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Abstract

responses to mild anti-inflammatory therapy.

response networks.

acid metabolite 5,6-DHET.

Background: Chronic systemic low-grade inflammation in obese subjects is associated with health complications
including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce
these risks. However, available markers of inflammatory status inadequately describe the complexity of metabolic

Methods: To address this limitation, we used an integrative omics approach to characterize modulation of
inflamnmation in overweight men during an intervention with the non-steroidal anti-inflammatory drug diclofenac.
Measured parameters included 80 plasma proteins, >300 plasma metabolites (lipids, free fatty acids, oxylipids and
polar compounds) and an array of peripheral blood mononuclear cells (PBMC) gene expression products. These
measures were submitted to multivariate and correlation analysis and were used for construction of biological

Results: A panel of genes, proteins and metabolites, including PGE, and TNF-alpha, were identified that describe a
diclofenac-response network (68 genes in PBMC, 1 plasma protein and 4 plasma metabolites). Novel candidate
markers of inflammatory modulation included PBMC expression of annexin A1 and caspase 8, and the arachidonic

Conclusion: In this study the integrated analysis of a wide range of parameters allowed the development of a
network of markers responding to inflammatory modulation, thereby providing insight into the complex process of
inflammation and ways to assess changes in inflammatory status associated with obesity.

Trial registration: The study is registered as NCT00221052 in clinicaltrials.gov database.

Background

In obesity, both the adipose tissue mass and the extent
of macrophage infiltration increase. Moreover, both adi-
pocytes and macrophages can release a range of inflam-
matory markers, thereby contributing to a local and
systemic state of “low-grade” inflammation [1,2]. The
systemic inflammatory status often seen in obese sub-
jects is associated with development of obesity-related
diseases like cardiovascular diseases [3,4], diabetes melli-
tus and insulin resistance [5-7]. Modulation of
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inflammation in overweight subjects may be a means to
reduce the risk of diseases associated with obesity.
However, it is difficult to detect modulation of inflam-
mation, as inflammation is a complex process that can
be poorly described with a single marker. In fact, a
range of markers for local and systemic inflammation
have been described and evaluated, primarily with
respect to the risk of atherosclerosis and cardiovascular
disease development. As with classic inflammatory con-
ditions, obesity is associated with elevated levels of the
acute phase reactant C-reactive protein (CRP) [8]. CRP
is a well described marker of risk for development of
both coronary heart disease [9] and type-2 diabetes [10].
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Other inflammatory markers include cytokines such as
interleukin-6 (IL-6), which can regulate CRP release
[11,12], and tumor necrosis factor alpha (TNF-alpha),
adhesion molecules such as VCAM-1, ICAM-1 and E-
selectin [13] and eicosanoids like prostaglandin E2
(PGE,) [14,15]. In type-2 diabetes, levels of multiple
inflammatory markers (CRP, IL-6, adhesion molecules)
are elevated in an early disease stage and increased
further with disease progression [16]. Plasma sialic acid
level also rises in association with metabolic syndrome,
including insulin resistance and type-2 diabetes, and
appears to be a marker of acute micro vesicular
endothelial damage [17-19].

The focus of the present study was to investigate and
provide insight into the modulation of obesity-associated
inflammation, by applying a mild anti-inflammatory
therapy to overweight males. Diclofenac, a non-steroidal
anti-inflammatory drug (NSAID), which is known to
inhibit prostaglandin synthesis by inhibition of cyclo-
oxygenase enzymes, was chosen as a model compound.
Due to the complexity of the inflammatory process, we
used a wide-range of ‘omics-based’ parameters to exten-
sively characterize modulation of inflammation. This
analysis approach included measurements of 80 plasma
proteins, more than 300 plasma metabolite levels (lipids,
free fatty acids, oxylipids and a wide array of polar com-
pounds) and whole genome expression profiles in
PBMCs.

Analysis of the ‘omics-based’ datasets was performed
using multivariate and correlation analysis. The results
were used to construct biological networks, providing
visualization of the interactions between identified mar-
kers. This integrated inspection provided new insights
into the complex process of inflammation and ways to
assess changes in inflammatory status associated with
obesity.
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Methods

Subjects and study design

The study was conducted at TNO Quality of Life
(Zeist, the Netherlands). Overweight or mildly obese
men with a body mass index (BMI) between 25.1 and
34.0 kg/m* were recruited from a pool of volunteers.
Fifty subjects gave written informed consent after
being informed about the study, both verbally and in
writing. All subjects completed a questionnaire on
medical history and were submitted to a physical
examination. Blood and urine were collected after an
overnight fast for routine analysis. In addition, plasma
CRP levels were determined using a high-sensitivity
CRP assay.

