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Abstract

Background: According to the Genetic Analysis Workshops (GAW), hundreds of thousands of SNPs have been
tested for association with rheumatoid arthritis. Traditional genome-wide association studies (GWAS) have been
developed to identify susceptibility genes using a “most significant SNPs/genes” model. However, many minor- or
modest-risk genes are likely to be missed after adjustment of multiple testing. This screening process uses a strict
selection of statistical thresholds that aim to identify susceptibility genes based only on statistical model, without
considering multi-dimensional biological similarities in sequence arrangement, crystal structure, or functional
categories/biological pathways between candidate and known disease genes.

Methods: Multidimensional screening approaches combined with traditional statistical genetics methods can
consider multiple biological backgrounds of genetic mutation, structural, and functional annotations. Here we
introduce a newly developed multidimensional screening approach for rheumatoid arthritis candidate genes that
considers all SNPs with nominal evidence of Bayesian association (BFLn > 0), and structural and functional
similarities of corresponding genes or proteins.

Results: Our multidimensional screening approach extracted all risk genes (BFLn > 0) by odd ratios of hypothesis
H1 to H0, and determined whether a particular group of genes shared underlying biological similarities with known
disease genes. Using this method, we found 6614 risk SNPs in our Bayesian screen result set. Finally, we identified
146 likely causal genes for rheumatoid arthritis, including CD4, FGFR1, and KDR, which have been reported as high
risk factors by recent studies. We must denote that 790 (96.1%) of genes identified by GWAS could not easily be
classified into related functional categories or biological processes associated with the disease, while our candidate
genes shared underlying biological similarities (e.g. were in the same pathway or GO term) and contributed to
disease etiology, but where common variations in each of these genes make modest contributions to disease risk.
We also found 6141 risk SNPs that were too minor to be detected by conventional approaches, and associations
between 58 candidate genes and rheumatoid arthritis were verified by literature retrieved from the NCBI PubMed
module.

Conclusions: Our proposed approach to the analysis of GAW16 data for rheumatoid arthritis was based on an
underlying biological similarities-based method applied to candidate and known disease genes. Application of our
method could identify likely causal candidate disease genes of rheumatoid arthritis, and could yield biological
insights that not detected when focusing only on genes that give the strongest evidence by multiple testing. We
hope that our proposed method complements the “most significant SNPs/genes” model, and provides additional
insights into the pathogenesis of rheumatoid arthritis and other diseases, when searching datasets for hundreds of
genetic variances.
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Background
Rheumatoid arthritis is an inflammatory disease, primar-
ily of the joints, with autoimmune features and a com-
plex genetic component [1]. It arises from the
underlying functional involvement of one or more
mutated genes [1,2]. The essential challenge of rheuma-
toid arthritis is finding an effective screening approach
to find candidate risk genes by their structural and func-
tional similarity to known disease genes, and using them
to develop new techniques for testing, diagnosis, and
treatment [3-5].
When case-control datasets of complex diseases are

available, genome-wide association studies (GWAS)
have great power to detect genetic variants, especially if
many markers are tested across the genome [6-8]. All
published GWAS have led to the discovery of novel
genes for complex diseases that differ between case and
control groups. However, because of the arbitrary multi-
ple testing used in these studies, genetic variants that
confer a small disease risk but are of potential biological
importance are likely to be missed using a “most signifi-
cant SNPs/genes” approach [9,10]. To avoid the strict
adjustment required in multiple testing, we developed a
genome-wide Bayesian association method to test for
association of a single SNP with a case-control pheno-
type. The Bayesian approach compares the probability
of an association to the probability given no association.
For complex diseases, discovering new bioinformatics
strategies based on genome-wide Bayesian association
methods that avoid the limitations of other study is vital.
Traditional statistical genetics aims to identify suscept-

