node contains multiple components. An arrow denotes the 
pathway direction. A line with a small circle denotes a biological result.
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regulators of transcription, and have the ability to pro-
mote apoptosis; however, the activation of nuclear factor
kappa B (NF-κB) signaling can lead to the suppression of
apoptosis. JNK and NF-κB signaling often play opposing
roles in cancer. The activation of NF-κB is required to
suppress JNK-activated apoptosis during tumorigenesis
[72,73]. The p38-MAPKs are strongly activated by

inflammatory cytokines and environmental stresses, and
p38 is required for the expression of TNFα and interleu-
kin-1 during tumor inflammatory responses. p38 can
function as a tumor suppressor; a decrease of p38 activity
significantly contributes to tumorigenesis [74]. Recent
findings show that the cancerous mutations in MAPK
pathways frequently affect Ras and B-raf. Ras/Raf muta-

Figure 14 Significant canonical pathways that are involved with control pituitary nitroproteins.
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tion-activated pathways are important for cell survival
and proliferation, whereas stress-activated pathways such
as JNK and p38 largely seem to counteract malignant
transformation. The balance and integration among
those signal pathways could significantly contribute to
tumorigenesis and to any response to drug therapy. The
details of MAPK signaling pathways in cancer are
reviewed [70,75,76]. The MAPK pathways are emerging
as potential therapeutic targets for cancer [77,78], and the
development of inhibitors of MAPK pathways has a
growing importance in cancer therapy.

The pathway analyses of our pituitary adenoma pro-
teomic data clearly demonstrate that MAPK signaling
pathways are involved in pituitary tumorigenesis. The
protein-mapping data of pituitary adenomas show that
ERK (Figure 1A), NFkB and F-protein (Figure 1B),
MAPK, Ras, PKC and PI3K (Figure 1C), and JNK and
p38-MAPK (Figure 1E) are the key nodes in their path-
way networks. The comparative proteomic data show
that Ras, ERK, JNK, p38-MAPK and Akt (Figure 5A),
TNF and TGFb1 (Figure 5B), and MAPK and NFkB (Fig-
ure 5C) are the key nodes in their pathway networks; and
that ERK/MAPK signaling (Figure 6) is the significant
canonical pathway in adenomas.

The nitroproteomic data of human pituitary adenomas
show that TNF and IL1B (Figure 10A) are the key nodes
in their pathway networks; and that p38-MAPK signaling
(Figure 11) is the significant canonical pathway that par-
ticipates in an oxidative-stress response in an adenoma.
The nitroproteomic data of human pituitary controls
show that TGFb1 (Figure 10B) is the key node in its path-
way network. Moreover, the PKA type I beta regulatory
subunit is nitrated in human pituitary adenomas (Figure
10A; Additional file 1, Table S3), and that tyrosine nitra-
tion occurs within the dimerization region [4]; those
nitrations could interfere with dimerization and affect
PKA activity to suppress Raf activity. Figure 9 shows the
canonical pathway of ERK/MAPK signaling, and Figure
13 the canonical pathway of p38 MAPK signaling. Studies
have demonstrated the altered Gs and adenylate cyclase
activity in human GH-secreting pituitary adenomas [79],
Gsα and Giα mutations in clinically nonfunctioning pitu-
itary adenomas [80], and an H-ras mutation in a single
aggressive prolactinoma or metastases from pituitary car-
cinomas [81]. Recent studies demonstrate that an overex-
pression of B-Raf mRNA and protein is a feature of
nonfunctional pituitary adenomas; that overactivity high-
lights an overactivity of the Ras-B-Raf-MAP kinase path-
way to promote pituitary tumorigenesis [82], and that the
low levels of Raf kinase inhibitory protein (RKIP) in a
GH-pituitary adenoma correlate with poor clinical
response to somatostatin analog therapy because RKIP
can bind to and inhibit Raf1 kinase to attenuate MAPK
signaling [83]. The antiproliferative effect of somatostatin