Subjects who, based on medical histories, were not
suitable to receive diclofenac treatment (history of cur-
rent gastro-intestinal diseases including bleeding, ulcer
or perforation, history of stroke, history of current sig-
nificant hematological disorders, any significant hepatic,
renal or cardiovascular disease or asthma) and subjects
with allergy or hypersensitivity for non-steroidal anti-
inflammatory drugs (NSAIDs) were excluded from parti-
cipation. Furthermore, smokers and subjects who
reported slimming or who were on a medically pre-
scribed diet were excluded from participation. Also, sub-
jects who were on medication that may have interfered
with parameters to be measured or with diclofenac
treatment and subjects with a history of medical or sur-
gical events that may have affected the study outcomes
were not included. Based on these criteria, twenty five
subjects were eligible. Twenty overweight men (25 <
BMI <31) were selected on the basis of the highest CRP
values and nineteen completed the study. One person
dropped out on the first day of the study for study unre-
lated reasons. Subject characteristics are presented in
table 1.

Table 1 Demographic data of subjects that completed the study (n = 19) at screening.

All (n =19) Placebo treatment Diclofenac treatment
(n =10) n=9)
Age (years) 43 + 15 41 + 16 45 + 15
(19 - 60) (21 - 58)
Body weight (kg) 935 £ 80 935+93 935+ 69
(81.1 - 105.2) (85.2 - 104.4)
Height (m) 1.82 + 0.08 182 +0.10 1.83 £ 0.07
(1.69 - 1.96) (1.70 - 1.92)
BMI (kg/mz) 281 +£1.2 281 +£10 281 £ 15
(26.7 - 29.3) (26.1 - 30.9)
hs-CRP (mg/L) 222 + 233 208 £ 1.88 237 £ 287
(041 - 6.35) (064 -9.72)
Fasting glucose (mmol/L) 6.0 £ 0.5 59+ 05 6.0+ 06
(52-7.1) (5.0 - 6.8)
Fasting insulin (mU/L) 134 + 8.1 134 £ 86 133 £ 8.1
(5.1 - 26.8) (3.3 -266)

Values: mean * SD (range)
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The study was approved by the Medical Ethics Com-
mittee of the University Medical Centre of Utrecht
(May, 2005) and conducted according to the current
assembly (52nd) of the Declaration of Helsinki (Edin-
burgh, Scotland, October 2000) and the ICH Guideline
for Good Clinical Practice (ICH Topic E6, adopted 01-
05-1996 and implemented 17-01-1997). The study is
registered as NCT00221052 in clinicaltrials.gov
database.

The study was designed as a double blind, rando-
mized, parallel trial, in which subjects were treated
with diclofenac (n = 9) or placebo (n = 10). Randomi-
zation of subjects to treatment groups was restricted
by CRP, BMI, fasting glucose and age. Subjects con-
sumed one capsule (placebo or 50 mg diclofenac)
approximately one hour before breakfast, lunch and
dinner for 9 days. A treatment period of 9 days was
chosen as suitable treatment duration to both detect
anti-inflammatory effect and avoid side effects as much
as possible. The dose of 150 mg/day is a common dose
prescribed in osteoarthritis or rheumatoid arthritis
(e.g [20]).

Subjects were instructed to keep their habitual diet
during the study. Blood samples were taken after an
overnight fast on day 0, 2, 4, 7, 9 and 10. Subjects
underwent an oral glucose tolerance test (OGTT) on
day 0 and day 9 (data discussed in [21]).