ibility genes based only on a statistical model without
considering biological similarities between disease genes
and likely causal genes. Proteins are essential parts of
organisms and participate in virtually every cellular pro-
cess. Most proteins fold into unique sequence arrange-
ments and structures, and contribute to specific
characteristics in diverse function sets. Proteins and
genes that are responsible for complex diseases are
often associated through similar sequences and struc-
tures [11-13], so candidate genes could be screened
according to sequence, arrangement, and crystal struc-
tures that are similar to known disease genes. A support
vector machine (SVM) is a machine learning algorithm
based on Statistical Learning Theory that is commonly
applied to resolve this problem [14-18]. Good classifica-
tion effects can be obtained with only a few learning
samples. Many studies [19-22] have demonstrated that
disease genes with a specific phenotype share similar
functionalities, and therefore, similarity in the functional
annotations of these genes could be used to screen for
candidate genes for a specific disease. A limited number
of studies have used GWAS [23-25], function clustering

algorithms [26-29], or machine learning methods based
on structural genomics knowledge bases [30] to identify
candidate genes for rheumatoid arthritis. When a set of
candidate risk genes are acquired from case-control
datasets of genetic variances, joint consideration of the
structural and functional associations between candidate
genes and a disease might provide additional insights
into the results of traditional statistic genetics analysis
for identifying candidate genes.
In this article, we hypothesized that underlying candi-

date genes harboring markers with minor or modest evi-
dence of association could be identified through
attributions they share with known disease genes, using
multidimensional biological annotations such as gene
sequence arrangement, crystal structure of encoded pro-
teins, and similar biological pathways or mechanisms.
Here, we introduce a newly developed multidimensional
screening approach to predict candidate genes of rheu-
matoid arthritis based on SNPs, and structural and func-
tional annotations. The rationale for performing our
multidimensional candidate gene screen was the
assumption that several genes, each modestly associated
with a disease, may share sequence or structural pattern,
and jointly participate in the same biological function to
confer susceptibility. We used a genome-wide Bayesian
association method to test for association between a
case-control phenotype and a single SNP. To avoid the
strict adjustment required for multiple testing, Bayesian
approaches compare the probability of an association to
the probability of no association. An SVM classifier was
used to distinguish likely causal genes from non-disease
genes by the sequence and crystal structural features of
their proteins. Candidate genes were assumed to be dis-
ease genes if they were in the same functional categories
or biological pathways associated with the pathogenesis.
We carried out literature searches to verify our results,
and compared them with traditional GWAS results to
demonstrate the potential utility of this method.

Methods
Genetic Association Data of Rheumatoid Arthritis
Genotype frequencies of tested SNPs for case-control
samples were downloaded from GAW16 online using the
500 K Affymetrix chip, from 868 cases and 1194 controls
from the rheumatoid arthritis collection and normal sam-
ples http://www.gaworkshop.org/. Genotype frequencies
were preprocessed to allele frequencies for each SNP.

Gene Location and Disease Loci Data
Location information for human genes was from the
NCBI genome database (downloaded on Mar 25, 2009).
Disease loci information was gathered from the OMIM
online database (downloaded on Mar 25, 2009) [31].
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Sequence and Crystal Structure Data
Linear-sequence items for all human genes were from
the NCBI genome database. Crystal structure datasets of
human proteomics were from online databases PDB
http://www.rcsb.org/pdb/home/home.do and targetDB
(http://targetdb.pdb.org/, downloaded on Mar 25, 2009).

Functional Annotations Data
Function categories in the PIRSF (http://pir.georgetown.
edu/pirsf/, downloaded on Mar 31, 2009), GO (http://
www.geneontology.org/, downloaded on Mar 31, 2009),
and KEGG (http://www.genome.jp/kegg/, downloaded
on Mar 31, 2009) databases were used as source func-
tion annotations, whose well-defined categories are
widely used for important functional identification ana-
lysis. In this study, each candidate gene was annotated
onto its corresponding functional families or categories
using these three databases.