analogs involves the upregulation of p27 and downregu-
lation of the MAPK pathway in human somatotrophino-
mas [84]. Furthermore, studies demonstrate that
dopamine induces an anti-proliferative effect and cell
death via the dopamine D2 receptors, by means of the
p38 MAPK and ERK pathways that involve oxidative
stress, in pituitary tumor cells [85]. Those data confirm
that ERK-MAPK and p38-MAPK signaling pathways sig-
nificantly function in human pituitary adenomas.
Strength and limitation
The strength of this study is (i) that, towards our long-
term goals to clarify the molecular mechanism that are
involved in pituitary adenoma pathogenesis and to dis-
cover tumor biomarkers, a series of human pituitary pro-
teomic expression data (protein-mapping data,
comparative proteomic data, and nitroprotemic data)
were established; four important significant signal path-
way networks that were derived from those proteomic
expression data were discovered, including mitochondrial
dysfunction, oxidative stress, cell-cycle dysregulation,
and the MAPK signaling system; knowledge of those sig-
nal pathway networks will provide important clues and
clear directions for our next step, an in-depth investiga-
tion of pituitary adenomas, for the discovery of tumor
biomarkers, and for the development of efficacious thera-
peutic targets and drugs; (ii) that all protein data were
confirmed with a "gold standard" tandem mass spectrom-
etry-based amino acid sequence; and comparative pro-
teomic data were confirmed with comparative
transcriptomic data [2,3]; (iii) that signal pathway net-
works derived from protein-mapping data provide the
baseline data; comparative proteomic data that are
involved in pathway networks reveal the protein expres-
sion change in the pathway networks to clarify the role of
pathway networks in the pituitary pathogenesis; and
nitroproteomic data reveal the role of oxidative stress in
signal pathways that are related to pituitary pathogenesis.

We realize a potential limitation of this study - a normal
pituitary is an admixture of at least six pituitary cell types,
whereas pituitary adenomas are generally an expanded
clone of a single cell type, as described in our previous
publication [86]. This factor is a common problem with
any human post-surgical tissue study. Enrichment of a
single cell type of pituitary cells (such as with laser-cap-
ture microdissection, LCM) in our next in-depth investi-
gation would be an effective method to resolve that
potential limitation when the LCM-sensitivity problem is
overcome for pituitary protein analysis.
Statistical consideration and biological significance
The objective of this study is to discover significant signal
pathways or pathway networks from pituitary adenoma
protein-mapping data, comparative proteomic data, and
nitroproteomic data. The Fisher's exact test that is con-
tained in the IPA program was used to uncover any statis-
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tically significant pathways or networks with a
significance level of 0.05. For those four protein datasets
in this study: we identified 37 significant canonical path-
ways and 6 pathway networks derived from our protein-
mapping dataset, 9 significant canonical pathways and 3
pathway networks derived from our comparative pro-
teomic dataset, 12 significant canonical pathways and 1
pathway network derived from our qualitative nitropro-
teomic dataset in adenomas, and 12 significant canonical
pathways and 1 pathway network derived from our quali-
tative nitroproteomic dataset in controls.

No multiple-test correlation and significance level of
0.01 or 0.001 was used for this study based on two rea-
sons: (1) a multiple-test correlation and significance level
of 0.01 or 0.001 are more stringent criteria. Although
those two parameters can reduce the probability of false
positives, they also result in the loss of any biologically
meaningful information. For example, if we use the sig-
nificance level of 0.001 [or -log (0.001) = 3], then there
will be 7 statistically significant canonical pathways (Fig-
ure 2) and 4 significant toxicological events (Figure 3)
that derived from protein-mapping data; no significant
canonical pathways (Figure 6) and no significant toxico-
logical events (Figure 7) from comparative proteomics
data; 1 significant canonical pathway (Figure 11) and 1
significant toxicological event (Figure 12) from adenoma
nitroproteomic data; and 10 significant canonical path-
ways (Figure 14) from normal pituitary nitroproteomic
data. In fact, many biologically significant DEPs (Addi-
tional file 1, Table S2) are derived from important path-
ways. Also, in Figure 11, more stringent criteria simply
result in a significant canonical pathway - hepatic
cholestasis; however, this pathway does not have much
biologically meaning for pituitary adenomas. On the
other hand, the canonical pathways p38 MAPK signaling,
cell-cycle G2/M DNA damage-checkpoint regulation,
and protein-ubiquitination pathways (Figure 11) were
recognized as statistically significant with a significance
level of 0.05, which can be reasonably linked to the real
pituitary adenoma biological processes (described
above). (2) Any statistical result is only a reference for
biological significance. A statistically significant result
must be reasonably interpreted with corresponding bio-
logical processes to decide its biological significance.
Some statistically significant results would not have any
real biological meaning. A typical example is that hemo-
globin is often identified as statistically significant
between tumor and control tissues; however, it cannot be
concluded as biologically meaningful for a pituitary ade-
noma because its statistical significance probably derived
from blood contamination. The canonical pathway
hepatic cholestasis described above is another example.
Moreover, for some cases, there might not be any statisti-
cal significance, but those proteins still have biological