Measurement of PGE,, CRP and sialic acid levels

Levels of PGE,, hsCRP and sialic acid were measured
in fasting plasma. PGE, was determined using the
Prostaglandin E,(**’I) Biotrak assay system (Amersham
Biosciences, UK) with modifications. In short, PGE, in
samples was derivatized to the methyl oximate deriva-
tive. The resulting solution was further diluted (final
dilution 5 times) in PBS and assayed. The assay con-
sists of incubation of the oximated sample PGE,, the
1251 _labelled PGE,, and a PGE, specific antibody. After
incubation, the Amerlex-M reagent is added and the
free and bound '*’I labeled PGE, separated using cen-
trifugation. The resulting bound radioactivity in the
pellet is determined using a gamma-counter. One sub-
ject (number 7) was excluded from the PGE, analysis
since day 0 value was missing due to an analytical
problem.

CRP levels were determined using the CRP ELISA kit
‘CRP sensitiv’ (Immun Diagnostik, Bensheim, Germany)
according to the manufacturer’s instructions. The enzy-
matic determination of sialic acid (N-acetyl-neuraminic
acid) was performed using the colorimetric assay by
Roche Diagnostics (Mannheim, Germany).

Data were analyzed for time and treatment effects
using 2-way ANOVA in SAS v9 (SAS Institute Inc.,
Cary, USA).
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RNA isolation, labeling and hybridization

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from fasting blood samples taken on day 0 and
day 10. Blood was transferred to Leucosep tubes filled
with Fycoll and centrifuged at 800 x g for 20 min.
Then, the PBMC layer was transferred to a clean tube
and after two steps of washing with PBS and centrifuga-
tion at 225 x g for 10 min, PBMCs were resuspended
and stored at -70°C. RNA was isolated from PBMCs
using NucleoSpin columns (Bioké, Leiden, the Nether-
lands) according to the manufacturer’s instructions.
Integrity of RNA obtained was examined by Agilent
Lab-on-a-chip technology using the RNA 6000 Nano
LabChip kit and a bioanalyzer 2100 (Agilent Technolo-
gies, Amstelveen, the Netherlands).

The isolated RNA samples were sent to ServiceXS BV
(Leiden, the Netherlands) where they were processed
according to Affymetrix protocols. In brief, RNA con-
centration was determined by absorbency at 260 nm,
and quality and integrity was verified using the RNA
6000 Nano assay on the Agilent 2100 Bioanalyzer (Agi-
lent Technologies).

Next, 2 pg of high quality total RNA was used with
the Affymetrix Eukaryotic One-Cycle Target Labeling
and Control reagents to generate biotin-labeled anti-
sense cRNA. The quality of the cRNA was checked
using the Agilent 2100 bioanalyzer. The labeled cRNA
was further used for the hybridization to Affymetrix
Human Expression U133 2.0 Genechips (with 54613
probesets). After an automated process of washing and
staining, absolute values of expression were calculated
from the scanned array using the Affymetrix GCOS
software.

Transcriptome data analysis

Quality control and normalization of microarray data
was performed using R/BioConductor packages through
the NuGO MadMax pipeline https://madmax.bioinfor-
matics.nl, which is also available as a Genepattern pro-
cedure on http://nbx2.nugo.org[22]. One array did not
pass the quality control, due to high background values
and the data for this subject from the diclofenac group
was excluded from the transcriptome data analysis.

Raw signal intensities from CEL files were normalized
using the GCRMA algorithm. Normalized signal intensi-
ties below 10 were replaced by 10 and only probesets
with at least one signal intensity value >15 were
included in further data analysis (24833 probesets). Data
were log (base2) transformed and a 2-way ANOVA was
performed using SAS v9 (SAS Institute Inc., Cary, USA)
to assess the time x treatment interaction effects. To
reduce number of genes in the multivariate analysis and
thus the skewness of the dataset, genes with p < 0.1 for
time x treatment interaction in the ANOVA (3355
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genes) were selected and analyzed further using PLS-DA
using Matlab Version 7.0.4 R14 (The Mathworks, Inc.)
as described below under Multivariate analysis of
‘omics’ data.

Subsets of genes selected by PLS-DA were analyzed in
GenMAPP v2.0 http://www.genmapp.org to find func-
tional groups of genes (based on Gene Ontology) that
were overrepresented in these subsets [23]. Transcrip-
tome data are available through ArrayExpress
(E-TABM-740).

Proteomics analysis

Blood collected in the presence of EDTA provided
plasma samples, which were shipped to Rules Based
Medicine, Inc. (Austin, USA). Measurement of expres-
sion levels of 79 proteins (HumanMAP, antigen panel)
was conducted using fully automated, bead-based multi-
plex sandwich immunofluorescence assays (see list of
proteins in additional file 1).