Genome-wide Bayesian Association Analysis
We assume here that data D, are counts of cases and
controls for each of the three genotypes at a SNP locus
(Table 1). Bayesian approaches compare the probability
of D if there is an association (alternate hypothesis H1)
to its probability given no association (null hypothesis
H0). Although most case-control studies are retrospec-
tive, we adopted a prospective viewpoint in which a
case-control status was the outcome variable and the
genotype was regarded as known. Under H0, the prob-
ability of the observed dataset D does not depend on
genotype, and can be written in terms of the probability
θ that an individual included in the study is a case,

P D c n nA U

( / ) ( )  = −1 (1)

where we introduce nA and nU for the numbers of
cases (affected) and controls (unaffected), and C is a
combinatorial constant that cancels out below and so
can be ignored. Here θ is a “nuisance” parameter, whose
value is not important, so under the Bayesian approach
we eliminated it by integration with a prior probability
distribution. For the purposes of this illustration, the
uniform prior is a convenient choice, so

P D P D d cB n n B n nA U A U( ) ( / ) ( , ) ( , )= = + + = + +∫  
0

1
1 1 1 1 (2)

where B denotes the Beta function, defined by
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where nA! = nA × (nA-1) × (nA-2) × K × 1.
To compute a probability for D under H1, we assumed

that individuals with genotype j had a probability of θj
to be a case. Then, analogous to (1),

P D c n n n n nA U A AnU

( | , , ) ( ) ( ) ( )        0 1 2 0 0 1 1 2 2
0 0 1 2 21 1 11= − × − × −

UU (3)

where n j
A and n j

U denote the numbers of cases and
controls with genotype j = 0, 1, 2. We took the easiest
approach first, assuming that each θj had an indepen-
dent, uniform prior, and integrating to obtain [32]
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A U A U
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The next step was to compute the Bayes Factor (BF),
which is the ratio of (4) to (2). The corresponding for-
mula is:

BF
B n A n U B n A n U B n A n U

B n A n A n A
= + + + + + +

+ +

( , ) ( , ) ( , )

(
0 1 0 1 1 1 1 1 2 1 2 1

0 1 2 ++ + + +1 0 1 2 1, )n U n U n U (5)

Values of BF larger than one support H1, while BF < 1
indicated support for the null H0.
To reduce the computational complexity, we used the

log value of BF, BFLn, as our final function to screen
the significant SNP set associated with the disease for
each SNP Vi (i = 1,…, N, where N is the total number of
SNPs in the GWAS.

BFLn V B n n B n n
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Table 1 Frequency of cases and controls for each of three genotypes at a SNP locus.

Genotype: AA AB BB Total

Case n A
0 n A

1 n A
2 n n nA A A

0 1 2+ +
Control n U

0 n U
1 n U

2 n n nU U U
0 1 2+ +

Total: n nA U
0 0+ n nA U

1 1+ n nA U
2 2+ n n n n n nA A A U U U

0 1 2 0 1 2+ + + + +
Where n n n n n nA A A U U U

0 1 2 0 1 2, , , , , represents the frequency for each of the specific genotype AA, AB or BB, respectively.
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Values of BFLn(Vi) larger than zero support H1, while
BFLn(Vi) < 0 indicated support for the null H0.
We then associated gene gt (t = 1… T), where T was

the number of all genes in the human genome, with
SNP Vi, if this SNP was located within gt or if gt was
the closest to Vi. SNPs that were 500 kb from any gene
were considered because most enhancers and repressors
are <500 kb away from genes, and most linkage disequi-
librium blocks are <500 kb away [9]. We carried out
first dimensional screening, namely genetic screening, by
collecting a test set from genes associated with at least
one significant SNP (BFLn > 0) and located within one
or more disease loci for further filtering.

