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Abstract
Background: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) 
levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease 
progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that 
molecular profiles might further improve current clinical models.

Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel 
method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) 
method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken 
at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two 
extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases 
(lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular 
features were evaluated for their ability to distinguish lethal from indolent cases.

Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using 
clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the 
lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors.

Conclusions: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of 
initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the 
development of molecular biomarkers for prostate cancer progression challenging.

Background
The paramount clinical dilemma in prostate cancer man-
agement is how to treat the man with clinically localized
disease because the natural history is favorable overall [1]
and the benefit from radical treatment modest [2].
Numerous studies have attempted to address this issue
but the lack of data with long-term clinical outcomes pre-
cludes a definitive assessment. This problem is real and
mounting. In 2008, it was estimated that 186,320 new
cases of prostate cancer were diagnosed in the United

States with the vast majority being clinically localized [3].
The majority of these men are predicted to survive
despite prostate cancer for 5 or 10 years regardless of the
type of treatment they initially receive [4]. This would
suggest that expectant management for localized prostate
cancer might be an important modality to deal with this
common malignancy. This approach would potentially
gain more widespread acceptance if we could sort out
those men that were at the greatest risk of disease pro-
gression at time of initial diagnosis.

Various approaches using clinical parameters including
prostate specific antigen (PSA) levels at time of initial
diagnosis have been explored to predict disease progres-
sion [5-7]. Although these models work well for men with
extreme levels of PSA, the majority of men fall within an
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intermediate range characterized by a PSA level between
4-10 ng/ml and a Gleason score of 6 or 7. A Gleason score
is assigned to a prostate cancer based on its microscopic
architectural appearance. It ranges from 2 to 10, with
higher values associated with higher tumor grade. The
need for additional tests to complement and improve
upon these existing approaches would help identify men
who must be treated and who can safely be monitored for
disease progression.

We reasoned that by performing high-throughput
expression profiling of transurethral resection of the
prostate (TURP) samples from a large cohort of men on a
Watchful Waiting cohort, we would identify a molecular
profile predictive of prostate cancer disease progression.
We further reasoned that employing a combination of
novel technology and a well-defined clinical cohort
should yield a strong lethal prostate cancer signature.

Limitations of prior prostate cancer expression profil-
ing studies have included small sample size, restriction of
populations to surgical cohorts, short follow up time, and
the use of surrogate endpoints such as PSA biochemical
recurrence to define disease progression. To overcome
these limitations, we designed a study using prostate can-
cer samples prospectively registered as part of a Watchful
Waiting protocol from two regions in Sweden. Up to 30
years of clinical follow up information was available on
these men. All of the cases were detected incidentally in a
pre-Prostate Specific Antigen (PSA) screening era.

Methods
Patient population
The present study is nested in a cohort of men with local-
ized prostate cancer diagnosed in the Örebro (1977 to
1994) and South East (1987 to 1999) Health Care Regions
of Sweden. Eligible patients were identified through pop-
ulation-based prostate cancer quality databases main-
tained in these regions (described in Johansson et al., Aus
et al., and Andren et al. [1,8,9]) and included men who
were diagnosed with incidental prostate cancer through
(TURP) or adenoma enucleation, i.e. stage T1a-b tumors.
In accordance with standard treatment protocols at the
time, patients with early stage/localized prostate cancer
were followed expectantly ("watchful waiting"). No PSA
screening programs were in place at the time.

The study cohort was followed for cancer-specific and
all cause mortality until March 1, 2006 through record
linkages to the essentially complete Swedish Death Regis-
ter, which provided date of death or migration. Informa-
tion on causes of death was obtained through a complete
review of medical records by a study end-point commit-
tee. Deaths were classified as cancer-specific when pros-
tate cancer was the primary cause of death.

We were able to trace tumor tissue specimens from 92%
(1256/1367) of all potentially eligible cases. In order to

provide complete and consistent information, available
hematoxylin and eosin (H&E) slides from each case were
reviewed to identify all tissue specimens with tumor tis-
sue. Slides and corresponding paraffin-embedded forma-
lin-fixed blocks were subsequently retrieved and re-
reviewed to confirm cancer status and to assess Gleason
score and other notable histopathologic features. The
reviewers were blinded with regard to disease outcome.
Gleason score was evaluated according to Epstein et al.
[10]. All patients gave informed consent for the study.