Some of the variables in the proteomic data set con-
tained a high number of measurements below the detec-
tion limit which could seriously disturb the statistical
analysis. Therefore, the so-called 80% rule [24] was
applied to retain only those peaks which have 80% or
more values above the detection limit for at least one of
the two treatment groups, resulting in retention of 64
out of the 79 variables. Although they did not fulfill the
criteria of the 80%-rule, TNF-alpha (65% and 67% of
values above detection limit in placebo group and diclo-
fenac group, respectively) and matrix metallopeptidase 9
(MMP-9) (65% and 78% of values above detection limit
in placebo group and diclofenac group, respectively)
were also retained due to their known role in inflamma-
tion, resulting in 66 proteomic variables being included
for statistical analysis. Values below the detection limit
that remained in the truncated data set were replaced
by a value of half of the lower assay limit.

Metabolomics analysis

The analysis of plasma samples for lipids, free fatty acids
(FFA) and “polar” metabolites by liquid chromatogra-
phy-mass spectroscopy (LC-MS) and “global” metabolite
assessments by GC-MS and prepocessing of the meta-
bolic profiling data are described in detail by Wopereis
et al. [21]. The LC-MS FFA data set contained 14 anno-
tated peaks, the LC-MS Lipids data set existed of 61
annotated peaks, 120 metabolites were included in the
LC-MS polar data set and the GC-MS global data set
contained 137 metabolites.

Oxylipids analysis

The oxygenation of polyunsaturated fatty acids yields a
wide variety of compounds with potent inflammatory
and anti-inflammatory properties (e.g. prostaglandins).
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In this study, plasma oxylipids were quantified using
modification of published procedures [25]. Specifically,
samples were randomized and extracted using 60 mg
Oasis HLB (Waters Corporation, Milford, MA) solid
phase extraction (SPE) cartridges along with a laboratory
plasma reference material, a supplied replicate sample
and a blank of pH 7.4, 0.1 M phosphate buffered saline
solution (PBS). SPE cartridges were pre-washed then
conditioned with 3.5 mL with 0.1% acetic acid in 5%
methanolic water. Samples and controls (250 uL) were
placed in independent SPE solvent reservoirs, then
spiked with deuterated analytical surrogates and an anti-
oxidant/chelator mix (EDTA and butylated hydroxy
toluene), then allowed to equilibrate for 2 min. Samples
were diluted with 1 mL of 0.1% acetic acid:5% MeOH
solution, drawn through SPE cartridges by light vacuum,
washed with 3.5 mL 0.1% acetic acid:5% MeOH solution
and sorbent was dried under 20 psi vacuum. Analytes of
interest were eluted with MeOH followed by ethyl acet-
ate into polypropylene tubes containing 2 pL glycerol.
Solvents were removed under vacuum and residues
stored at -20°C until day of analysis. Upon analysis resi-
dues were reconstituted with 50 pL of 800 nM 1-cyclo-
hexyl-ureido-3-dodecanoic acid (CUDA) in MeOH and
filtered with Durapore® PVDF 0.1 mm spin-filter tubes
(Millipore, Billerica, MA, USA), at 4°C, then transferred
to autosampler vials.

Analytes from sample extracts (10 uL) were separated
by reverse phase gradient (A: H20 w/0.1% acetic acid
and B: 90:10 acetonitrile/isopropanol (v/v) at 250 pL/
min) on a UPLC using a 2.1 x 150 mm HSS-C18
Acquity column (Waters Corp.). Oxylipids and fatty
acids were detected by negative mode electrospray ioni-
zation on a Quattro Micro (Waters Corp.) tandem mass
spectrometer. Analytes were quantified with QuanLynx
v.4.0 software (Waters) using internal standard meth-
odologies against a minimum 5 pt calibration curve
bracketing all reported concentrations.