SVM Classification based on Sequence and Structure
Similarity Features
ID Converter[33] was used to map all genes to their
corresponding proteins across the entire human gen-
ome. In this section, the positive set consisted of rheu-
matoid arthritis disease genes from NCBI and the
OMIM online database (Additional file 1). The negative
set contained the remaining genes that did not fall
within any disease loci after excluding genes in the posi-
tive set and the test set.
To simplify our analysis, a 28-dimension vector of

physicochemical features (Table 2), a combinational
pseudo-sequence, was used to represent each protein in
positive, negative, and testing sets, according to the
online RCSB PDB and targetDB databases. We used 8-
dimension secondary features (21-28) and the entire
28-dimension physicochemical features to train two
classifiersfor the second screen.
Considering the diversity of the putative non-disease-

candidate proteins, the non-disease-candidate space
might not have been sampled completely. Therefore, we
constructed 1000 additional training sets (positive:nega-
tive = 1:1), in which each negative set was selected ran-
domly from the original negative set. During each
randomization, the 8- and 28-dimension features were

used to construct the corresponding classifier. The per-
formance of our model was evaluated with an n-fold
cross-validation test. In the cross-validation test, the
entire positive and negative data sets were shuffled and
split into n folds. Each fold was used in turn for testing
and the remaining part (n-1 folds) used for training.
The sensitivity (Qp), specificity (Qn) and overall accuracy
(Qa) were used to measure the accuracy of positive pre-
diction, negative prediction, and the overall accuracy of
the model [34], respectively.

Q

Q

Q

p

n

a

=

=
=

TP/(TP + FN)

TN/(TN + FP)

(TP + TN)/(TP + TN + FP +  FN)

Variables are true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). In general,
the overall accuracy Qa was used to measure the predic-
tive power of a model.
We constructed 10,000 additional training sets (posi-

tive:negative = 335:335), in which each negative set was
selected randomly from the original negative set. Here,
the test set was prepared from genetic screens. We used
the training sets, the test set, and the optima classifier
to retrain the classifier, aiming to classify the genes in
the test set, and then predict candidate genes for the
disease. We performed randomization 10,000 times, and
kept genes that were judged to be disease genes at each
process of randomization.
The SVM used here was Libsvm http://www.csie.ntu.

edu.tw/~cjlin/libsvm[35]. The commonly used kernel
function, radial basis function (RBF) was introduced into
our analysis. According to machine learning theory [36],
an optimal hyperplane was drawn by the SVM model to
separate positive samples from negative ones. The dis-
tance to the hyperplane is related to the confidence of a
prediction. Therefore, the distance from each sample to
the hyperplane was employed to predict the disease can-
didate likeness for genes or proteins.

Functional Annotation Screening and Candidate Gene
Prediction
The PRISF, GO, and KEGG pathway databases are
widely used for functional studies and gene annota-
tions [37,38]. We hypothesized that disease genes
would gather in specific protein families, participate in
the same biological functions, or interact within speci-
fic biological pathways. According to these three data-
bases, specific biological functions were annotated for
known disease genes, and for genes from SVM screen-
ing. In this section, we define three functions (fPIRSF,
fGO and fKEGG) to evaluate whether each candidate
gene in the set from SVM screening was strongly

Table 2 Protein sequence and structure-based features
from PDB and targetDB databases.

Dimension Feature Properties

1-20 C Composition of the 20 amino acid residues

21 a Cell length a in Angstroms

22 b Cell length b in Angstroms

23 c Cell length c in Angstroms

24 alpha Cell angle alpha in degrees

25 beta Cell angle beta in degrees

26 gamma Cell angle gamma in degrees

27 helical Percent of helical in protein sequence

28 beta sheet Percent of beta sheet in protein sequence
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associated with the disease. The corresponding func-
tion formulas were:

f gPIRSF i( )
,

=
1

if g  is annotated onto at least one

 protein 
i

ffamily that disease genes enriched;

otherwise;0,

⎧
⎨
⎪

⎩
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if g i  is defined as a candidate;

otherwise.⎩⎩

where gi is any gene in the resulting set from the first
and second screens.
Here, a sample description was listed below for func-

tional annotation screening (Table 3).
Finally, we used function f(gi) for functional annota-

tion screening by retaining genes (f(gi) = 1) that shared
at least one similar functional annotation.