Study design
Since our overarching aim was to identify signatures pre-
dicting a lethal or an indolent course of prostate cancer,
we maximized efficiency by devising a study design that
included men who either died from prostate cancer dur-
ing follow up (lethal prostate cancer cases) or who sur-
vived at least 10 years after their diagnosis (men with
indolent prostate cancer). We thus excluded men with
non-informative outcomes, namely those who died from
other causes within ten years of their prostate cancer
diagnosis or had been followed for less than 10 years with
no disease progression (n = 595). All men with samples in
which high-density tumor regions (defined as more than
90% tumor cells) could be identified were included (n =
381). We excluded from the indolent group men who had
received any type of androgen deprivation treatment dur-
ing follow up (n = 79), since some of these had potentially
lethal disease that was deferred by therapy. Twenty-one
men were further excluded due to poor sample quality. In
total, 281 men (116 with indolent disease and 165 with
lethal prostate cancer) were included in the analyses (see
Figure 1). The study design was approved by the Ethical
Review Boards in Örebro and Linköping. The clinical and
pathologic demographics of these of 281 men with pros-
tate cancer are presented in Additional File 1, Table S1.

In addition to the standard pathology evaluation we
also characterized each case with respect to ERG gene
rearrangement, since it appears that this event is an indi-
cator of poor prognosis (Additional File 1).

Complementary DNA-Mediated Annealing, Selection, 
Ligation, and Extension Array Design
An array of 6100 genes (6K DASL) was designed for the
discovery of molecular signatures relevant to prostate
cancer by using four complementary DNA (cDNA)-
mediated annealing, selection, ligation, and extension
(DASL) assay panels (DAPs) [11,12]. Details of this proce-
dure can be found in Additional File 1 and also at Gene
Expression Omnibus (GEO: http://
www.ncbi.nlm.nih.gov/geo/) with platform accession
number: GPL5474. This data set is also available at GEO
with accession number: GSE16560.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Supervised classification models: implementation and 
evaluation
In order to identify and evaluate a predictive molecular
signature, six supervised classification models were
implemented: k-Nearest Neighbor (kNN) [13], Nearest
Template Prediction (NTP) [14], Diagonal Linear Dis-
criminant Analysis (DLDA)[15], Support Vector Machine
(SVM)[16], Neural Network (NN)[13], and Logistic
Regression (LR)[17]. Their performances were evaluated
and compared through a split-sample validation proce-
dure. Specifically, the entire data set was randomly split
into a Learning and a Validation sets, with approximately
equal proportion of men with lethal and indolent prostate
cancer (Figure 1). The Learning set is utilized to create
the models and select the best classifier, whose perfor-
mance is evaluated on the Validation set by means of the
Area under the Receiving Operating Curve (AUC). This
procedure enables the unbiased estimation of the perfor-
mance of a classifier since the evaluation is performed on
an independent data set [18]. To optimize the classifiers
and select the best model, we adopted an iterative cross-
validation procedure within the Learning set. The ratio-

nale is that results of this procedure enable the identifica-
tion of the best model which is then used to build a
classifier (using the whole Learning set) that is finally
evaluated on the Validation set. Specifically, a stratified
10-fold cross-validation split the Learning set in 10 dis-
joint partitions, testi (i = 1..10), with approximately equal
proportion of lethal and indolent cases each. Given a par-
tition testi, classifiers were created using the cases not in
that partition, i.e. trainingi, and evaluated on testi. This
procedure was repeated 10 times and the final results are
averaged across the 10 iterations. Moreover, to avoid
potential biases in the selection of the 10 partitions, the
entire procedure was repeated 100 times resulting in
1000 different partitions. The best model was then identi-
fied by comparing the results obtained on the 100 itera-
tions.
Feature Selection
At each iteration of the cross-validation, a feature selec-
tion procedure was carried out to identify the subset of
genes that are differentially expressed between lethals
and indolents. A two-sided t-test was performed for each
gene within the trainingi partition. Different thresholds
on the p-values were used for selection (0.01, 0.001). We
ensured that the selection of genes is performed using
only the samples used for training, avoiding over-fitting
the data. For DLDA and the logistic regression models, a
stepwise-like feature selection was implemented. Specifi-
cally, genes were sorted according to their t-test p-value
and then added to the model one at the time. The best
gene set is then selected as the one achieving the best
AUC with the fewer number of gene predictors.
Model selection
Each classifier has its own set of parameters that need to
be optimized. The identification of the best parameter set
for each classification model was performed within the
cross-validation procedure.