significance. For example, some genes have only a small
change without any significant difference at the gene
level; however, that small change at the gene level could
lead to an amplified change on the protein level. As a
biologist, this finding is still an interesting result. There-
fore, when one uses a statistically significant pathway and
network, one must carefully determine whether it is bio-
logically relevant or whether the result really just occurs
only by chance.

Based on those statistical considerations, those statisti-
cally significant pathways and networks that were gener-
ated from the Fisher's exact test with a significance level
of 0.05 were reasonably explained within the pituitary
adenoma biological system. Therefore, four important
biological systems were discovered for pituitary ade-
nomas, including mitochondrial dysfunction, oxidative
stress, cell-cycle dysregulation, and the MAPK signaling
abnormality. These four biological systems provide
important clues and a clear direction for our next in-
depth studies of pituitary adenomas.

Conclusions
This present study clarifies pathway networks that func-
tion in pituitary adenomas. The results demonstrate that
mitochondria dysfunctions, oxidative stress, cell-cycle
dysregulation, and the MAPK-signaling system are signif-
icantly associated with pituitary adenoma pathogenesis.
Further experimental investigation is required to eluci-
date the biological consequences of those pathway net-
works and their relevance to the pathogenic mechanisms
of pituitary adenoma. Those data could provide biomark-
ers, and could lead to the development of novel effica-
cious targets to treat pituitary adenomas.

Methods
Patients and tumor characterization
For protein-mapping analysis [1], the pituitary adenoma
tissue (n = 1; from a black male 54-year-old) from the
Memphis Regional Medical Center was used. During sur-
gery, the tissue was removed, frozen immediately in liq-
uid nitrogen, and stored (-80°C) until analysis.

For comparative proteomics analysis [2,3], 15 pituitary
tumors and 8 normal pituitary glands were used (Addi-
tional file 1, Table S5). Pituitary tumors (n = 15) were
obtained from patients at the Emory University Hospital
during transsphenoidal surgery. All tumors were micro-
dissected and removed with a surgical microscope, rinsed
in sterile saline, snap-frozen in liquid nitrogen, and stored
(-80°C) until analysis. Each tumor fragment was con-
firmed independently by a neuropathologist as being
homogenous and unadulterated by histology and immu-
nohistochemistry prior to proteomics analysis. Eight con-
trol pituitary glands were obtained from the Memphis
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regional Medical Center (n = 7) and the National Disease
Research Interchange (n = 1).

For nitroproteomics analysis [4-6], the clinically non-
functional human pituitary adenoma tissue (n = 1) [4]
and the normal pituitary post-mortem tissue (n = 1) [5,6]
were used. The pituitary adenoma tissue (n = 1; from a
white male 39-year-old) was obtained from the University
of Tennessee Baptist Hospital (Memphis, TN, USA);
immunohistochemical studies showed that tumor cells
were negative for the expression of FSH, LH, GH, PRL,
TSH, or ACTH. During surgery, the tumor tissue was
removed, frozen immediately in liquid nitrogen, and
stored (-80°C) until analysis. The control pituitary tissue
(n = 1; from a male 45-year-old, drowning) was obtained
from the Memphis Regional Medical Center.