Comparison with Traditional GWAS
Traditional GWAS analysis [39] uses the Fisher exact
test and multiple testing adjustment. Functional enrich-
ments in GO biological processes and KEGG pathways
were carried out for known disease genes, GWAS genes,
and our predicted genes. Functional consistency with
known disease genes was examined to evaluate GWAS
genes and our predicted genes. To further evaluate the
performance of our screening method, we used the
NCBI PubMed module to retrieve associations of
GWAS genes or our genes for rheumatoid arthritis
using the term “GENE symbols+rheumatoid arthritis” (e.
g. CD4+rheumatoid arthritis) to determine the underly-
ing mechanisms of the genes from our model.

Results and Discussions
A genome-wide Bayesian association analysis was car-
ried out to identify variants within genes that were mod-
estly associated with rheumatoid arthritis. The dataset,
produced by the Genetic Analysis Workshop (GAW),
was 2062 samples genotyped with an Affymetrix Gene

Chip Human Mapping 500 K Array Set. Quality control
for this dataset included assessment of marker genotype
frequency, allelic frequency, and departure from Hardy-
Weinberg equilibrium. A total of 433,766 SNPs survived
the quality control protocol and were tested for associa-
tion with the trait in 868 cases and 1194 controls. Sig-
nificant SNPs (BFLn > 0) were mapped onto their
corresponding genes, and these genes were considered
for further analysis. This process resulted in 4402 candi-
date risk genes, which were labeled as members of the
test set for the SVM screening step.
For the SVM screening, we extracted the sequence

and structure information from the PDB and targetDB
databases and calculated their feature values for 335
known disease genes, 28,874 non-disease genes, and
4402 other genes in the test set. We used 8-dimension
secondary features (21-28) and the entire 28-dimension
physicochemical features to train two classifiers for the
second screening (see Materials and Methods). To
address the concern that, considering the diversity of
the putative non-disease-candidate proteins, the non-
disease-candidate space might not have been sampled
completely, we constructed 1000 additional training sets
(positive:negative = 1:1), with each negative set selected
randomly from the original negative set. For each rando-
mization, the 8- and 28-dimension features were used to
construct the corresponding classifiers. The performance
of our model was evaluated with a 5-fold cross-valida-
tion test in which the entire positive and negative data
sets were shuffled and split into five folds. Each fold was
used for testing, and the remaining part (5-1 folds) was
used for training. The 1000 randomization results from
the two classifiers were analyzed, and the relevant accu-
racy of 28-dimension physicochemical features varied
between 0.695 and 0.891 (Table 4).
Based on predictions from these two classifiers, we

chose the second classifier for candidate gene prediction.
We reconstructed 10,000 additional training sets (posi-
tive:negative = 335:335), in which each negative set was
selected randomly from the original negative set. The
test set was prepared from genetic screens. After 10,000
randomizations, the intersection of each prediction was
defined as the final prediction, resulting in 495 candi-
date genes that used for the third screening step.
We used three functional databases (PRISF, Gene

Ontology [GO], and KEGG pathway) to identify

Table 3 Sample description for functional annotation
screening.

Genes* fPIRSF fGO fKEGG f = fPIRSF VGO VKEGG

g1 0 0 0 0

g2 0 0 1 1

g3 0 1 1 1

... ... ... ... ...

gn 1 1 1 1

* contains the genes from SVM screening; columns fPIRSF, fGO, fKEGG, are
functional annotation information from PRISF, GO and KEGG databases; ‘V’is
an “or” command.