Homogeneity assessment
The homogeneity analysis provides an indication of how
well samples are clustered into separated groups. Homo-
geneity is based on the computation of silhouette widths,
which also enables an intuitive illustration of homogene-
ity by means of silhouette plots [19]. Briefly, the silhou-
ette width of a sample compares the average distance of
that sample from samples of the same group to its average
distance from samples of other groups (Figure 2a).

Silhouette widths, here called homogeneity score, can be
represented through silhouette plots (Figure 2b - right
panel). Moreover, the average homogeneity score within a
group provides a means to quantify how the samples in
the group are similar to each other with respect to the
other group: the higher the average homogeneity score is,
the more homogeneous the groups is, and the more dis-
similar are the elements of this group to the other group

Figure 1 Study design. From 1256 men of a Watchful Waiting Cohort, 
we selected the "Extreme" cases: those who died of prostate cancer or 
men who lived more than 10 years without signs of progression. We 
also filtered out some patients based on tumor tissue availability, sam-
ple quality or because they were treated. Finally, we randomly divided 
the patients in a Learning and Validation sets, ensuring that similar pro-
portions of lethals and indolents are present in the two groups.
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Figure 2 Schematic of silhouette widths, i.e. homogeneity scores, and silhouette plots. A. (left) Given an element in a group (the orange cross 
surrounded by a diamond) the distances from elements in the same group (magenta lines) and from those in the other group (green lines) are com-
puted. The homogeneity score can be viewed as the difference between the averages of the inter-group distance (green) and the intra-group dis-
tance (magenta). (right) The homogeneity score of each sample is plotted on a horizontal bar, after sorting the samples within each group. The 
average of the homogeneity scores is computed for each group yielding an estimation of the homogeneity of the cluster. B. Four different categories 
of homogeneity (left) and the corresponding silhouette plots (right) are depicted. Specifically: Scenario 1. two homogeneous and well-separated 
groups; Scenario 2. one homogeneous and one heterogeneous group, well-separated; Scenario 3. one homogeneous and one heterogeneous group, 
overlapping; Scenario 4. two heterogeneous overlapping groups. The empirical interpretation of the average homogeneity score for a group is shown 
at the bottom.
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(Figure 2b). Details of this analysis are reported in Addi-
tional File 1.

We explored for biological heterogeneity (and its con-
verse, homogeneity) in this prostate cancer data set and
compared our findings with other tumor tissues. We
defined heterogeneity in terms of the molecular signature
by evaluating the "distance" between patients belonging
to the same group, e.g. lethals, to that of patients belong-
ing to different groups, e.g. indolents. Clearly, in homoge-
neous tissues, biopsy sampling is not an issue and
patients belonging to the same group should be molecu-
larly "closer" to each other than to those belonging to dif-
ferent groups. On the other hand, heterogeneous tissues
should not show a clear separation as the molecular pro-
files of samples in both groups intermingle (Figure 2b -
left panel).

We performed the homogeneity analysis on the pros-
tate data set considering the two groups of lethal and
indolent patients. Furthermore, we compared these
results with 5 well-known publicly available data sets,
with different levels of heterogeneity (see Additional File
1 and Additional File 1, Table S2).

Results
Association with clinical variables
We first examined associations between clinical variables
and outcome (see Additional File 1, Table S1). Gleason
score, divided into 3 groups: 4-6; 7; and 8-10, showed the
strongest association with outcome(Cramer's V: 0.45 and
Fisher's exact test p-value = 6*10-14). In this cohort, men
with ERG rearranged prostate cancer were significantly
more likely to be in the lethal class than the indolent class
with an odds ratio of 7.2 (95% CI = [2.8,19.0]; Fisher's
exact test p-value = 2.3*10-6) (Figure 3).