Multivariate analysis of ‘omics’ data

Partial Least Squares Discriminant analysis (PLS-DA;
[26]) was used to identify genes, proteins and metabo-
lites that differed in their change between day 0 and day
9 between the diclofenac and placebo group. Data were
mean-centered for analysis. In PLS-DA, a Y-variable
containing class membership information is correlated
to a data matrix (X-block). The subjects who received
the placebo and diclofenac treatments were assigned to
class ‘0’ and class ‘1’, respectively. The X-block was
defined for each data set (genes, proteins and metabo-
lites per platform) by subtracting the day 0 values from
the day 9 values, and a PLS-DA model was made for
each data set. The largest number of PLS factors that
was considered was 10.
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The PLS-DA models were evaluated using a ‘leave-
one-out’ cross-validation scheme [27], such that data
from one subject was left out in the first cross-validation
step, a PLS-DA model was built, and the treatment class
membership of removed subject was predicted. The pro-
cess was repeated until all 19 subjects were left out
once. The error rate of the model was determined by
comparing the original class membership and the pre-
dicted one. The optimal number of latent variables
(LVs) was determined based on the minimum value of
this error rate and the final fit of the model was made
using this number of optimal LVs.

PLS-DA models with error rates below 30% were opti-
mized by performing variable selection based on a jack-
knife approach. In this procedure, data of one subject
was left out and a PLS-DA model was made using the
same number of LVs that was used for the final model.
This was repeated until all 19 subjects were left out
once, resulting in 19 sets of regression coefficients, the
standard deviation of which was used to determine the
relative standard deviations (RSDs) of each regression
coefficient. Only those variables with RSDs <50% were
included in a truncated data set used to build a second
PLS-DA model. Components that contributed to treat-
ment differences were identified based on the absolute
regression coefficients of this model. All multivariate
data analyses were performed using Matlab Version
7.0.4 R14 (The Mathworks, Inc.).

(Combined) data analysis & interpretation

Differences between response to diclofenac and pla-
cebo treatment was analyzed by PLS-DA (as described
above) and 2-way ANOVA. Markers which increased
or decreased at least 20% in 6 or more subjects in
the diclofenac group were considered specifically
responsive to diclofenac intervention. Markers that
showed a >20% change in the same direction in 6 or
more subjects in the placebo group were disregarded.
The changes in selected markers are displayed as a
heatmap.

Correlation analysis was performed in SAS Enterprise
Guide v. 4.1 (SAS Institute Inc., Cary, USA). The signifi-
cance threshold was set to p < 0.01. Biological networks
were generated using curated interactions in MetaCore
v4.7 (GeneGo Inc., St. Joseph, MI, USA). MetaCore™ is
based on a proprietary manually curated database of
human protein-protein, protein-DNA and protein com-
pound interactions, metabolic and signaling pathways
and the effects of bioactive molecules in gene expres-
sion. Lists of genes, proteins and metabolites that
responded to diclofenac and lists of genes, proteins and
metabolites with highest correlation to CRP changes
were uploaded into MetaCore™ for construction of bio-
logical networks based on known interactions. Pathway
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maps were edited in Mapeditor (GeneGo Inc., St.
Joseph, MI, USA) version 2.6.0.

Results

Inflammatory markers

In the current study modulation of inflammation by
diclofenac was investigated by integrated analysis of the
response of genes in peripheral blood mononuclear cells
(PBMC) and of proteins and metabolites in plasma,
including known inflammatory markers, in order to
investigate modulation of inflammatory status in state of
obesity.

Firstly, effects of diclofenac on known inflammatory
markers CRP, PGE, and sialic acid were assessed. While
sialic acid levels were not different between groups,
responses of PGE, and CRP on diclofenac treatment dif-
fered significantly from responses on placebo treatment
(PGE,: treatment x time interaction p = 0.017; hsCRP:
treatment x time interaction p = 0.0273).

As expected, diclofenac treatment decreased PGE,
levels (48.9 £ 10.6 pg/mL (mean + stdev) at day 9 com-
pared to 55.3 £ 11.9 pg/mL at day0, p = 0.047), as dis-
played in figure 1. In contrast, CRP levels were
significantly reduced in the placebo group (2.05 + 2.30
pg/mL (mean + stdev) at day 9 compared to 4.03 + 3.34
pg/mL at day0, p = 0.0062), but not in the diclofenac
group. As illustrated in figure 2, four subjects in the pla-
cebo group exhibited elevated CRP levels (>5 pg/mL) at
day 0. The CRP levels in three of these subjects dropped
below 2 pg/mL at day 9, resulting in a 3.6 to 8 fold
reduction in CRP levels at day 9 compared to day 0.