Table 4 Performance information of two classifiers based
on 8-dimension secondary physicochemical features and
28-dimension physicochemical features.

features prediction average ± std

8-dimension secondary features(21-28) 0.631-0.831 0.703 ± 0.038

28-dimension physicochemical features 0.695-0.891 0.762 ± 0.036
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responsible risk genes that had similar functional
annotations to known disease genes. We hypothesized
that disease genes would gather in specific protein
families, participate in the same biological functions,
and interact in specific biological pathways. According
to the three databases, specific biological functions
were annotated for 335 known disease genes and 495
genes from the SVM screening. For 495 genes, accord-
ing to defined function f(gi), we collected candidate
genes for which each value of their corresponding
function f(gi) equaled 1, demonstrating their strongly
functional associations with known disease genes. We

identified 146 candidate disease genes as our final can-
didate predictions for rheumatoid arthritis (Additional
file 2).
We used the web software toolkit, Gene Webgetal[40]

to investigate the relationship between the 146 candidate
genes and the known disease genes, and found several
GO functional categories (Figure 1) and pathways in
which candidate genes were over-represented, and
appeared to interact with other pathways that led to the
pathogenesis of the disease. The 146 genes were
enriched in signal transduction, positive regulation of
cellular process, the immune system and immune

Figure 1 Results of GO functional enrichment of candidate genes and known disease genes. (A) GO functional enrichment of candidate
genes predicted by our method. (B) GO functional enrichment of candidate genes predicted by the GWAS method. (C) GO functional
enrichment of known disease genes.
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response, and the physiological response to wounding,
which was coincident with known disease genes (Figure
1). Responsible pathways included cytokine-cytokine
receptor interaction pathways, Jak-STAT signaling path-
ways, cell adhesion molecules, and MAPK signaling
pathways (Figure 2; Additional file 3 and 4). Candidate
genes and known disease genes not only shared the
same pathways, but also linked enriched pathways
involved in passing on disease risk (Figure 2).
The nature of our screening approach meant that

many of our predictions overlapped extensively in simi-
lar function categories. Therefore, to describe functions
representative of association with rheumatoid arthritis,

we selected those with the strongest association that
also displayed a higher functional enrichment. For
example, consistent with all previous studies of rheuma-
toid arthritis, genes in our gene set included members
of the immunoglobulin protein family (Figure 3), the
protein kinase domain family, the SH3 domain family,
and the ligand-binding domains of nuclear hormone
receptor family, and included several genes associated
with moderate disease risk, and commonly reported
genes such as CD4 [41-44], FGFR1 [45-47], and KDR
[48-52]. Genes in the immunoglobulin protein family
have a crucial role [53,54] in the pathogenesis of the dis-
ease. FGF-2 is transferred to FGFR-1 through binding to

Figure 2 Pathway-pathway interactions and gene-pathway relationships. (A) Interactions between pathways of rheumatoid arthritis. Green
vertices are responsible pathways and edges are interactions. (B) Relationships between candidate disease genes and corresponding pathways.
Orange nodes are responsible pathways, blue nodes are known disease genes, and pink nodes are predicted disease genes.

Zhang et al. BMC Medical Genomics 2010, 3:38
http://www.biomedcentral.com/1755-8794/3/38

Page 7 of 11



HSPG, resulting in RANKL and ICAM-1-mediated
maturation of osteoclasts via ERK activation. FGF-2 not
only augments the proliferation of RASFs, but is
involved in osteoclast maturation, leading to bone
destruction in rheumatoid arthritis. Genes in the immu-
noglobulin protein family also showed strong association
with specific biological processes such as receptor bind-
ing, protein binding, and molecular transducer activity.
Not surprisingly, a KEGG pathway search using these
genes yielded the terms “cell adhesion molecules
(CAMs)”, “cytokine-cytokine receptor interaction” and
“Jak-STAT signaling pathway” as the most significantly
represented, similar to the enrichment analysis for
known disease genes in these pathways. The candidate
genes either interacted directly with enzymes associated
with known disease genes, or conveyed disease risk
indirectly.
We carried out GWAS to find the candidate gene

set. The threshold of significant P-value (Bonferroni
test) was set at 1.835e-8. GWAS identified 822 candi-
date genes (Additional file 5). We used Gene Webgetal
software to check underlying biological associations for
evidence of these candidates in the GO and KEGG
databases during rheumatoid arthritis pathogenesis.
Compared to traditional GWAS, which is based on
multiple testing, we found that few candidate genes
overlapped with the results of our multidimensional
screening method. Most of the candidate genes in our
prediction were verified as modestly associated with