Supervised analysis results
The results on the Learning set showed that no classifica-
tion model clearly outperformed the others in predicting
lethal cases (Additional File 1, Table S3). Indeed, most of
them had similar performance. Therefore, to simply illus-
trate and summarize these findings, we report here the
complete results of the logistic regression models (Figure
3a).

The molecular classifier alone achieved an AUC of 0.71
(95% CI = [0.67,0.75]) including 18 genes. Surprisingly,
however, it did not perform better than models using only
clinical features (AUC = 0.76; 95% CI = [0.67,0.84]) for
the model with Gleason score). Moreover, when the
model combines molecular and clinical features, no
improvement over the clinical model was observed (AUC
= 0.75; 95% CI = [0.71,0.79]) for the classifier comprising
Age, Gleason score and 12 genes.

Gleason score was the most important clinical parame-
ter as all the top models included Gleason score in their

classifiers. Although it is well known that inter-observer
variability may affect this subjective parameter [20-22],
the results demonstrate that it is a strong outcome pre-
dictor. Although differences among the top models were
marginal, the best classifier of lethal prostate cancer
included Gleason score and ERG rearrangement status
(AUC = 0.79; 95% CI = [0.71,0.87]).

Lack of a significant improvement in prediction using
the molecular profile suggested several possibilities. First,
perhaps our definition of lethal and indolent prostate
cancer does not capture the biological progression of the
tumor. In order to assess how our definition of "extreme"
cases affects the results, we ran several experiments by
modifying the definition of lethals and indolents. Addi-
tional File 1, Table S7 reports the results for DLDA. Simi-
lar results are obtained with the other classification
models. When the definition of lethal or indolent is very
stringent we can achieve some improvement. However,
this is obtained at the expense of the number of cases that
are classified. Moreover, with very stringent thresholds,
we enriched for high and/or low Gleason scores in the
two groups. Hence, although a better classification per-
formance can be achieved, it is likely that no additional
information about the more critical cases (Gleason score
7) can be obtained. Second, we reasoned that stroma-
contaminated samples may have prevented us to discover
a molecular signature of aggressive prostate cancer.
Therefore, in order to seek for stroma-contaminated
samples, we employed a molecular profile developed by
Tomlins et al. [23] where they applied laser capture
micro-dissection (LCM) to prostate tissues (see Addi-
tional File 1 for details). We identified in our data set a
cluster of samples exhibiting stroma-like profile based on
a set of 47 top ranked common genes (see Additional File
2, Figure S3). These samples (n = 17) were then excluded
from the Learning set and the remaining samples were
used as a new Learning set. The same iterative cross-vali-
dation procedure was employed for a SVM classifier
(polynomial degree = 1; cost = 0.1; p-value = 0.01) which
achieved an AUC of 0.77 (95%C.I. [0.73-0.81]). We
believe that this result, which is comparable to the one
using the full set (see Additional File 1, Table S3), is not
sufficient to argue that stroma-contaminated tissue have
prevented us to develop an accurate prediction model.
Furthermore, we considered that, perhaps, the genes
assayed on the this DASL array platform might not
include the actual genes driving tumor progression. How-
ever, the 6K DASL gene set was developed specifically for
this project. We selected genes showing the maximum
variation in expression in 24 expression profiling studies
from 15 different tumor types or because they were tran-
scriptionally deregulated in previous prostate cancer
studies. These genes cover most of the known pathways.
Moreover, we demonstrated that this same platform and
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a slightly larger cohort can reliably identify a molecular
signature for ERG rearrangement status [24]. Neverthe-
less, we performed an additional analysis by evaluating
the consistency of the Gleason-score correlated genes
(see Additional File 1) confirming its reliability. We thus
favored that inter-tumor heterogeneity was the main rea-
son and thus explored the potential impact of tissue het-
erogeneity by performing a homogeneity analysis.