Combined analysis of diclofenac treatment effects

In addition to assessment of classical markers, changes
in PBMC transcriptome, plasma proteome and plasma
metabolome were assessed. Transcriptomic, proteomic
and metabolomic datasets were submitted to supervised
multivariate analysis (PLS-DA) to identify differences in
response to diclofenac treatment compared to placebo.
The results of the analysis are shown in table 2. With
respect to metabolomic datasets, a significant difference
between diclofenac and placebo treatment was detected
only for metabolites from the oxylipid metabolomics
platform: a set of 19 oxylipids were retained in a model
with 10.5% error rate (see additional file 2). More
detailed analysis of metabolomics data showed that, for
other metabolomics platforms (GC-MS global, LC-MS
polar, LC-MS lipids and LC-MS free fatty acids) changes
were only detected in combination with an oral glucose
tolerance test [21]. In addition to oxylipids, plasma pro-
tein and PBMC gene expression data also indicated dif-
ferential signatures between diclofenac and placebo
groups. The selection of 46 plasma proteins is listed in
additional file 3. The selection of 3355 genes was
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Figure 1 PGE2 levels before (day0) and after (day9) supplementation with placebo and diclofenac. The PGE2 response was significantly
different for diclofenac compared to placebo (ANOVA, treatment * time interaction P < 0.05). In the diclofenac group, the difference in PGE2
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Figure 2 CRP levels before (day0) and after (day9) supplementation with placebo and diclofenac. The CRP response was significantly
different for diclofenac compared to placebo (ANOVA, treatment * time interaction P < 0.05). In the placebo group, hsCRP levels were
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submitted to enrichment analysis, to assess which biolo-
gical processes are involved in the differential response
between diclofenac and placebo intervention. Almost all
top-ranked processes were inflammation-related, such as
defense response, immune response, inflammatory
response and response to stress (see additional file 4 for
a complete list of enriched biological processes).

A primary goal of this study was to identify markers for
modulation of inflammation in reponse to diclofenac

intervention. The inflammatory modulation by diclofe-
nac was investigated by detailed analysis of responses of
genes, proteins and oxylipids selected by multivariate
analysis. Markers that respond specifically to diclofenac
intervention were selected based on >20% increase or
>20% decrease in at least 6 subjects treated with diclofe-
nac (as described above in (Combined) data analysis &
interpretation). To focus on modulation of inflammation
by diclofenac, and not acute phase response, only
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Table 2 Overview of results of multivariate analysis
(PLS-DA) of various data sets.

Original After variable
data set selection
# error # error
variables rate variables rate
plasma proteomics 66 21% 46 10%
plasma oxylipids 30 26% 19 10.5%
plasma GC-MS 137 42% - -
plasma LC-MS polar 130 53%
plasma LC-MS lipids 61 37% - -
plasma LC-MS free fatty 14 37% - -
acids

PBMC transcriptomics - - 3355 0%

All data sets were analyzed for differences between diclofenac and placebo
treatment by PLS-DA. The results of the different multivariate models are
expressed as error rates. Only when the error rate for the original data set
was < = 30%, analysis was continued by variable selection, as described in
the materials and methods section.

markers that did not show significant correlation to CRP
response (across all subjects) were selected. This
resulted in the selection of 68 genes, 1 protein and 3
oxylipids. The expression changes of these markers are
visualized in a heatmap (Figure 3), together with
changes in PGE,. In addition to changes in PGE,, diclo-
fenac intervention also altered levels of other plasma
oxylipids, increasing 5,6-dihydroxy-eicosatrienoic acid
(5,6-DHET) and 20-HETE (20-hydroxyeicosatetraenoic
acid) and decreasing the linoleate derived 9,10-dihydrox-
yoctadecenoic acid (9,10-DHOME). The arachidonic
acid metabolite 5,6-DHET is a stable hydrolysis product
of the 5(6)-epoxyeicosatrienoic acid (5(6)-EET) (not
measured in current study) which itself is a substrate of
cyclooxygenase leading to formation of epoxy prosta-
glandins. Levels of arachidonic acid (measured in FFA
metabolomics analysis) were increased in the diclofenac
group at day 9 compared to day 0, but the responses in
diclofenac and placebo treatment groups were not sig-
nificantly different (data not shown). Diclofenac inter-
vention resulted in decreased levels of TNF-alpha.
Furthermore, the selection of genes includes genes with
a known role in inflammation like T cell receptor alpha
(TRA@), but also genes with unknown function. The
network in figure 4 summarizes and visualizes the effect
of diclofenac on inflammation: inhibition of prostaglan-
din synthesis and changes in associated oxylipids,
together with inhibition of TNF-alpha and closely
related genes and proteins like caspase 8.