Experimental datasets
The experimental datasets that were analyzed in this
study derived from our published human pituitary ade-
noma proteomic data: (i) a protein-mapping dataset that
includes 111 proteins that were identified with two-
dimensional gel electrophoresis (2DGE) and MS [1]
(Additional file 1, Table S1), (ii) a comparative proteomic
dataset that includes 56 DEP's that were identified with
2D gel-based comparative proteomics [2,3] (Additional
file 1, Table S2), (iii) a nitroproteomic dataset that
includes nine nitroproteins, and three non-nitrated pro-
teins that interacted with nitroproteins from a pituitary
adenoma [4], that were identified with nitrotyrosine
immunoaffinity enrichment and tandem mass spectrom-
etry (MS/MS) (Additional file 1, Table S3), and eight
nitroproteins from a pituitary control that were identified
with 2DGE-based nitrotyrosine Western blots and MS/
MS [5,6] (Additional file 1, Table S4).

Ingenuity pathway analysis
The SwissProt accession number and gene name were
used as the identifiers of each proteomic dataset. Each
dataset was saved as an Excel file. Each proteomic dataset
with identifier (.xls file) was input into the IPA analysis
system http://www.ingenuity.com with the Core analysis
platform. For the pituitary adenoma protein-mapping
data and nitroprotein data, their Swiss-Prot accession
numbers in the Excel format were input to the IPA data
upload workflow. For the pituitary adenoma comparative
proteomic data, the Swiss-Prot Accession numbers and
the corresponding fold-change data in the Excel format
were input to the IPA data upload workflow. The IPA sys-
tem will automatically search the matched Gene/mole-
cules, and will generate a two-dimensional table-style
format to show which protein was mapped in the system
for next-step analysis, and to show the unmapped pro-
teins. The unmapped protein's Swiss-Prot accession
number will be converted to the corresponding gene

name by searching the ExPASy (Expert Protein Analysis
System) proteomics server http://www.expasy.org. All
Swiss-Prot accession numbers in combination with gene
names were input to the IPA data upload workflow to
generate the final mapped list for next-step analysis.

The dataset, including mapped IDs (protein and gene),
was saved, and automatically generated five subdatasets,
including the All IDs (= all input IDs), Unmapped IDs
(without the matched molecules in the IPA system,
unmapped IDs will not enter the next-step pathway anal-
ysis), Mapped IDs (match the corresponding molecules,
and recognize the duplicate IDs), Network-eligible IDs (=
Mapped IDs - Duplicated IDs), and Functions/Pathways/
List-eligible IDs. For the duplicate IDs for the same pro-
tein/gene, the identifier with the highest fold-change was
used in the pathway analysis; or, the first instance of the
protein/gene was used in the pathway analysis in the
absence of an expression value such as mapping pro-
teomic data and nitroprotein data. Each subdataset con-
tained ID, notes, molecules, description, location, type of
biofunction, and drugs (Additional file 1, Table S1-S4);
and the fold-change (Additional file 1, Table S2). The
name of each molecule (gene; protein) appears in the
pathway network nodes.

The Network-eligible IDs proceeded into the pathway
network analysis by comparing the network-eligible mol-
ecules (genes; proteins) with the Ingenuity Pathways
Analysis Knowledge Base (IPAKB). IPAKB is a curated
database that contains (i) numerous scientific findings (n
= ~2.2 million; February 13, 2009) that are extracted from
hundreds of thousands of journal articles, textbooks, and
other data sources, and (ii) many canonical pathways (n =
235; February 13, 2009) that are constructed from those
scientific findings [87]. The significance (p-values) of the
association between the dataset and the canonical path-
way was measured by comparing the number of use-spe-
cific proteins of interest that participate in a given
pathway to the total number of occurrences of these
genes in all pathway annotations that are stored in the
IPAKB. A Fisher's exact test was used to calculate the p-
value to determine the probability that the association
between the genes in the dataset and the canonical path-
way is explained only by chance. The level of statistical
significance was set to p < 0.05. Each Pathway analysis
generated the top networks, biofunctions/Tox functions,
and top canonical pathways with a statistical significance
(p < 0.05). A toxicity pathway is defined as a canonical
pathway that is significantly associated with toxicity lists
that are functional gene groupings based on critical bio-
logical processes and key toxicological responses; and
those toxicity lists describe adaptive, defensive, or repara-
tive responses to xenobiotic insult, and could be used to
understand biological responses.

http://www.ingenuity.com
http://www.expasy.org
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