Homogeneity analysis results
For prostate cancer, we computed homogeneity scores of
the samples using a subset of the genes assessed on the
array. We selected the genes that best distinguish the two
groups, namely lethal and indolent prostate cancer, on
the entire cohort of 281 patients, intentionally over-fit-
ting the data to obtain the best molecular descriptors of
the two groups. Specifically, genes were selected by a
two-tailed t-test p-values after correcting for multiple

Figure 3 Supervised analysis. A. Results of logistic regression on the Validation dataset. On top are reported the AUCs of the models, whereas on 
the bottom the parameters that are used in the corresponding model are shown. A colored square means that the parameter was used in the model, 
whereas a white square means that the parameter was not used. The last row reports the number of genes that were used by the model, if any. Models 
including clinical and molecular parameters are reported only if they improved on the corresponding models using clinical parameters only. Models 
are sorted from left to right according to their AUC. We estimated the Confidence intervals (CIs) for models including genes using the sampling dis-
tribution of AUCs generated by the iterative cross-validation procedure on the Learning set. For the other models, a bootstrap estimation of CIs was 
computed on the Validation set. The genes that are involved in the models are reported in Additional file 1, Table S4. B. Contingency table showing 
ERG rearrangement status association with clinical outcome. In parenthesis the expected numbers of cases if no association is assumed.
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hypothesis testing (q-value < 0.05), yielding 118 genes
(see Additional File 1, Table S5)[25].

We performed the same analysis for other tumor data
sets and compared the results with our data set. For illus-
tration purposes, Figure 4a shows the silhouette plot for
our prostate cancer data set compared with the Burkitt's
lymphoma data set [26]; whereas Figure 4b reports the
results for all data sets. We compared prostate cancer
with Burkitt's lymphoma because both harbor a recurrent
translocation that leads to the over expression of two
known oncogenes: c-MYC for Burkitt's lymphoma and
ERG for prostate cancer.

The results support the heterogeneity hypothesis for
prostate cancer. The average homogeneity score of the
lethal group is lower than zero, meaning that on average,
samples in the lethal group are more similar to samples in
the indolent group. On the other hand, indolent cases
seem to be slightly more homogeneous than lethal, as
expected, although the average homogeneity score is
rather low.

Conversely, the homogeneity scores on Burkitt's lym-
phoma data set are quite striking when compared with
prostate cancer. Burkitt's lymphoma is a molecularly
defined disease, with marked differences with respect to
the broader class of lymphoma. Dave et al. identified a
signature comprising 228 genes which is able to discrimi-
nate between Diffuse Large B-Cell Lymphoma (DLBCL)
and Burkitt's lymphoma. This signature resulted in an
average homogeneity score of 0.71, suggesting a strong
structure of Burkitt's lymphoma. This is in contrast with
the DLBCL group, which is more heterogeneous and con-
sists of multiple sub-classes. The homogeneity analysis
confirms this notion yielding an average homogeneity
score of 0.34, interpreted as a weak structure (see Addi-
tional File 1 for additional detail).

Among the other studies, AML and ALL show the
highest degree of homogeneity with both classes scoring
higher than 0.6, whereas breast and lung cancer are con-
firmed to be heterogeneous (Figure 4b). Similarly to pros-
tate cancer, we selected the most informative genes
separating the groups for each study. Specifically, the
most informative genes of Sørlie et al. [27] were selected
by computing a Wilcoxon test between ER+ and ER- sam-
ples and using a p-value cut-off of 0.01. Battacharjee et al.
[28] identified 675 genes whose differential expression
levels were the most highly reproducible. For the leuke-
mia data set, we selected to top 50 genes according to the
correlation-based score proposed by Golub et al. [29](see
Additional File 1 for more detail).

Homogeneity of ERG rearranged subclass
We recently reported a molecular signature including 87
genes characteristic of ERG rearranged cases in the same
cohort of patients [24], which was also validated on a U.S.

based cohort. The homogeneity analysis using this gene
signature supports the hypothesis that ERG rearranged
cases represent a distinct subclass, although we cannot
extend this result for the entire population of ERG rear-
ranged prostate cancers. Indeed, these cases show a
homogeneity score of 0.39 (Additional File 2, Figure S2).