Discussion

Obesity is often associated with elevated indicators of a
chronic inflammatory state. However, many common
inflammation markers report on different aspects of this
condition, highlighting that inflammation is complex
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and multifactorial. In this study of moderately over-
weight subjects, we investigated the impact of a 9-day
standard dose of the NSAID diclofenac on a broad array
of transcriptomic, proteomic and metabolomic markers,
including many common markers of inflammatory sta-
tus. A recognized mechanism of NSAID antipyretic,
analgesic and anti-inflammatory efficacy is through the
blockade of prostaglandin synthesis by inhibition of
cycooxygenase enzymes. Consistent with this mechan-
ism, a reduction in plasma PGE, levels was observed in
the diclofenac treatment group. Additionally, diclofenac
intervention resulted in reduced levels of inflammation
marker TNF-alpha.

Established inflammatory markers are mostly asso-
ciated with obesity-related diseases like cardiovascular
disease and type-2 diabetes [9,13,16]. The subjects in
the current study were overweight and relatively healthy,
i.e. before manifestation of obesity-related diseases. The
lack of response of most of these inflammatory markers
other than PGE, to modulation of inflammation by
diclofenac and the interference of acute phase response
markers in the placebo group clearly demonstrates the
need for more detailed and accurate descriptors of low-
grade inflammatory status and its modulation, specifi-
cally associated with mild obesity. This study identified
a panel of genes, proteins and metabolites that describe
a diclofenac-response network in overweight subjects.
This panel contains potentially more stable and sensitive
markers of modulation of low-grade inflammation in
overweight subjects, as compared to the established
markers that often also respond to an acute inflamma-
tory challenge. As indicated in figure 4, many of these
novel markers appear functionally related to the
accepted mode of action of diclofenac. Inhibition of
prostaglandin synthesis results in higher levels of arachi-
donic acid and its oxylipid metabolites 5,6-DHET and
20-HETE. The intermediate metabolite 5(6)-epoxy eico-
satrienoic acid (5,(6)-EET) is a potent modulator of ion
conductance in various tissues, and its biological effects
are often COX-dependent [28-30]. While no change in
PBMC COX-2 expression was detected, annexin Al
(ANXA1) expression was induced in response to diclofe-
nac, increasing 64 * 41% (mean t stdev) in this cell
type. This anti-inflammatory protein can inhibit
enzymes phospholipase A2 and COX-2, thereby inhibit-
ing prostaglandin synthesis [31]. TNF alpha can also
affect prostaglandin synthesis by inducing expression of
prostaglandin synthase [32]. Network analysis identified
diclofenac responsive genes T cell receptor alpha, cas-
pase 8 and AKAP13 as markers functionally related to
TNF alpha, as shown in figure 4. It is known that
NSAID, including diclofenac, can suppress TNF alpha
induced NFkB activation [33] and that NFkB can regu-
late prostaglandin synthesis through COX-2 [34]. The
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Figure 3 Heatmap of responses of 68 genes, 1 protein (P) and 4 metabolites (M) to diclofenac intervention. Numbers represent %
change in each subject in response to diclofenac. Each row lists identifier and name. For genes identifiers are Affymetrix probeset IDs, for
proteins and metabolites names are shown followed by (P) or (M), respectively.
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observed changes in PGE,, TNF alpha and annexin A2
corroborate anti-inflammatory effects of the diclofenac
treatment in the overweight subjects. Furthermore,
more detailed biological network analysis allowed us to
identify and visualize functionally related diclofenac
responsive genes, proteins and metabolites. The markers
in the network may each be sensitive markers of inflam-
matory modulation. However, it is important to note
that a considerable number of diclofenac responsive
genes are genes not previously associated with inflam-
mation and genes with unknown function. Although
these genes can therefore not be included in the biologi-
cal network analysis, each of these could be potential
interesting links for novel markers of inflammation asso-
ciated with obesity.