rheumatoid arthritis by literature retrieving, but were
not identified by a traditional GWAs approach (Addi-
tional file 1). We note that a large number of candi-
date genes from the traditional prediction could not
easily be classified into the related functional cate-
gories or interacting biological processes associated
with this disease. This was not the case for our predic-
tion, demonstrating the effectiveness of our proposed
method (Figure 1, Additional file 3, 4 and 6). Candi-
date genes from GWAS tended to participate in
immune systems processes (Figure 1), antigen proces-
sing and presentation, glutathione metabolism, cell
adhesion molecules (CAMs) and glutathione metabo-
lism and so on (Additional file 6). Even if dysfunction
was found in these biological processes, little effect
would be expected on other biological processes or
pathways, and would not lead to systemic abnormal-
ities or impairment in the function of human essential
immune system (Figure 2A). Thus, we propose that
the results from strictly statistical methods can find
significant candidate genes, but does not consider
minor- or medium-risk genes, and this might make
uncovering the underlying pathogenesis of rheumatoid
arthritis difficult for researchers in the post-genome
area. Some candidates from our predicted results lack
defined functional descriptions, and require further
studies to verify their associations or mechanisms with
rheumatoid arthritis, such as NTRK1, IL1R2, and
SERPIND1.

Figure 3 Known disease genes and predicted genes are enriched in immunoglobulin protein family. Nodes in blue represents known
disease genes, red ones are predicted genes.
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Multidimensional approaches can also be applied to
candidate gene identification of other diseases, where
multiple genes share underlying biological similarities (e.
g. the same pathway or GO term), or contribute to dis-
ease etiology but have common variations that make
modest contributions to disease risk. Considering under-
lying biological similarities together with the proposed
method, rather than focusing on a few SNPs or genes
with the strongest evidence of disease association can
detect likely causal genes. We hope that the proposed
method provides additional insights into the pathogen-
esis of other diseases using hundreds of genetic variance
in datasets.

Conclusions
In this article, we introduce a multi-dimensional screen-
ing approach to analyze the 16th Genetic Analysis
Workshop (GAW16) data for rheumatoid arthritis, and
identify candidate genes for rheumatoid arthritis. Our
proposed approach is based on underlying biological
similarities-based methods for candidate and known dis-
ease genes. Application of our method could identify
likely candidate disease genes for rheumatoid arthritis,
and could yield biological insights that are otherwise
undetectable when focusing only on genes with the
strongest evidence by multiple testing.
Traditional GWAS have been developed to identify

susceptibility genes assuming a “most significant SNPs/
genes” model. This screening process uses a strict selec-
tion of statistical thresholds, and aims to identify sus-
ceptibility genes based only on the statistical model,
without considering multi-dimensional biological simila-
rities in sequence arrangement, crystal structures, and
functional categories or biological pathways shared
between candidate and known disease genes. Thus,
many minor or modestly associated risk genes are likely
to be missed after multiple testing adjustments. GWAS
and our methods have different objectives. The aim of
our method is to avoid arbitrary multiple testing so that
more risk biomarkers can be considered. Rather than
focusing on individual genes for which evidence is
strongest, our multidimensional screening approach
typically extracts all risk SNPs/genes (BFLn > 0) by their
odds ratios for hypothesis H1 to H0 , and looks for
genes that share underlying biological similarities with
known disease genes. We identified multiple genes shar-
ing underlying biological similarities that contributed to
disease etiology, but for which common variations made
modest contributions to disease risk. A large number of
candidate genes from traditional prediction could not be
easily classified into related functional categories or
interacting biological processes that are associated with
the disease.

By considering underlying biological similarities
together, rather than focusing on a few SNPs or genes
with the strongest evidence of disease association, we
can detect likely causal genes using the predicted
method. We hope this alternative model complements
the most significant SNPs/genes model, and provides
additional insights into the pathogenesis of rheumatoid
arthritis and other diseases, when using hundreds of
genetic variance datasets.
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