Discussion
Current prognostic models of prostate cancer, including
PSA, Gleason score and clinical stage fail to accurately
predict disease progression, especially for men with inter-
mediate disease. Two large randomized trials evaluating
the effect of PSA screening on prostate-cancer mortality,
namely the Prostate, Lung, Colorectal, and Ovarian
(PLCO) and the European Randomized Study of Screen-
ing for Prostate Cancer (ERSPC), showed that during the
first decade of follow-up, PSA screening has at best a
modest effect (20% relative reduction of PCA specific
death in the ERSPC) on PCA mortality, with substantial
risks of negative biopsy, over diagnosis and over-treat-
ment [30,31]. The need to better identify patients with a
more aggressive disease is thus an open challenge given
the clinical observation that prostate cancer is a heteroge-
neous disease. This observation is based on the experi-
ence of clinicians who witness men with localized disease
that should fair well but on occasion do not and less com-
monly men with apparently aggressive disease who do
well. How can we account for this clinical heterogeneity?
We anticipated that a well-designed molecular study
interrogating thousands of genes implicated in cancer
and specifically prostate cancer would help us determine
a molecular signature for lethal and indolent disease. Per-
haps what is clinically referred to as "heterogeneity" really
represents our inability through Gleason grading or other
clinical attributes to untangle the key elements that
would, if known, help us predict which men will succumb
to disease progression. The findings of the current study
and other recent studies described below point to a more
concerning reality about what accounts for heterogeneity.

This study found that molecular predictors can distin-
guish aggressive from indolent prostate cancer similarly
to models generated from Gleason score and other clini-
cal parameters. However, by combining clinical and
molecular data, we were not able to improve on known
predictors. The explanation is manifold. First, we must
consider the important limitation of prostate cancer sam-
pling. We know that a prostate gland harbors often up to
5 geographically distinct tumor nodules [32-36] and these
nodules are often clonally distinct. If we consider the
homogeneity of ERG rearrangement in circulating tumor
cells (CTCs) [37] and that the ETS gene rearrangements
occur early in the development of prostate cancer, as they
are often seen in high-grade PIN [38], and, when
observed, are present in all tumor cell within a nodule;
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Figure 4 Homogeneity analysis. A. Silhouette plot for Burkitt's lymphoma (left) and prostate cancer (right). The numbers report the average homo-
geneity score for each group. B. Average homogeneity score for different cancer data sets.
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then, we can consider this a possible marker of tumor
clonality. Observations from three independent groups
demonstrate that up to 50% of prostate cancers with mul-
tiple nodules have clonally distinct lesions [39-41]. This
would strongly support why sampling of the "right" can-
cerous nodules is so critical in prostate cancer. A prostate
needle biopsy or TURP sample may or may not capture
the driving lesion leaving an important clone undetected.
This inability to identify the molecularly dominant nod-
ule (intra-tumor heterogeneity) would then help explain
the "heterogeneity" observed in the clinical assessment at
time of diagnosis with outcome.

However, if intra-tumor heterogeneity were the main
explanation for our results, and inter-tumor heterogene-
ity, i.e. the presence of many alternative pathways which
lead to lethality in prostate cancer, only marginal, then all
cancer foci across individuals should share a similar
molecular profile. How does sampling play a role in this
scenario? The set of indolent prostate cancer samples is
not affected by sampling, the set of lethal prostate cancer
samples is affected, in that the lethal focus is 'sub-sam-
pled'. Let assume that this causes a 50% dilution of the
lethal molecular signal. Due to our study design and com-
binations of supervised and unsupervised analysis
approaches, we should still have been able to detect the
presence of a strong and consistent lethal signal, even if
this was for a subset of the lethal prostate cancer popula-
tion. Hence, we believe that our results are best explained
by high degree of heterogeneity between lethal prostate
cancers.

However, another possible alternative explanation for
clinical heterogeneity might be that the lethal signature
develops with the accumulation of molecular lesions over
time and therefore may not be present at time of initial
diagnosis in contrast to the homogeneity of ERG rear-
rangement in CTCs [37]. This would not be mutually
exclusive from inter-tumor heterogeneity but could com-
pound the problem. Finally, the molecular signature may
be embedded in the adjacent non-cancerous stromal tis-
sue as recently observed in hepatocellular cancer [42] or
perhaps due to a host immune response to the tumor that
might not be measurable by examination of the tumor
sample. Regardless of what the mechanism or combina-
tion of mechanisms is, we are still faced with an inability
to consistently detect the lethal molecular signature as
observed in the current study.