Interestingly, the majority of the metabolites mea-
sured did not show a differential response between the
diclofenac and the placebo group, with the exception
of the metabolites of the oxylipids platform. However,
in addition to measurements in fasting condition, the
response of metabolites was also studied during an
oral glucose tolerance test, performed at the beginning

and the end of the study, based on the idea that by
challenging a system you can test its resilience. In
the face of this metabolic challenge test, subtle diclofe-
nac-responsive changes were detected, e.g. reduced
plasma levels of uric acid and changes in levels of
metabolites from the insulin regulated glutathione
synthesis pathway. These findings are described in
detail elsewhere [21].

Diclofenac intervention did not affect levels of the
known inflammation markers CRP, sialic acid, VCAM
or ICAM. Influences on plasma IL-6 could not be
determined since levels were below the detection limit
in the multiplex proteome analysis. In the placebo
group, large within-subject variation of CRP was
observed (Figure 2). This probably reflects the function
of CRP as an acute phase protein and data suggested
that a subset of subjects in the placebo group had
unrecognized acute phase response underway at study
day 0. In addition to the fluctuation over time, it
should be noted that CRP levels also showed large
between-subject variation (table 1, figure 2). It was
evaluated whether this acute response of CRP was
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reflected in the transcriptome, proteome and metabo-
lome data sets by performing correlation analysis on
CRP response and the gene, protein and oxylipid
responses in all subjects. The network in additional file
5 illustrates biological connections between CRP
and the most highly correlated genes and proteins
(MetaCore™). The identified network of genes/proteins
contains multiple nodes with roles in the acute phase
response: complement 3 (C3), ferritin, PAI-1 [35].
Furthermore, the transcription factor STAT3, which
can activate CRP transcription [12], has a central posi-
tion in the network. The markers in this inflammation
network may be more relevant as markers of fluctua-
tions in acute inflammation than as markers of inflam-
matory modulation by pharmaceutical or nutritional
intervention.

The panel of genes, proteins and metabolites modu-
lated by diclofenac in this study appear to provide alter-
native measures of inflammatory status when associated
with mild chronic conditions as observed in obesity. By
using these markers to assess subject responsiveness
prior to subject selection, the resulting reduction in var-
iance is expected to increase the statistical power of stu-
dies designed to assess inflammatory intervention
strategies in such chronic mild conditions. This
increased power might then result in detection of
changes in conventional inflammatory markers that
were not detected in this study. It should be noted that
larger subject groups could also contribute to increased
power to detect changes in inflammatory markers.
Furthermore, it should be noted that additional studies
are needed to determine whether the markers identified
here are specific for modulation of inflammation
through inhibition of prostaglandin synthesis or if they
are more general markers of inflammatory modulation.
Ultimately, this study shows how the analysis and inte-
gration of a wide-range of parameters can lead to the
selection of both known and new markers that respond
to inflammatory modulation.

Conclusion

We report an array of new potential markers of inflam-
matory responsiveness to NSAID therapy in overweight
subjects that include PBMC expression of ANXA1
and caspase 8, as well as plasma concentrations of
5,6-DHET. These findings constitute an advance in our
ability to understand and quantify the status and modu-
lation of inflammation in humans.

Additional file 1: Overview of plasma proteins. List of inflammation
related plasma proteins measured in multiplex analysis.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1755-8794-3-5-
S1.PDF]
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Additional file 2: Changes in plasma oxylipids. Mean (+ stdev) and
median % change of plasma oxylipids selected by PLS-DA

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-5-
S2.PDF]

Additional file 3: Changes in plasma proteins. Mean (+ stdev) and
median % change of plasma proteins selected in PLS-DA

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-5-
S3.PDF]

Additional file 4: Enriched biological processes in selected set of
genes. Enriched biological processes (based on Gene Ontology) in
selected set of genes. Selected set of genes was analyzed in GenMAPP
v2.0. Biological processes are ordered by Z-score.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-5-
S4PDF]

Additional file 5: Network showing biological connections between
genes and protein selected on highest correlation of expression
change to CRP change. Network showing biological connections
between genes and protein selected on highest correlation of expression
change to CRP change (day 9 vs. day 0, n = 18). Network was generated
using curated interactions in MetaCore v4.7 (GeneGo Inc, St. Joseph, MI,
USA).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-5-
S5.PDF]
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