Our study results are in fact consistent with other
emerging data from U.S. cohorts using similar and differ-
ent molecular platforms. Nakagawa et al. recently
attempted to develop a biomarker panel to predict which
men with rising PSA following surgery would progress
with clinically significant disease [43]. They employed a
case-control design where cases were defined as men
with rising PSA who progressed within 5 years after ini-

tial surgery. Controls were men with rising PSA but no
sign of clinical disease progression within the first 5 years
following surgery. A total of 213 cases and 213 controls
were used for this study and, similar to the current study,
the cases and controls were divided into training and vali-
dation set. Although the results on the training set
seemed promising (see Additional File 1), the validation
phase showed mis-classifications in both directions and
none of the models with molecular and clinical parame-
ters performed better than an AUC of 0.75 [43].

Another recent study is significant because a two-phase
biomarker development approach was used to classify
long-term disease progression or death due to prostate
cancer. Cheville et al. reported on a molecular classifier
developed using a profile developed from tumor samples
isolated by laser capture micro-dissection [44]. They used
quantitative RT-PCR to measure gene expression and
cancer specific death following surgery or development
of metastatic disease as the clinical endpoint. They used a
2-phase design with a training set of 157 high-risk
patients and a validation set of 57 high-risk patients.
Their results demonstrated that a model including topoi-
somerase-2a, cadherin-10, ETS genes involved in gene
fusion (i.e., ERG, ETV1, and ETV4), and aneuploidy sta-
tus had an AUC of 0.81 and 0.79 for training and valida-
tion sets, respectively.

Based on the published series (Nakagawa et al., Glinsky
et al., Lapointe et al., Singh et al., Yu et al., Cheville et al.)
and the current study, it is therefore impressive that all of
these reports using different platforms and patient popu-
lations achieve similar results [43-49].

Although other explanations may be possible, we favor
that inter-tumor heterogeneity plays a more critical role.
The strongest evidence from the current study has to do
with the association of ERG rearrangement status and
lethality (see also Attard et al. [37]).

The association between ERG rearranged cases and the
lethal phenotype suggests that ETS rearrangements
describe a particularly aggressive subclass of prostate
cancer. In the current study 41 of 46 ERG rearranged
prostate cancers were lethal; the unadjusted odds ratio
for lethal disease associated with ERG rearrangement sta-
tus was 7.2 (95% CI 2.8-19.0). This confirms and extends
observations from 111 men in the expectant management
cohort from Örebro where men with ERG rearranged
prostate cancer were significantly more likely to have
lethal disease than men with fusion negative tumors
(cumulative incidence ratio = 2.7, p-value < 0.01, 95% CI
= [1.3,5.8]) [50]. From the United Kingdom, Attard et al.
reported associations between TMPRSS2-ERG fusion
with interstitial deletion and cause specific survival tak-
ing into account age, Gleason score, and pre-treatment
PSA in a cohort of 445 men conservatively treated for
prostate cancer [51]. Interestingly, aneuploidy in combi-
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nation with TMPRSS2-ERG fusion was associated with
the worst clinical outcome (hazard ratio = 6.10, 95% CI =
[3.33,11.15], p-value < 0.001, 25% survival at 8 years). The
relatively low frequency of ERG rearrangement in this
cohort may represent the admixture of peripheral zone
tumors with a presumed ERG rearrangement frequency
of 45% [52] and transition zone tumors with a signifi-
cantly lower ERG rearrangement frequency [53].

Conclusions
In summary, this study attempted to identify a molecular
signature for lethal prostate cancer. Molecular profiles
developed in this study performed similar to clinical
models and no model was identified that improved on the
clinical models by including the profiling data. One sig-
nificant result is the association of ERG rearrangement
with lethality (OR = 7.2 95% CI = [2.3,19.0], Fisher's exact
test p-value = 2.3*10-6). Although other explanations may
be plausible, we believe that prostate cancer tumor het-
erogeneity is highly likely to be a major limitation in the
development of a lethal prostate cancer signature.

This study underlines the importance of developing a
better strategy to best capture the molecular complexity
of prostate cancer. One possibility could be using circu-
lating tumor cells, known as liquid biopsies, to reduce the
confounding effect of sampling multiple tumor nodules
in a prostate gland and improve the current biopsy strat-
egy [54,55]. After which, we might be able to focus on
characterizing the multiple lethal signatures that may
exist.
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